
Teamizer
Developing a suitable schedule and poll platform for the

sports club Unihockey Lohn

Bachelor Thesis

Andreas Hohler
from

Lohn-Ammannsegg SO, Switzerland

Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

December 2015

Prof. Dr. Oscar Nierstrasz

Software Composition Group
Institut für Informatik und angewandte Mathematik

University of Bern, Switzerland

Abstract

It has come to our attention that the best known scheduling platform Doodle1

doesn’t support scheduling in closed teams the way we would like it. Did
you ever get annoyed by the fact, that some invited people never fill in a
Doodle schedule or the proposed options don’t fit their schedule? In this
work we show how such a web application for scheduling in teams could be
designed to meet our requirements.

We describe a software project for a specific sports club called Unihockey
Lohn2 which is interested in making scheduling easier for the members and
the responsible.

Our web application provides a simple platform for making polls and
scheduling. It’s based on closed teams with members, so people get notified
when a new poll is created or a deadline is near.

1http://doodle.com
2http://unihockeylohn.ch

1

http://doodle.com
http://unihockeylohn.ch

Acknowledgements

My special thanks to Prof. Dr. Oscar Nierstrasz for giving me the op-
portunity to do this software project as a bachelor thesis in the Software
Composition Group3 of the University of Berne.

I would like to thank my sports club Unihockey Lohn for making this
bachelor thesis possible and give me a chance to revolutionize the scheduling
in this club.

Finally, I appreciate the help of Karan Sethi and Linus Schwab for testing
my work and making good suggestions to improve the system.

3http://scg.unibe.ch

2

http://scg.unibe.ch

Contents

1 Introduction 5

2 Related Work 6

3 The Problem 9
3.1 Functional requirements . 9
3.2 Non-functional requirements . 11

4 The Solution 12
4.1 User experience . 12

4.1.1 Authorization . 13
4.1.1.1 Login . 14

4.1.2 Dashboard . 14
4.1.3 Groups . 14

4.1.3.1 Create & edit a group 14
4.1.3.2 Members . 16
4.1.3.3 Ranks . 16

4.1.4 Polls . 18
4.1.4.1 Create a poll . 18
4.1.4.2 Poll view . 24
4.1.4.3 Fix poll options . 25
4.1.4.4 User profile . 26
4.1.4.5 Calendar . 28

4.2 Architecture . 29
4.2.1 Symfony . 30

4.2.1.1 Request flow . 30
4.2.1.2 Basic file structure 31

4.3 Technical implementation . 33
4.3.1 Routing . 33
4.3.2 Security . 35
4.3.3 User permissions on objects 38
4.3.4 Translation . 40

3

CONTENTS 4

4.3.5 Database . 41

5 The Validation 46
5.1 Usability tests . 46

5.1.1 First test . 46
5.1.2 Second test . 49

5.2 Qualitative Case Study . 51

6 Future Work 53

7 Conclusion 55

Appendices 57

A Appendix A: Anleitung zu wissenschaftlichen Arbeiten 58

B Appendix B: Software Requirements Specification 77

C Appendix C: Technologies evaluation 102

1
Introduction

Today, efficient and easy scheduling is important to run an organization even if it’s quite
small. There exist many tools that have the intention to help manage this difficulty.

The main idea of Teamizeris to get better response on polls by explicitly addressing
all target persons. To achieve this, one creates a group and adds existing accounts or
imports new users by mass processing email addresses and names. In a group people can
be divided into sub-groups with the help of ranks. Thus distinct polls are supported.

Furthermore a notification system will keep the user informed about activities in
groups and polls. For example if a new poll is created or the poll was closed, the user
receives an email and a web notification. And to reduce the difficulty of learning a new
system, a poll has similar features like Doodle already provides.

We faced many challenges particularly when trying to implement non-trivial proce-
dures in Symfony because the framework has useful but also obstructive constraints a
programmer must take into account.

In conclusion, the project was successful. We could implement all requirements and
got a working application that is ready to use. But one big requirement had to be put
aside in order to not excessively exceed the time plan: the mobile application support.
This is a future extension of the project we will seriously consider.

We improved our knowledge about how to face and deal with technical and software
engineering challenges. We learned that sometimes requirements should be prioritized in
order to finish a project in the foreseeable future. Furthermore we learned how a complex
PHP framework works and the way a Model-View-Controller designed application should
look like.

5

2
Related Work

Doodle

Doodle4 is the best known scheduling platform in Switzerland and has its origin also
in Switzerland. Worldwide over 20 million users per month use the service with one
Doodle being created every two seconds.

It can be used quickly and easily to find a date and time to meet with multiple
people. First, you suggest dates and times the participants can choose from. Every
participant selects dates and times from the poll that he is free and Doodle will compose
the responses and tell which option works best for everyone. (Source: Doodle Blog5)

But there are also some features we miss and would like to have. It does not really
provide a possibility to continuously create polls in a group of people, where they have a
good overview over group polls and deadlines.

Teamplanbuch

The Teamplanbuch6 is a Swiss website that helps organize clubs and teams. It enables
people to register or deregister from events, trainings, meetings or plays. It offers great

4https://doodle.com
5http://en.blog.doodle.com/2014/01/29/doodle-crosses-the-20m-user-

mark/ 21.09.2015
6https://www.teamplanbuch.ch

6

https://doodle.com
http://en.blog.doodle.com/2014/01/29/doodle-crosses-the-20m-user-mark/
http://en.blog.doodle.com/2014/01/29/doodle-crosses-the-20m-user-mark/
https://www.teamplanbuch.ch

CHAPTER 2. RELATED WORK 7

features but also lacks some requirements like sub teams, the simplicity of Doodle and
the creation of simple polls.

Figure 2.1: Doodle example

Figure 2.2: Teamplanbuch example

Conclusion
After considering both Doodle and Teamplanbuch we are able to collect shortcomings
and build essential features with the gathered knowledge.

CHAPTER 2. RELATED WORK 8

Both services lack a good notification system. Doodle doesn’t really support building
groups with members. Teamplanbuch implements this feature but is rather overly
complicated and the simplicity of Doodle is missing.
Based on this, we have the following key features our application should cover:

• Notification system for groups and polls

• Creating groups of people to efficiently distribute the poll to invited users

• Text polls and schedule polls

• No overloaded application - a lightweight dashboard where you just see the relevant
things. The screen should not be full of different colors like Teamplanbuch.

• Straightforwardness like providing the wanted functions in an understandable way
for users and a big part of Doodle’s poll features in general

3
The Problem

Based on a meeting with the board members of Unihockey Lohn and experience with
currently used scheduling solutions, we discovered the following functional and non-
functional requirements.

3.1 Functional requirements
These requirements specify the functionality of the system.

Authentication & Authorization
Like every user-specific website, a good authentication and authorization system is
needed. To enable later extensions of an administration area, it should support different
roles like administrators and users.

It must implement some default requirements like password recovery, user profile
and of course account creation.

Our research led to the knowledge that Symfony already contains an authentication
service that supports roles and just needs to be modified for working with our own user
entity. This was an important requirement but easy to implement.

9

CHAPTER 3. THE PROBLEM 10

Polls
The main project goal was the implementation of creating text and scheduling polls. In a
text poll one can simply enter text options a participant will be able to choose from. In a
schedule poll date options can be set with the help of a date picker. For each date option
there should be a field where a specific time or text can be added.

Participants should be able to add comments to the poll and edit their entries as long
as the poll is open.

The poll initiator can choose the final options that “won” the poll and will therefore
close the poll if it was not already closed by the deadline.
The poll creation process should look like the following:

1. Title, Description, Deadline, Location

2. Poll options which participants can choose

3. Additional settings

• Participants are allowed to only choose one option

• Entries are hidden, no one can see the answers of others

• Maximum of participants that can choose a specific option

• Possibility to make “if-need-be” available for busy people (This means that
the participant can mark a not perfect option as if-need-be, and not as “can’t”)

4. Choose the target sub-groups of a group if there are any

• The members of a specific ranks can view or/and participate in the poll

The poll participation process and back end logic were challenging to implement due
to Symfony’s form construction and MVC restrictions. On the other hand the comment
part had a low priority and its implementation was easy.

Groups
Another non-negligible requirement was the group system. Groups allow us to specifi-
cally invite a bunch of people to polls and notify them about changes. The challenging
part of implementing this feature was to get the adding members form working. We
again had to get along with Symfony’s form system.

The sub-group functionality was provided with a rank system, where users can get
assigned to specific ranks. A rank is a sub-group of the original group where users are
part of. Polls can be created with specific ranks as targets.

CHAPTER 3. THE PROBLEM 11

Notification
To ensure that users are up to date with changes and new polls, we need a notification
system. This was also declared as a key feature, especially for further development of
mobile applications. We decided later to exclude the mobile applications from the thesis.
Notifications must be visible on the web application and should be delivered via email.
This requirement was implemented last and brought some difficulties.

Calendar

The user should have a nice calendar where all deadline and fixed dates are shown.
Additionally an iCal feed should be provided to which clients can subscribe. This was
not a risky requirement because it was low prioritized.

3.2 Non-functional requirements
These requirements specify the quality of the system and are mostly related to the
satisfiability of the user.

Responsive design

The website should be designed mobile first so the template must be responsive to
different resolutions. There are many users who don’t use a computer to access the
internet but instead use their mobile phone.

Technology

The application is written in PHP so there isn’t really a special environment needed to
get the application working. Because of this we restricted ourselves to only evaluate PHP
frameworks.

Database

The site response time should be adequately low if there are many database requests. The
used ORM (Object-relational mapping) system by Symfony doesn’t fully load objects
from the database. Instead it just gets the currently used fields. This results in many
database queries. For example, the dashboard creates 100 queries needing totally 117ms
to execute on our local test environment.

The impact on our production environment is not tangible for the user, because it
comes with a lot more power than the test environment.

4
The Solution

4.1 User experience
In this section we show some GUI elements and how important functions are imple-
mented.

Figure 4.1: Page overview

12

CHAPTER 4. THE SOLUTION 13

4.1.1 Authorization

Registration

Figure 4.2: Registration

The registration form consists of the ele-
ments “First name”, “Last name”, “E-Mail”
and “Password”. A user account has to
be unique based on its email address be-
cause the address is used in the login pro-
cess.
To prevent bots from creating accounts
we use the new Google reCAPTCHA7

called No CAPTCHA reCAPTCHA. With
this, most users can attest they are hu-
man without having to solve a real
Captcha. Instead they confirm they are
not a robot with just a single click. If
the Captcha doubts the user’s authentic-
ity, he has to answer a question. For
example “Click on all images showing a
car”.
With this advanced captcha the user won’t
have to confirm his account through a link
sent to his Email address.

7https://www.google.com/recaptcha

https://www.google.com/recaptcha

CHAPTER 4. THE SOLUTION 14

4.1.1.1 Login

Figure 4.3: Login

The login form is really simple and self-
explaining. It is possible to check the “Re-
member Me” box. So the user stays logged
in until the cookies in his browser get re-
moved or he logs off and terminates his ses-
sion.

Also, a password recovery form is avail-
able: the email address and the Google re-
CAPTCHA is required to start a password
restore. Then the user receives a confirma-
tion link over email. After opening it, a new
password is generated and delivered again
over email.

4.1.2 Dashboard

4.1.3 Groups

4.1.3.1 Create & edit a group

Figure 4.4: Create a group

The group creation process (Figure 4.4) is very basic, we just have to type in a name.

CHAPTER 4. THE SOLUTION 15

The name doesn’t have to be unique, since we don’t want to restrict the user.

The next two images in Figure 4.5 show the group editing possibilities. Of course
the name can be changed. Also switching the group owner to another group member is
possible.

Figure 4.5: Edit a group

CHAPTER 4. THE SOLUTION 16

4.1.3.2 Members

Figure 4.6: Members

To add existing users to a specific group only the corresponding email is necessary. For
security purposes the form field does not propose users until the whole email address
is entered. The auto-complete field is implemented with select28. This was a bit tricky
to implement because we load new users dynamically into the form content and then
additionally have to insert the role dropdown field. The challenge continued in the
controller logic where we had to combine new and existing members and assign the
roles to them. Within this form the roles of members can be changed. Possible roles are
“User”, “Moderator” and “Group-Administrator”. The Moderator is allowed to create
polls and manage them. The Group-Administrator has full access to all polls in the group.

We also have the possibility to add several users concurrently with the mass form.
If a user doesn’t exist (only email address is verified) the account is automatically created
and an email with the credentials is sent.

4.1.3.3 Ranks

With a rank system we are able to control access to polls inside the group. For example
our sports club has 3 teams. But sometimes we just want to create a poll for one or two
of the teams. This system makes it really easy to handle such needs. After creating some
ranks we can assign them to group members. Ranks are seen as sub-groups of a group.

8https://select2.github.io 07.03.2015

https://select2.github.io

CHAPTER 4. THE SOLUTION 17

Figure 4.7: Import users

Figure 4.8: Ranks

CHAPTER 4. THE SOLUTION 18

4.1.4 Polls

4.1.4.1 Create a poll

Figure 4.9: Choice or schedule poll

Poll type
This is the entry point of creat-
ing a new poll. The user can
choose between text and schedule
polls. In a text poll (or choice)
the user can simply add text options,
whereby in a schedule poll an ex-
tended date picker with time is imple-
mented.

Poll wizard
The following image shows the first
step (Figure 4.10) of the poll creation
process. We used a Symfony bundle to
implement the wizard at the beginning,
but it was rather complicated and not very stable. Also, every step required reloading the
site. So we switched to another solution with the Ideabox9 JavaScript wizard. It already
has a nice design and easy step flow. It supports a responsive view and has variable
color schemes. We choose the blue theme because it goes well with the site template.
Additionally to make the checkboxes fancier, we included the iCheck10 plugin.
The deadline picker is implemented with the Bootstrap 3 Datepicker11 that also supports
time. The location field is auto-complete and linked with the Google Maps Places library.
We used a plugin12 that mixes jQuery Autocomplete and Google Maps Places API. It
should be noted that we have to configure a seperate Google API Key on every host
where we deploy the application. To prevent the user from losing unsaved data, if he
tries to close the window, he is prompted to confirm it first.

9http://codecanyon.net/item/ideabox-multipurpose-step-form/10818199
16.05.2015

10https://github.com/fronteed/iCheck 16.05.2015
11https://eonasdan.github.io/bootstrap-datetimepicker/ 31.03.2015
12http://www.jqueryscript.net/form/jQuery-Location-Autocomplete-

with-Google-Maps-Places-Library-Placepicker.html 31.03.2015

http://codecanyon.net/item/ideabox-multipurpose-step-form/10818199
https://github.com/fronteed/iCheck
https://eonasdan.github.io/bootstrap-datetimepicker/
http://www.jqueryscript.net/form/jQuery-Location-Autocomplete-with-Google-Maps-Places-Library-Placepicker.html
http://www.jqueryscript.net/form/jQuery-Location-Autocomplete-with-Google-Maps-Places-Library-Placepicker.html

CHAPTER 4. THE SOLUTION 19

Figure 4.10: Create a poll

CHAPTER 4. THE SOLUTION 20

Set poll choice options

Figure 4.11: Set poll choice options

The second wizard step (Figure 4.11) shows either input fields to enter proposals, or a
date picker with additional time/text fields. The choice poll is very simple: one can add
more fields if needed. If not all fields are used, they are simply left empty.
To add more input fields, the Symfony form collection component13 provides a prototype
function that gives us a form skeleton, where we only have to insert an incremented
number into the input name attribute.

13http://symfony.com/doc/current/cookbook/form/form_collections.html

http://symfony.com/doc/current/cookbook/form/form_collections.html

CHAPTER 4. THE SOLUTION 21

Set poll schedule options

Figure 4.12: Set poll schedule options

For implementing the date picker, we used another plugin named Bootstrap Datepicker14.
It gives us the possibility to select multiple dates and manipulate the selected data through
methods. Additional time fields can be used as text or time input. Times are automatically
formatted by Moment.js15, which allows us to permit different time input formats. This
was a bit difficult to implement since a user can insert different time formats. So the
input fields must get checked against different formats to parse the time and get valid
Moment objects.

14https://github.com/eternicode/bootstrap-datepicker 15.05.2015
15http://momentjs.com

https://github.com/eternicode/bootstrap-datepicker
http://momentjs.com

CHAPTER 4. THE SOLUTION 22

Furthermore, functions are provided to copy the first row to all others and to add more
time columns. This feature was rather challenging to implement, because we had to find
a way to subscribe to datepicker manipulations in order to update the input fields.

Set poll settings

Figure 4.13: Set poll settings

The settings are equal for both poll types. We provide some essential settings:

• Yes / No / if-need-be poll: Participants can choose between three options. An
if-need-be option is displayed orange and states that the specific option suits the
participant if it’s absolutely necessary.

• Participants can only choose one option: This setting is disabled, if if-need-be is
enabled.

• Hidden poll: The participants can’t look at other participant’s answers.

• Limit the number of participants per option: This function only works if the
if-need-be setting is disabled.

CHAPTER 4. THE SOLUTION 23

Set poll access rights

Figure 4.14: Set poll access rights

If the group owner has added new ranks, the poll creator can define which ranks are
allowed to see the poll or to participate in the poll.

Figure 4.15: Poll permissions shown in poll view

CHAPTER 4. THE SOLUTION 24

4.1.4.2 Poll view

Figure 4.16: Poll view

The header of the poll view includes description, deadline, initiator, group, location and
permissions. In the main part, the poll options and participants are displayed. The current
user is highlighted with blue color on the left. Entries of users are colored after their
states (Yes: green, No: red, if-need-be: orange).

The user can simply use the “No option fits” button if he doesn’t want to participate.
The meaning of our polls is, that people fill out the poll, even if no proposal fits their
interest.

CHAPTER 4. THE SOLUTION 25

Here was challenging again the implementation of the normal Yes/No checkbox and
the if-need-be button because these are two seperate entity fields where the order of both
has to match. The form engine of Symfony would mess up the order if we not directly
render the corresponding form field with the Yes/No checkbox entity value as argument.

4.1.4.3 Fix poll options

Figure 4.17: Fix poll options

The poll initiator can close the poll any time he wants to. He can do it with a simple
click on “Close” or with choosing the final options. These options will be highlighted in
green, so any viewer can see the result. The system proposes the most popular option to
simplify the decision.

After a poll is closed, the poll owner can reopen it. If a deadline was set and the
deadline has passed, a new one must be set in order to be able to open the poll again.
How this looks is shown in Figure 4.18 on the next page.

CHAPTER 4. THE SOLUTION 26

Figure 4.18: Fixed options & closed poll

4.1.4.4 User profile

The user profile is kept simple. It allows the user to change details like first & last name,
E-Mail address and password (Figure 4.19). To change the password the user must fill in
the current one and obviously the new one twice.

A new avatar can be generated (Figure 4.20) and if the user likes it he can save it. We
use the DwrAvatarBundle16 for Symfony to generate and save avatars.

There is also the possiblity to delete the account. The account isn’t getting hard
deleted. It’s just a flag so the user can’t login anymore. Because if we would remove the
account from the database, some entity relations would be invalid. For example in the
poll view: the entry of the deleted user should be displayed for consistency reasons.

16https://github.com/dariuszwrzesien/DwrAvatarBundle 01.04.2015

https://github.com/dariuszwrzesien/DwrAvatarBundle

CHAPTER 4. THE SOLUTION 27

Figure 4.19: Edit profile 1

Figure 4.20: Edit profile 2

CHAPTER 4. THE SOLUTION 28

4.1.4.5 Calendar

Figure 4.21: Calendar

We implemented a simple calendar17 that displays all poll deadlines and the fixed dates
of schedule polls. The calendar supports several views (month, week, day).

A nice feature is the iCal calendar feed, implemented with the help of IcalBundle18

for Symfony. The user can subscribe to it on his Phone or with his Mail program and the
dates are automatically loaded from the website periodically (Period is depending on the
used client and its settings). With this, a poll participant will never forget a deadline or
appointment again.

This was not a risky feature, but also not that easy to implement because iCal feeds
were new to us. We had some problems with getting a stream readable by all devices due
to some semantic problems.

17http://fullcalendar.io
18https://github.com/BorisMorel/IcalBundle 21.07.2015

http://fullcalendar.io
https://github.com/BorisMorel/IcalBundle

CHAPTER 4. THE SOLUTION 29

4.2 Architecture

We need a proper webserver environment with Apache19 and MySQL20 as a database
management system. There is also access to a console needed to set up the Symfony
environment. An installation guide for the webserver environment and Symfony can be
found in the “Anleitung zu wissenschaftlichen Arbeiten” (Appendix A).

These decisions are based on the requirements listed in Chapter 3 about the tech-
nologies. We stated that as programming language PHP should be used. So a logical
conclusion is to use the standard webserver (Apache2) combined with the apache2-php5
module in order to get the best compatibility with web providers.

The justification of choosing Symfony as framework can be found in the Appendix C:
Technologies evaluation. We compared it to another framework and made the decision
based on our requirements.

Users interact with the front end by creating and using polls. The back end processes
the user input, handles requests, manages the stored data and more. The back end relies
on the MVC (Model View Controller) framework Symfony221 which provides several
services like a User Management System, the Doctrine22 ORM extension and the Twig23

template engine. Our created templates are based on the Twig syntax and are parsed by
the Twig template engine. It compiles the template to an HTML view with all included
variables. The system is based on a MySQL database. The front end has dependencies on
Twitter Bootstrap framework24 and several other JavaScript and CSS extensions which
provides multiple additional functionalities.

19http://httpd.apache.org/
20https://www.mysql.com
21https://symfony.com/
22http://www.doctrine-project.org/
23http://twig.sensiolabs.org/
24http://getbootstrap.com/

http://httpd.apache.org/
https://www.mysql.com
https://symfony.com/
http://www.doctrine-project.org/
http://twig.sensiolabs.org/
http://getbootstrap.com/

CHAPTER 4. THE SOLUTION 30

Figure 4.22: Webserver environment

4.2.1 Symfony
In this section we demonstrate how we use specific parts of Symfony in our application
or how they work in order to better understand further explanations.

4.2.1.1 Request flow

Using the poll view as example, the Symfony request flow generally looks like this:

Request

Everything begins with a request. Symfony takes the request to determine if there is a
matching route in the system defined. To get this working, we tell Symfony, which routes
we want to match with specific controllers of the MVC structure and their functions. The
route matching happens in the Kernel.

Kernel

The important things happen here. Symfony takes the URL and splits it up in pieces.
The relevant pieces are tested against the defined routes. If there’s a matching route, the
Kernel will load the associated controller and call the right function.

25http://code.tutsplus.com/tutorials/diving-into-symfony-2--net-
32923 18.08.2015

http://code.tutsplus.com/tutorials/diving-into-symfony-2--net-32923
http://code.tutsplus.com/tutorials/diving-into-symfony-2--net-32923

CHAPTER 4. THE SOLUTION 31

Figure 4.23: Symfony request flow25

Controller

The controller is loaded by the Kernel and a given action (defined as a function) is
executed based on the route.

Response

A Symfony request must return a valid response object. This object can be put together
in different ways, for example with or without headers. It can contain payload formatted
as json, HTML or something else. If an action does not return a valid response, an
exception will be thrown.

4.2.1.2 Basic file structure

app/
src/
vendor/
web/

The app directory
Here goes the project’s global configuration. It’s the home directory of the AppKernel.php
which loads all relevant classes, third-party libraries and bundles into the framework.
The folder also contains some utility classes.

CHAPTER 4. THE SOLUTION 32

The src directory
The “src” folder contains bundles with our code. A bundle is a logical group for Symfony.
Bundles should be plug-and-play, so they can be used in every Symfony project without
adapting the system to it. For example, a generic user system is outsourced in a bundle,
so it does not depend on other components that don’t belong to the bundle.

There are many ready-to-use bundles for Symfony on the web. The website “KNP
Bundles”26 is a database containing many bundles and developers.

The vendor directory
In this directory all third-party libraries are stored. There are already many libraries, for
instance Symfony, Doctrine (Object Relational Mapping), Assetic (for processing client
side scripts), Swiftmailer (for sending Emails), phpUnit (for unit testing) and more.
They get automatically updated by executing the composer update command.

The web directory
The web directory should be the root directory of the domain, because it’s the only folder
of the project that is publicly accessible. In this directory we can find the basic controllers
app.php (production mode) and app dev.php (development mode). The app dev.php
disables caching and shows a developer bar with information about the current state of
the Symfony application.
App file structure
The AppBundle is our bundle that contains the core of the website including several
subfolders like Component, Controller, DataFixtures, and more. A short explanation:
Component: Additional classes used in the project
Constants: A static class with constants
Controller: All controllers that are used by the system.
DataFixtures: Contains initial entity objects that are loaded into the database by the
command php app/console doctrine:fixtures:load
DependencyInjection: Modify Symfony settings at runtime.
Entity: Database entity classes
EventListener: Listener that are called on specific events.
Form: Form elements
Resources: This folder contains configuration files, Twig27 templates, CSS & JavaScript
files and the translation files.
Security: The object Voters are located here. They decide, whether a user is allowed to
access/modify an entity or not.
Tests: phpUnit tests
Twig: Some Twig addons

26http://www.knpbundles.com/
27Explained in section 4.2 Architecture

http://www.knpbundles.com/

CHAPTER 4. THE SOLUTION 33

ThemeBundle: Overrides some parts of the used theme AvanzuAdminTheme
app/
config/
\app\Resources
\src
\src\AppBundle
\src\AppBundle\Component
\src\AppBundle\Constants
\src\AppBundle\Controller
\src\AppBundle\DataFixtures
\src\AppBundle\DependencyInjection
\src\AppBundle\Entity
\src\AppBundle\EventListener
\src\AppBundle\Form
\src\AppBundle\Resources
\src\AppBundle\Security
\src\AppBundle\Tests
\src\AppBundle\Twig
\src\ThemeBundle
\src\ThemeBundle\Controller
\src\ThemeBundle\Event
\src\ThemeBundle\Model
\src\ThemeBundle\Resources
\vendor
\web

4.3 Technical implementation

4.3.1 Routing
We defined a controller for every sub-page (like Poll, Group, Rank, Calendar, Profile,
etc.) where it handles page-specific actions like creating, updating, deleting and showing
an entity. A route is a map from a URL path to such a controller. For example, we want
to match any URL like /poll/2355urw68erafj or /poll/at6ke3r7j334cy and send it to a
specific controller. The route can be defined with a simple annotation:
// src/AppBundle/Controller/Poll/PollController.php
namespace AppBundle\Controller\Poll;
use AppBundle\Controller\MyController;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
/**
* @Route("/poll")

*/
class PollController extends MyController {

/**
* @Route("/{id}", name="poll_show", requirements={

CHAPTER 4. THE SOLUTION 34

* "id": "[a-z0-9]{14}"

* })

* @Template("AppBundle:Poll:show.html.twig")

*/
public function showAction(Request $request, $id) {
// ...
}

}

First, a route “/poll” for the whole class is defined. Alternatively this would be imple-
mented in the src/AppBundle/Resources/config/routing.yml file. We define the route
“poll show” with a parameter “id” that should contain letters and numbers with a length
of 14. The defined path acts like a wildcard “/poll/*” where the wildcard is given the
name “id”. The name “poll show” must be unique and is the internal name. With it,
we will be able to generate links to that specific route. There is also the possibility to
define routes in external files in languages like YAML, PHP or XML. The goal of the
Symfony routing system is to parse a given URL and determine which controller should
be executed. The process is shown in the following image.

1. The request is handled by the Symfony front controller.

2. The Symfony Kernel asks the router to inspect the request.

3. The router matches the incoming URL to a specific route and returns information
about the route, including the controller and method that should be executed.

4. The Symfony Kernel executes the method of the given controller, which ultimately
returns a Response object.

Figure 4.24: Symfony routing flow

CHAPTER 4. THE SOLUTION 35

Challenge

Besides that multiple languages were not a requirement, we thought that already imple-
menting this functionality would support further extensions. The challenge here was
to implement the language pattern to have first “/de/” or “/en/” in the URI28, and then
followed by the controller paths. It’s not enough to just specify this parameter, because
somewhere the language must be set in the system. We could solve this by specifying
the “app” route parameter for our application bundle in the global routing file. The “root”
definition handles requests without any parameter and redirects them to a controller that
determines the language based on some browser parameter.

root:
pattern: /
defaults:

_controller: AppBundle:Home/Default:redirectLanguage

app:
resource: "@AppBundle/Resources/config/routing.yml"
prefix: /{_locale}

4.3.2 Security
Symfony provides a powerful security system that also contains an authentication ex-
tension. With this, we can easily set up a role-based login and a user management
system.

Authentication
We can define different authentication providers and create firewalls for routes in the
configuration file app/config/security.yml (global configuration over all bundles). The
firewalls are the heart of our security configuration.
In a firewall, a request can be matched against routes, hosts, HTTP methods, pattern or
other details of the request. The security is highly configurable and there are even more
options we’ll not use here. Our authentication part of the security configuration looks
like this:

security:
the main part of the security, where you can set up firewalls
for specific sections of your app
firewalls:

disables authentication for assets and the profiler
dev:

pattern: ˆ/(_(profiler|wdt)|css|images|js)/
28https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

CHAPTER 4. THE SOLUTION 36

security: false
#Default AppBundle
main:

pattern: ˆ/([a-z]{2}/)?.*
remember_me:

key: "%secret%"
lifetime: 31536000 # 365 days in seconds
path: /
domain: ˜ # Default: current domain from $_SERVER

anonymous: ˜
http_basic: ˜
form_login:

login_path: login
check_path: login
csrf_provider: form.csrf_provider
csrf_parameter: _csrf_token
intention: authenticate
username_parameter: _username
password_parameter: _password
success_handler: login_listener

logout:
csrf_parameter: _csrf_token
csrf_token_generator: form.csrf_provider
csrf_token_id: logout
target: /
path: logout
success_handler: logout_listener
invalidate_session: false

switch_user: { role: ROLE_SUPER_ADMIN }

We defined that per default all sites are behind the “main” firewall. Also, the Remember-
Me feature is enabled and login & logout target controllers are specified enabling us to
show custom success/failure messages. The “switch user” key allows us to impersonate
other accounts, if the role “ROLE SUPER ADMIN” is assigned to our account. We’ll
have a further look into roles in the next section.

We define that the login controller is excluded from the firewall and the logout page
requires a fully authenticated user:

security:
with these settings you can restrict or allow access for
different parts
of your application based on roles, ip, host or methods
access_control:

#Exclude login form
- { path: ˆ/auth, roles: IS_AUTHENTICATED_ANONYMOUSLY }
#Special rule for logout page: user must be logged in

CHAPTER 4. THE SOLUTION 37

- { path: ˆ/auth/logout, role: !IS_AUTHENTICATED_ANONYMOUSLY
&& IS_AUTHENTICADED_FULLY }

The following shows the user provider properties. We define that the user password is
encoded by the bcrypt hash function. It’s based on the blowfish algorithm and a cost
variable (standard value: 13) can be defined.
security:

encoders:
AppBundle\Entity\User:

algorithm: bcrypt
#cost: 13

providers:
users:

entity: { class: AppBundle:User }

We had some issues with the authentication when it was not correctly authenticating
the user in connection with the email address. We solved this problem by renaming the
“email” field in the User entity to “username” and adding a custom implementation for
the entity repository where we explicitly create a sql query statement to get the user
entity.

Authorization
This is the part where we allow or deny access to specific roles and work with User
objects. We configure the role hierarchy also in the security.yml file.
security:

role_hierarchy:
ROLE_MOD: ROLE_USER
ROLE_ADMIN: [ROLE_USER, ROLE_MOD]
ROLE_SUPER_ADMIN: [ROLE_USER, ROLE_MOD, ROLE_ADMIN,

ROLE_ALLOWED_TO_SWITCH]

Used roles don’t need to be defined anywhere, we can just start using them. There are
already some default roles like “IS AUTHENTICATED ANONYMOUSLY” (user is
not logged in), “IS AUTHENTICATED FULLY” (user is logged in) or “IS AUTHEN-
TICATED REMEMBERED” (user was logged in automatically with the remember me
cookie). The process of authorization has two different sides:

1. The user receives a set of roles when logging in.

2. Add code so that a resource requires a specific attribute (role) in order to be
accessed.

• Use access control in security.yml, which allows URL patterns to be protected
(e.g. /private/*). This is easy, but less flexible.

CHAPTER 4. THE SOLUTION 38

• In the code with the security.authorization checker service.

• As annotation for controller functions.

For controllers, we use annotations provided by the SensioFrameWorkExtraBundle :

// ...
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Security;

/**
* @Security("has_role('ROLE_ADMIN')")

*/
public function helloAction($name)
{

// ...
}

In Twig templates, the access control works like this:

{% if is_granted('ROLE_ADMIN') %}
Delete

{% endif %}

4.3.3 User permissions on objects
How can we handle permissions for object manipulation in a simple way? We could
easily check the permission like this:

if($object->getOwner()->isEqualTo($this->getUser()) {
...
}

But that’s not how Symfony wants you to do it, so we could check permission to access
data by using the ACL (access control list) module. Since this is a bit overwhelming
for our application we instead use a much easier solution which is to work with custom
voters for all necessary entities (Group, Poll, Comment, PollEntry, Notification). Voters
are like simple conditional statements. A voter decides, if the current user should have
access to a specific resource. All existing voters in Symfony are called everytime we use
the isGranted($attribute, $object, $user = null) function. In a voter, we define attributes
and the supported object class (mostly an entity). Here is a simple example of the
CommentVoter implementation we use for comments in polls:

class CommentVoter implements VoterInterface {
// define attributes
const VIEW = 'view';
const EDIT = 'edit';
const DELETE = 'delete';

CHAPTER 4. THE SOLUTION 39

public function supportsAttribute($attribute) {
return in_array($attribute, array(
self::VIEW, self::EDIT, self::DELETE

));
}

public function supportsClass($class) {
$supportedClass = 'AppBundle\Entity\Comment';
return $supportedClass === $class || is_subclass_of($class,
$supportedClass);

}

public function vote(TokenInterface $token, $comment, array
$attributes) {
// check if class of this object is supported by this voter
if (!$this->supportsClass(get_class($comment))) {
return VoterInterface::ACCESS_ABSTAIN;

}

// set the attribute to check against
$attribute = $attributes[0];
// check if the given attribute is covered by this voter
if (!$this->supportsAttribute($attribute)) {
return VoterInterface::ACCESS_ABSTAIN;

}
// get current logged in user
$user = $token->getUser();
// make sure there is a user object (that the user is logged in)
if (!$user instanceof UserInterface) {
return VoterInterface::ACCESS_DENIED;

}

switch($attribute) {
case self::VIEW:

return VoterInterface::ACCESS_GRANTED;
break;

case self::EDIT:
if ($user->isEqualTo($comment->getUser())) {

return VoterInterface::ACCESS_GRANTED;
}

break;
case self::DELETE:

if($user->isEqualTo($comment->getUser())) {
return VoterInterface::ACCESS_GRANTED;

}
break;

}

return VoterInterface::ACCESS_DENIED;

CHAPTER 4. THE SOLUTION 40

}
}

At first, Symfony didn’t recognize the voter. Then we discovered to get the voter working,
Symfony must inject it into the security layer. This means we have to declare it as a
service and tag it with security.voter .

app/config/services.yml
services:

security.access.comment_voter:
class: AppBundle\Security\Authorization\Voter\

CommentVoter
public: false
tags:

- { name: security.voter }

4.3.4 Translation
The whole application is multi-lingual and translated to English and German for consis-
tency reasons. This is done by defining translations of strings in external YAML files. We
can work with translation groups to keep the translation folder structured. To translate a
string in a template, we use the following code fragment:

{{ 'Your name is: %name%'|trans({"%name%": user.name}, 'translation-
group') }}

There is also a fallback mode available when no translation exists. Either it switches
to the specified fallback language or just displays the string we try to translate. It’s
also possible to use a translation schema like ”Account.Overview.welcome”. The yaml
definition in the translation file would then look like this:

Account:
Overview:

welcome: Your name is: %name%

CHAPTER 4. THE SOLUTION 41

4.3.5 Database
The Symfony framework doesn’t integrate any ORM (Object-relational mapping) by
default, but the Symfony Standard Edition comes bundled with Doctrine. Doctrine aims
to give powerful tools to make the implementation of databases easy. It lets us map
objects to a relational database such as MySQL, PostgreSQL or Microsoft SQL. It’s also
possible to use MongoDB with Doctrine.

Doctrine allows us to not just fetch rows of a column-based table into an array, but
to persist entire objects to a database and fetch entire objects out of the database. This
works by mapping a PHP class to a database table and the properties of that PHP class to
columns on the table.

Since Doctrine dictates based on the entity definitions how the database is built up,
we can’t really modify that structure.

Configuration

We configure the database connection parameters in the app/config/parameters.yml file.

app/config/parameters.yml
parameters:

database_driver: pdo_mysql
database_host: localhost
database_name: project
database_user: root
database_password: password

Entity class

Now we can create an entity class that holds data and can be persisted. Just add class
variables as ususal. To add mapping information for Doctrine, we use the @ORM-
Annotations to add metadata.

// src/AppBundle/Entity/Rank.php
namespace AppBundle\Entity;
/**
* @ORM\Table(name="ranks")

* @ORM\Entity()

*/
class Rank {

/**
* @ORM\Id

* @ORM\Column(type="integer")

* @ORM\GeneratedValue(strategy="AUTO")

*/
protected $id;
/**

CHAPTER 4. THE SOLUTION 42

* @ORM\ManyToOne(targetEntity="Group", inversedBy="ranks")

* @ORM\JoinColumn(name="group_id", referencedColumnName="id")

*/
protected $group;
/**
* @ORM\Column(type="string")

* @Assert\Type(type="string")

*/
protected $name;

}

With the mapping metadata, Doctrine knows how to handle the whole thing:

Figure 4.25: Rank entity example

To generate all necessary setters and getters, Doctrine provides a nice command:

php app/console doctrine:generate:entities AppBundle/Entity/Rank

And with the following command it updates the database schema:

php app/console doctrine:schema:update --force

The library automatically generates tables based on the entity objects. And actually, this
command is very powerful. It compares what the database should look like (based on the
mapping information of the entities) with how it actually looks, and then generates the
SQL statements needed to update the database to the wanted state. In other words, if we
add a new property with mapping metadata to our Rank class and run this task again, it
will generate the “alter table” statement needed to add that new column to the existing
table.

An other way to take advantage of this functionality is via migrations, which allow
us to generate these SQL statements and store them in migration classes that can be run
systematically on the production server in order to track and migrate the database schema
safely and reliably.

CHAPTER 4. THE SOLUTION 43

User account

Figure 4.26: User account tables

The users table in the middle represents the core table of the user system. It holds all
information directly related to users such as username (email address), role, name and
password. It’s related to groups over a special join table that also contains the specific
role of a user in the connected group. We have created 4 roles:
Name Role Description
User ROLE USER Default role after registration and in

groups
Moderator ROLE MOD Moderator in a group
Group-Administrator ROLE ADMIN Group owner
Administrator ROLE SUPER ADMIN System administrator, can imperson-

ate other users

The “usedInGroup” flag tells the system if a role is also used in groups.

CHAPTER 4. THE SOLUTION 44

Poll

Figure 4.27: Poll tables

This constellation is a bit complicated. The poll table holds the poll configuration like
title, description, participant limit, etc. It has relations to poll options, comments, access
rights and participants. The options themselves are connected to participants over the
participants options join table. ifneedbe options are also stored and obviously depend on
options and participants. If new options are added to a poll, it creates unknown options
for every participant. So the user sees if a poll is changed and if a participant already
updated his entry.

The access rights are linked to the group ranks. This way we will be able to restrict
access to polls inside groups.

CHAPTER 4. THE SOLUTION 45

Notification & Log

Figure 4.28: Notification & Log tables

We create log entries for several actions to make notifications easier. We define several
types of logs for groups and polls:

Group types Poll types
Variable Type Variable Type
CREATE group create CREATE poll create
EDIT group edit INSERT poll insert
DELETE group delete INSERT poll insert
LEAVE group leave EDIT poll edit
CHANGE NAME group change name REOPEN poll reopen
CHANGE OWNER group change owner ENTRY EDIT poll entry edit
MEMBER IMPORT group member import CLOSE poll close
MEMBER ADD group member add FINAL OPTIONS poll final options

COMMENT ADD poll add comment
COMMENT DELETE poll delete comment

5
The Validation

It’s challenging to validate that this software project solves the initially discussed problem.
In the first part, we do some usability tests to improve the user experience and find bugs
and flaws. In the second part, a Qualitative Case Study is carried out.

5.1 Usability tests
We made a few usability tests during the development period with different study par-
ticipants and a light outline. Some are Computer Science students, some are non-
informaticians. It’s interesting how the different people are aware of details.
We defined some use cases which should cover most of the application.

5.1.1 First test
The first usability test was done in May 2015 with a Computer Science (CS) student and
a pharmacist (PH).
1. Sign up
CS and PH suggested that the sign up button should be more exposed. CS gave some
general design advices. All suggestions were implemented later.
2. Group creation
Both stated that the link to create a new group is hard to find. It’s hidden in the navigation
under Groups. CS criticized the wizard; the layout is not optimal and is in general poorly
designed. We got the message and implemented a much better wizard with a nicer design

46

CHAPTER 5. THE VALIDATION 47

and no page-reloading after every step.
CS commented that in the group list, the group id should be removed. Also, the group
name should be directly linked to its group dashboard. Finally, he suggested that if
there is no group, the information message should not be red due the fact that this color
usually indicates an error and not an information. The suggestions were adopted and the
information message color was changed later to blue.
3. Create a poll in the newly created group
CS again noticed some details in the design and made a recommendation which we
followed.
PH didn’t find a button to create polls in the group list. This was fixed later. PH missed
some information in the wizard about the poll settings. In this phase of the project it was
simply not yet added.
4. Make a poll entry
CS suggested to change the color of informational text from red to another (blue), which
was done later. CS thought that it would be nice if his own poll entry is highlighted to
better see it. This was also implemented.
5. Edit own poll entry
PH found a bug: if he double-clicks on the edit button, the edit form shows up twice.
This was fixed shortly after it was discovered.
6. Close poll No problems occurred.
7. Reopen poll No problems occurred.
8. Edit poll & set new deadline
PH found two bugs. Even if in the creation process a deadline is specified, in the edit
form the deadline button is not checked and the calendar is not shown.
The second bug was that existing ifneedbe options were not deleted, if the ifneedbe
setting was disabled later. Both bugs could be fixed.
PH found it not very practical that the tabbing order of the Option fields were like this:
Input field - Delete button - Next input field. It should just jump from one input to the
next input field. We thought this was a good improvement for the usability.

Figure 5.1: Settings button in group dashboard

9. Add a member to the group
PH stated that the Save & Back but-
tons are in a wrongly appearing order.
PH was right and we switched them.
CS would liked to have a settings but-
ton in the group dashboard to access
important group settings. CS men-
tioned some minor design aspects we
then improved.

CHAPTER 5. THE VALIDATION 48

10. Add ranks
PH suggested a better order of the buttons on the form bottom.
11. Assign ranks
CS found it confusing because the member management layout looks the same, and he
didn’t see at first the difference between ranks and roles.

Figure 5.2: Before and after: Edit profile
& Logout

12. Edit profile
CS thought that we should rename “deacti-
vate account” into “delete account”. We tech-
nically can’t completely delete an account
because otherwise there would be problems
all over the application.
We solved it with displaying a deleted ac-
count information on login attempts with
deactivated accounts.
PH suggested that the Profile button should
be more highlighted. It was justified and we
adapted it (Figure 5.2).
13. Edit poll entries of other users
PH saw that the last activity of the poll didn’t get updated after editing an antry. This
was fixed.
General
CS mentioned some more things:

• The “Friends” button in the user dropdown had no functionality

• Some spelling failures

• Hide whole tables if there is no content

• Remove red fonts where it’s just an information and not an error

• Overloaded tables in dashboards

• Missing legend for tables

• Add possibility to change the group owner

• some more design aspects

We tried to improve the mentioned points as much as possible.

CHAPTER 5. THE VALIDATION 49

5.1.2 Second test
This second test was done mid May and June 2015 with another Computer Science
student (CS) and a bank employee (BE).
1. Sign up
CS thought we should implement third party authentication from Facebook and/or
Google. It was not a requirement but would be a good feature for future improvements.
He mentioned that Internet Explorer 9 doesn’t support the “placeholder” attribute of form
elements. We thought that most of today’s internet users don’t use Internet Explorer 9
anymore. We just focused on current versions of Mozilla Firefox29, Google Chrome30

and Microsoft Internet Explorer31. Only if CS is using the sign up form the Google
Captcha reCAPTCHA service thinks he’s a bot and displays the most annoying captcha.
He was not amused.
2. Create a group
BE noticed that a group name must be unique. CS wanted the blue success message to
be green.
3. Add members to the newly created group
On advice of CS we added more information to the success page.
4. Add ranks to the group
CS suggested to add some empty fields if there are no ranks specified yet. He also thought
we should change the “Remove” button to a “X” button because it’s more intentional. He
also found a bug: In the remove dialog was just a placeholder for the rank name instead
of the real name. We fixed and improved all mentioned things.
5. Assign ranks to members
No problems occurred
6. Create a text poll in the group
CS suggested to change some texts and add better description to the poll settings. Also
he wanted to have tooltips for icons in the poll view. He found a bug that the Ranks tab
in the poll wizard was not displayed. Sometimes if the internet connection is bad, and
the site (only the poll wizard) rests white for a short moment. This is because the Google
Places API is loaded before the context. We fixed the problems and added the features.
7. Make a poll entry
CS also noticed that the order of the “Save” & “No option fits” buttons is not intentional.
We changed it.
8. Edit own poll entry
No problems occurred.
9. Edit the poll
SC suggested to again change the “Remove” to a “X” button in the Option wizard step.

29https://www.mozilla.org/en-US/firefox/new/
30https://www.google.com/chrome/
31http://windows.microsoft.com/en-US/internet-explorer/download-ie

https://www.mozilla.org/en-US/firefox/new/
https://www.google.com/chrome/
http://windows.microsoft.com/en-US/internet-explorer/download-ie

CHAPTER 5. THE VALIDATION 50

He noticed that if the “only one option per user” setting is enabled, entries with more
than one positive option rest the same. We thought that this should not change. BE found
a bug: a JavaScript variable was not defined.
10. Fix final options
CS mentioned that he should be able to reopen the poll when it already has fixed options
without setting a new deadline or if the deadline is still in the future. He suggested that
the form to choose final options should not disappear if the deadline is reached. Also he
liked to have the final options highlighted in the view.
We followed his suggestions and implemented all of them.
11. Create schedule poll
CS stated that the description where he could choose between text and time poll is not
sufficient. He noticed that the calendar had a wrong localization setting. The participant
found a bug: If the group was changed multiple times in the poll wizard, the available
ranks got appended to the content instead of changed.
All this was fixed.
12. Make a poll entry
No problems occurred.
13. Edit own poll entry
No problems occurred.
14. Edit the schedule poll
No problems occurred.
15. Fix final dates in poll
No problems occurred.
16. Calendar
The calendar had a wrong localization setting. Entries are shown multiple times in day
and week view. We found out that this is a bug in the JavaScript plugin the theme uses,
and we can’t fix it by ourselves the time this test was accomplished. Also, other people’s
events were shown. This was a bug and was fixed soon.
17. Edit profile
No problems occurred.
General
BE thinks it’s good if he can reactivate his deleted account over Email. Also there was a
bug in the GUI where buttons in the dropdown navigation were transparent instead of
blue.

CHAPTER 5. THE VALIDATION 51

5.2 Qualitative Case Study

The User Story

The user wants to organize a chess team event at the University of Bern with a maximum
of 20 participants. It must have several date possibilities. Also on every date, there
should be two time options: in the morning and afternoon. All chess team members
(Juniors, Seniors) are invited. The poll must be closed one week before the first date. The
user wants that people can see all entries. He can only use our application to complete
this task.

The Study Participant

Linus Schwab, a Computer Science student, agreed to take part in this test.

The Registration

First, Linus tried to bypass our application and started to navigate to doodle.com for
completing the task. We got the joke and reminded him of the task conditions.
He had no problems to sign up. He inserted his first and last name, added the email and
used a secure long password.

The Group

Linus created a chess group and noticed that he has to add the necessary ranks Juniors
and Seniors to properly organize the group. He didn’t see the save button at the bottom,
so he expected that the form for creating ranks would auto-save.
Then he added some members and assigned them to different ranks (Juniors and Seniors).

The Poll

He had no problems finding a way to create a new poll. In the second wizard step, he
did not realize at first that he can copy the first date row to all other rows. But then he
noticed that it is a very useful function. Linus correctly remembered that the deadline is
exactly one week before the first date, and chose it accordingly.
The user thinks that in the fourth wizard step, it should be more descriptive and the
permissions should not be named “Read” and “Write”, but “Can participate in the poll”
and “Can see the poll”.
Now the poll was created successfully and invited people will participate in the poll.
Linus also participated and chose his favourite options. There didn’t occur any problems
at all.

CHAPTER 5. THE VALIDATION 52

The End

Now that the deadline is reached, the poll is closed automatically. He saw that he can fix
the final poll options, was pleased of this feature and used it. The test participant used
the most popular option as decision help and fixed the poll with this date.

Conclusion

Our application convinced Linus and he would use it as soon as it’s released for the
public. He made several suggestions to make the tool even better. We considered his
thoughts and improved the application.

6
Future Work

We all know a software project is never finished and can be extended and improved
infinitely. So here are some possible extensions discussed which we could implement
after the thesis.

Third party authentication
To make the authentication easier and eliminate the need for the user to utilize another
website account, we could implement third party authentication (with an OAuth client)
using Google, Facebook or Twitter. This could be implemented with the HWIOAuth-
Bundle32 for Symfony which supports over 40 different providers.

Mobile Apps
We built an easy to use mobile-first web application. Now what would be perfect?
Correspondent apps for mobile phones. We could easily wrap the website into an app
and distribute it with help of Google’s33 and Apple’s34 app stores.

Each app store has its own rules. For example, if an app for iOS just wraps a website
and the whole functionality could also be provided only through a mobile browser (e.g.

32https://github.com/hwi/HWIOAuthBundle
33https://play.google.com
34http://www.apple.com/chde/itunes/charts/free-apps/

53

https://github.com/hwi/HWIOAuthBundle
https://play.google.com
http://www.apple.com/chde/itunes/charts/free-apps/

CHAPTER 6. FUTURE WORK 54

Safari), it gets declined.
An additional nice feature are push notifications so the user won’t miss any deadlines

or new polls.
We decided to exclude these features (notifications, mobile app) despite listing them

in the Software Requirements Specification.

Social platform
To keep up with the trend to make everything social we could implement a facebook-like
wall in groups. There could show up group notifications so every user can see it (i.e.
somebody has participated in a poll) and members can post things.

General
Furthermore, some customized views (i.e. poll view) for the mobile access could be
developed to achieve a better user experience on small displays.

7
Conclusion

In this chapter we look back at the entire project and think about what we have achieved
and what we could have done better.

The project
In the beginning, we put up many requirements. We learned during the project that there
is a limit of things we will be able to deliver at the end of the project. This resulted in
that we at last couldn’t handle all wanted requirements. But that’s not a defeat since we
discussed some good ideas in Future Work we are going to work on after the thesis.

This was a relatively big project for us to master. It was very interesting and chal-
lenging to work with new technologies and to find a way to solve emerging problems.
Sometimes we had to take a step back and begin with a new approach if a problem could
not be solved the way we tried.

Result
We created a working nice looking application that can be used productively by everyone.
We could fulfil all important requirements and have built a software to start polls in
groups that was the intention of this thesis.

We implemented a proper authentication and authorization system. We tried to stick
to the simplicity of Doodle when it came to the design of the poll system that includes

55

CHAPTER 7. CONCLUSION 56

displaying, creating and editing them.
Since the group system is part of the thesis’ main goal, we are happy it’s working as

intended and supporting all required functions.
Personally, we would liked to have implemented the mobile applications too with

a smooth notification system. Unfortunately, we had to put back these requirements in
favour of finishing in time.

About used technologies

We learnt in a Computer Science Master course about Ruby on Rails35 and how to build
a web application with it. In the end, we would have seriously considered using a Ruby
framework instead of a PHP framework. It’s more lightweight and provides with gems
(add-ons) an easy way to extend an application.

Also for future projects we would consider using a lightweight JavaScript front end
and develop the back end as a restful API service to better split front and back end into
independent applications.

Deployment
Most of our users tend to stick to familiar things like in this case Doodle and its mobile
application. We decided to first finish the development of the mobile applications to
successfully deploy the system for the sports club later without any migration flaws.
Some key users that will mainly be responsible for polls are already testing the system in
a closed environment. We already got several feedback from club members and other
users that got their hands on the system.

It’s planned to really finish this last part in the first quarter of 2016. This would just
go with the ordinary General Meeting where we can officially announce the deployment.

35http://rubyonrails.org/

http://rubyonrails.org/

Appendices

57

Appendix A: Anleitung zu
wissenschaftlichen Arbeiten

58

Contents

1 Getting Started with Symfony 2

2 Setup & Configuration 3
2.1 Webserver . 3
2.2 Symfony . 5

3 Getting Started 7
3.1 Say Hello . 7

4 Implementation 9
4.1 Create a controller with CRUD options 9

4.1.1 Checking router configuration 12
4.2 Database connection . 12

4.2.1 SQLite . 12
4.2.2 MySQL . 13
4.2.3 Initialize the database . 13

4.3 Adding a date field . 14
4.3.1 Database migration . 14
4.3.2 Updating the form . 16
4.3.3 Extending the templates . 17

5 What’s Next? 18

1

1
Getting Started with Symfony

In this tutorial we are going to show how to build a simple blog-like Symfony1 application
where we can create, show, edit and delete articles.

1https://symfony.com/

2

2
Setup & Configuration

We are going to use Windows 10 for this tutorial. So all commands only apply on
Windows. There is a different way if we would use Linux or Mac OS X.

2.1 Webserver

Figure 2.1: XAMPP Setup

In order to use the Symfony installer,
we have to install PHP2. There are
two approaches. First is to install only
PHP and use the new built-in HTTP-
Server3 of PHP 5.4. But we will also
use XAMPP4 because it provides a
complete Webserver environment with
Apache, PHP and MySQL5.
We install XAMPP with all features
into the directory C:\xampp.

2http://php.net/
3http://symfony.com/doc/current/cookbook/web_server/built_in.html

14.09.2015
4https://www.apachefriends.org/index.html
5https://www.mysql.com/

3

CHAPTER 2. SETUP & CONFIGURATION 4

Now we have to add PHP to the environment variables of the operating system in order
to just use php as a command:

1. Use Windows+R to open “Run”

2. Type in SystemPropertiesAdvanced.exe and run

3. Click on “Environment Variables...”

4. Edit the variable “Path” in the system variables

5. Add ;C:\xampp\php at the end and save

Figure 2.2: Environment Variables

So after installing the setup from XAMPP we go on with the Symfony setup.

CHAPTER 2. SETUP & CONFIGURATION 5

2.2 Symfony
We open a windows console in the directory C:\xampp\htdocs and execute the following
commands:

php -r "readfile('http://symfony.com/installer');" > symfony
php symfony new SymfonyTutorial

SymfonyTutorial is the project name you can choose by yourself. It can’t contain white
spaces. We could add a Symfony version as optional second parameter to the new
command, if we want to explicitly specify the version. After the second command has
finished executing, we see the following message:

Preparing project...

OK Symfony 2.7.3 was successfully installed. Now you can:

* Change your current directory to C:\xampp\htdocs\
SymfonyTutorial

* Configure your application in app/config/parameters.yml file.

* Run your application:
1. Execute the php app/console server:run command.
2. Browse to the http://localhost:8000 URL.

* Read the documentation at http://symfony.com/doc

Now we change the directory to the newly created project.

cd SymfonyTutorial

Brief description of the folder structure:
File/Folder Purpose
app/ Global project configuration, log and cache files
src/ Bundles
src/AppBundle Contains the controllers, models, views. Basically our application.

We focus on this folder for the rest of this guide.
vendor/ Contains third-party libraries
web/ The only folder that should be accessible by public. Contains static

files and compiled assets.
web/app.php The file to access Symfony app in production mode
web/app dev.php This file is used in development mode and shows a debug toolbar
composer.json This file allows you to specify what dependencies are needed for

your application. This file is used by composer to load the libraries.

CHAPTER 2. SETUP & CONFIGURATION 6

We start the built in webserver:

php app/console server:run

If we open thee URL http://localhost:8000, the following is displayed:

Figure 2.3: Symfony start screen

We could also just fire up our XAMPP Apache server and open http://localhost/
SymfonyTutorial/web/app_dev.php.

3
Getting Started

3.1 Say Hello
The Symfony setup created a default controller “src/AppBundle/Controller/DefaultCon-
troller.php”. But we won’t use it. To get Symfony say Hello, we need to create at
minimum a controller with a method and a view.
A controller’s purpose is to receive specific requests for the application and collect infor-
mation for the view, which purpose is to display this information in a human readable
format. An important distinction to make is that it is the controller, not the view, where
information is collected.
To create a new controller, we need to run the generator command6 and tell it we want a
controller called “Welcome” in the AppBundle bundle:

php app/console generate:controller --no-interaction --controller=
AppBundle:Welcome

The result confirmed the controller creation:

Controller generation

Generating the bundle code: OK

You can now start using the generated code

6http://symfony.com/doc/current/bundles/SensioGeneratorBundle/
commands/generate_controller.html 14.09.2015

7

CHAPTER 3. GETTING STARTED 8

It generated an extendable controller skeleton:

<?php

namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;

class WelcomeController extends Controller
{
}

We have to manually create the method and its view. For the view, we create the folder
src/AppBundle/Resources/views/Welcome/ . In this folder, the following file must be
created: index.html.twig

<h1>Welcome, Symfony</h1>

Now add the associated method to the Welcome controller. The route and template are
defined with annotations. The index method should be called if we open “/” and it’s
name in the router is “hello”. The template is located in “Welcome” in the AppBundle’s
views folder and is named “index.html.twig”.

/**
* @Route("/", name="hello");

* @Template("AppBundle:Welcome:index.html.twig")

*/
public function index() {
return array();

}

To disable the old route directing to the welcome page of Symfony, we just delete the
DefaultController.php in our bundle.

4
Implementation

4.1 Create a controller with CRUD options
We want to have create, read, update and delete methods for our blog articles. Sized
down to an acronym, this is called “CRUD” operations.
First, we have to generate7 the entity file, on which the CRUD generator is based. The
entity file is the representative class of the Article object. It’s used by Doctrine8 (ORM
library in Symfony) to manage and persist data.

php app/console generate:doctrine:entity --entity=AppBundle:Article --
fields="title:string(255) text:text" --no-interaction

The output will be something like this:

Entity generation

Generating the entity code: OK

You can now start using the generated code

This command creates the file src/AppBundle/Entity/Article.php which contains the title
and text variables, and all necessary getters and setters. Also it generated the necessary
annotations for Doctrine:

7http://symfony.com/doc/current/bundles/SensioGeneratorBundle/
commands/generate_doctrine_entity.html 17.09.2015

8http://www.doctrine-project.org/

9

CHAPTER 4. IMPLEMENTATION 10

/**
* Article

*
* @ORM\Table() //this class needs a table. With no parameter, it's

named "articles"

* @ORM\Entity //this class is an entity

*/
class Article
{

/**
* @var integer

*
* @ORM\Column(name="id", type="integer") //table field

definition: integer

* @ORM\Id //auto_increment

* @ORM\GeneratedValue(strategy="AUTO") //type of
auto_increment

*/
private $id;

/**
* @var string

*
* @ORM\Column(name="title", type="string", length=255) //table

field def.: string with length 255

*/
private $title;

[...]
}

Symfony provides one simple way9 to create a controller that supports CRUD actions
based on our new Article entity:

php app/console generate:doctrine:crud --entity=AppBundle:Article --
with-write --no-interaction

This outputs

CRUD generation

Generating the CRUD code: OK
Generating the Form code: OK

You can now start using the generated code

9http://symfony.com/doc/current/bundles/SensioGeneratorBundle/
commands/generate_doctrine_crud.html 17.09.2015

CHAPTER 4. IMPLEMENTATION 11

This command generates a bunch of methods in a new ArticleController.php file and also
added its template files.

Methods/Actions

• indexAction - loads all articles and displays it

• createAction - creates a form to add new articles and handles the POST-Request

• newAction - displays a form to create a new Article entity

• showAction - finds and display an Article entity

• editAction - displays a form to edit an existing Article entity

• updateAction - edits an existing Article entity

• deleteAction - deletes an Article entity

• createCreateForm, createEditForm, createDeleteForm - creates the corresponding
form

Templates

• index.html.twig - Table of all Article entities

• new.html.twig - Shows the create form

• edit.html.twig - Shows the edit form

• show.html.twig - View of a single Article entity

If we take a look on the method annotations, not every @Template annotation has
an argument. This is because Symfony will take the method name {method}Action
and looks up a template called {method}.html.twig in the controller-named folder in
Resources/views/Article .

CHAPTER 4. IMPLEMENTATION 12

4.1.1 Checking router configuration
We can now check all routes in the application with a command and see that all necessary
CRUD actions are correctly routed.

$ php app/console debug:router
[router] Current routes
Name Method Scheme Host Path
[...] (debug routes hidden)
article GET ANY ANY /article/
article_create POST ANY ANY /article/
article_new GET ANY ANY /article/new
article_show GET ANY ANY /article/{id}
article_edit GET ANY ANY /article/{id}/edit
article_update PUT ANY ANY /article/{id}
article_delete DELETE ANY ANY /article/{id}
hello ANY ANY ANY /

4.2 Database connection
Now we want to configure a database for our small application. We have two options:
use the built-in MySQL from XAMPP or SQLite310. SQLite3 just creates a database file,
where MySQL is a whole DBMS11 (Database Management System).
Both ways are described in the following two sub sections.

4.2.1 SQLite
We open the app/config/parameters.yml.dist file, add the database driver parameter and
set it to pdo mysql (this is just the template we’ll overwrite in the parameters.yml). Also
it is needed to uncomment the database path line:

database_driver: pdo_mysql #add this line
database_path: "%kernel.root_dir%/data.db3" #uncomment this line

“database path” is the path to the SQLite database file. “kernel.root dir” is the absolute
path to the Symfony app directory.
Now we change the app/config/parameters.yml like this:

parameters:
database_driver: pdo_sqlite
database_host:
database_port:
database_name: %kernel.root_dir%/data.db3

10https://www.sqlite.org/
11https://en.wikipedia.org/wiki/Database 21.09.2015

CHAPTER 4. IMPLEMENTATION 13

database_path: %kernel.root_dir%/data.db3
database_user:
database_password:

After this, we make changes to the app/config/config.yml file:

path: "%database_path%" #uncomment this line
...
driver: "%database_driver%" #change driver to this

4.2.2 MySQL
We change the app/config/parameters.yml like this:

parameters:
database_driver: pdo_mysql
database_host: localhost
database_port:
database_user: root
database_password:
database_name: database

After this, we make changes to the app/config/config.yml file:

driver: %database_driver% #change driver to this

4.2.3 Initialize the database
If we try to open http://localhost:8000/article/ we get a nice SQL error
saying, that the table “article” doesn’t exist. So we create the database and the tables:

$ php app/console doctrine:database:create //create the database (
SQLite: file, MySQL: database)

Created database C:\xampp\htdocs\SymfonyTutorial\app/data.db3 for
connection named default

$ php app/console doctrine:schema:create //create the tables

ATTENTION: This operation should not be executed in a production
environment.

Creating database schema...
Database schema created successfully

The basic application is hereby finished and working: http://localhost:3000/
article.

CHAPTER 4. IMPLEMENTATION 14

4.3 Adding a date field
After now having a working application, we would like to add a new field to the Article
entity.

We add a new class variable to the Article entity file src/AppBundle/Entity/Article.php .
As type we choose “datetime” which is supported by Doctrine.

[...]
/**
* @var date

*
* @ORM\Column(name="date", type="datetime", nullable=true)

*/
private $date;
[...]

To automatically add the getter and setter methods for this new variable, we execute the
corresponding command:

php app/console doctrine:generate:entities AppBundle:Article

4.3.1 Database migration
If we now open http://localhost:8000 a SQL error saying there is no such
column named “date” is displayed. To fix this, we need to update the database. We’ll use
the Doctrine migrations bundle12 for this.
To install the bundle, we first need to install composer13, a dependency manager for PHP:

$ composer require doctrine/doctrine-migrations-bundle "ˆ1.0"
#!/usr/bin/env php
All settings correct for using Composer
Downloading...

Composer successfully installed to: C:\xampp\htdocs\SymfonyTutorial\
composer.phar

Use it: php composer.phar

12http://symfony.com/doc/current/bundles/DoctrineMigrationsBundle/
index.html 21.09.2015

13https://getcomposer.org/

CHAPTER 4. IMPLEMENTATION 15

After that, we install the bundle with composer:

$ php composer.phar require doctrine/doctrine-migrations-bundle "ˆ1.0"

./composer.json has been updated
Loading composer repositories with package information
Updating dependencies (including require-dev)
- Installing doctrine/migrations (v1.0.0)

Downloading: 100%

- Installing doctrine/doctrine-migrations-bundle (1.0.1)
Downloading: 100%

Writing lock file
Generating autolad files
[...]

Finally, we have to add the bundle to the app/AppKernel.php file by including the
following code:

public function registerBundles()
{

$bundles = array(
//...
new Doctrine\Bundle\MigrationsBundle\DoctrineMigrationsBundle

(),
);

}

We can now automatically generate migrations14. The migration procedure compares the
Doctrine mapping information with the actual current database structure. The following
command generates a migration file containing all necessary SQL commands:

$ php app/console doctrine:migrations:diff
Generated new migration class to "C:\xampp\htdocs\SymfonyTutorial\app

/DoctrineMigrations/Version20150921103621.php" from schema
differences.

14http://symfony.com/doc/current/bundles/DoctrineMigrationsBundle/
index.html#generating-migrations-automatically 21.09.2015

CHAPTER 4. IMPLEMENTATION 16

Next, we run the migration to add the new entity field to the database:

php app/console doctrine:migrations:migrate

Application Migrations

WARNING! You are about to execute a database migration that could
result in schema changes and data lost. Are you sure you wish to
continue? (y/n)y

Migrating up to 20150921103621 from 0

++ migrating 20150921103621

-> ALTER TABLE article ADD COLUMN date DATETIME DEFAULT NULL

++ migrated (0.08s)

++ finished in 0.08
++ 1 migrations executed
++ 1 sql queries

4.3.2 Updating the form
The last important file to modify is the form type src/AppBundle/Form/ArticleType.php :

public function buildForm(FormBuilderInterface $builder, array
$options)

{
$builder

->add('title')
->add('text')
->add('date') // add this line

;
}

This will add a special date field to the form. It adds dropdowns for day, month, year,
hours and minutes.

CHAPTER 4. IMPLEMENTATION 17

4.3.3 Extending the templates
Only the show and index templates have to be edited.
src/AppBundle/Resources/views/Article/index.html.twig :

[...]
<table class="records_list">

<thead>
<tr>

[...]
<th>Date</th>
[...]

</tr>
</thead>
[...]
{% for entity in entities %}

<tr>
[...]
<td>{{ entity.date is null ? '' : entity.date|date("d.m.Y -

H:i") }}</td>
[...]

</tr>
{% endfor %}
[...]

</table>
[...]

src/AppBundle/Resources/views/Article/show.html.twig :

[...]
<table class="record_properties">

<tbody>
<tr>

[...]
<th>Date</th>
<td>{{ entity.date is null ? '' : entity.date|date("d.m.Y -

H:i") }}</td>
</tr>

</tbody>
</table>
[...]

5
What’s Next?

There are multiple things we could implement:

• Use a CSS framework like Bootstrap15

• Image uploading for blog entries

• User management system with administrators and authors

• Share entries (Facebook, Twitter, etc.)

• Third party authentication (OAuth, Google, Facebook, Twitter, etc.) e.g. with
HWIOAuthBundle16

For many things, there are bundles available. A big database is Knp Bundles17.

Symfony’s documentation18, The Symfony (Cook)Book, provides further information
and instructions.

15http://getbootstrap.com/
16https://github.com/hwi/HWIOAuthBundle
17http://knpbundles.com/
18http://symfony.com/doc/current/index.html 6.10.2015

18

Appendix B: Software Requirements
Specification

77

Contents

1 Introduction 2
1.1 Purpose . 2
1.2 Stakeholder . 2
1.3 Requirements overview . 2
1.4 References . 3

2 Use cases 4
2.1 List of all polls that have been opened sometime 4
2.2 List of all groups the user is member of 6
2.3 Create a user account . 7
2.4 Restore the account password . 9
2.5 Create a schedule poll . 10
2.6 Edit a schedule poll . 12
2.7 Create a text poll . 14
2.8 Edit a text poll . 16
2.9 Delete/cancel a poll . 18
2.10 Create a group . 19
2.11 Edit a group . 20
2.12 Delete a group . 21
2.13 Add ranks to a group . 22
2.14 Assign ranks to group members . 24

1

1
Introduction

1.1 Purpose
Make scheduling in a group of persons easier. All involved persons should be able to
quickly see an overview over active polls and the deadlines or the fixed dates (or results)
of closed polls. The users should be reminded of polls where they have not voted yet.

1.2 Stakeholder
Sports club “Unihockey Lohn”, especially the president Roger Eichenberger and Pascal
Müller.

1.3 Requirements overview
A brief overview, what functions should be implemented in the software.

General
• Mobile website app (responsive view)

Basic

• Create groups
• Different ranks in one group (with read/write access restrictions for polls)

2

CHAPTER 1. INTRODUCTION 3

• group overview with information (polls, deadlines, calendar)
• Schedule poll
• Text poll
• Every poll has a public link (not indexable)

Schedule poll

• Poll creator can set a deadline
• After deadline, poll creator can fix the best date

– System shows the best possibility

• Possibility to insert first date/time in other options

Text poll

• Simple text poll
• Combine text and schedule poll

User system

• User registration
• For each poll, it can be specified, if the user has to create an account or log in
• Import users (.csv, etc)
• User can belong to several groups
• User can have several ranks in a specific group
• Admin rights for creating polls

Calendar

• Calendar with all deadlines and fixed dates
• .ics calendar service for clients (Outlook, Smartphone, etc.)

Notifications

• E-Mail
• Deadline reminder
• Mail dispatch for new polls to all target users
• Disable/Enable each type of notification

1.4 References
Which technologies will be used?

2
Use cases

2.1 List of all polls that have been opened sometime

Actors
Primary: User, Secondary: Data system

Description
As a user, I want to see a complete list with all polls, Ive ever opened. I want to be able
to delete and open entries.
Also, Id like to see the deadline, start date and in case, the poll has ended, the fixed result.

Triggers
User logs in and sees a home view with the list.
Also the “Home” button leads to this view.

Pre-conditions
1. First use: User must register

2. User must be logged in

4

CHAPTER 2. USE CASES 5

Post-conditions
1. User sees a list of all polls he’s ever opened

a. Deadline and start date

b. Fixed result if poll has ended

2. User can open entries

3. User can remove entries from list

Main scenario
1. User logs in or navigates to the home view

2. System loads all the relevant data

3. System shows a list of all the user’s polls

Alternative scenarios
1. User has no polls viewed yet

a. System shows an info message

CHAPTER 2. USE CASES 6

2.2 List of all groups the user is member of

Actors
Primary: User, Secondary: Data system

Description
As a user, I want to see a list of all groups Im member of with all associated polls.

Triggers
User logs in and navigates to the group overview page

Pre-conditions
1. First use: User must register

2. User must be logged in

Post-conditions
1. User sees a list of all groups and associated polls

a. Group name
b. Deadline and start date
c. Fixed result if poll has ended

2. user can open entries

Main scenario
1. User logs in or goes to the group overview

2. System loads all the relevant data

3. System shows a list of all the groups and associated polls

Alternative scenarios
1. User is not a member of a specific group

a. System shows an info message

CHAPTER 2. USE CASES 7

2.3 Create a user account

Actors
Primary: User, Secondary: Data system

Description
As a user, I have to register an account in order to have access to all features.

Triggers
1. User opens a poll link that requires an account

2. User goes to the register page

Pre-conditions
1. User does not already have an account with his email address

Post-conditions
1. The form has been filled out correctly

2. The user account has been registered (in the database)

3. User gets a welcome email with a confirmation link

4. ser gets redirected to the login page (he must not first confirm the registration in
order to log in)

Main scenario
1. User goes on the website and clicks register

2. The registration site is displayed

3. The user fills in the form and submits it

4. The account gets created in the system

CHAPTER 2. USE CASES 8

Alternative scenarios
1. User opens a poll link that requires an account

a. The user does not have an account

i. A info message with registration form is displayed

b. The user has an account

i. Log in form is displayed

CHAPTER 2. USE CASES 9

2.4 Restore the account password

Actors
Primary: User, Secondary: Data system, Tertiary: Email system

Description
As a user, I want to restore my password in case I forgot it.

Triggers
1. User fails to log in

2. User goes to the password recovery page

Pre-conditions
1. User does already an account with his email address (and knows the email address)

Post-conditions
1. The form has been filled out correctly

a. Email address

2. User received restore email with a restore link

3. After opening the link, the user receives a new password

Main scenario
1. User goes on the website and clicks login

2. User doesnt know his password

3. User clicks on forgot password

4. The password restore site is displayed

5. The user fills in the form and submits it

6. The user receives an email with a restore link

7. after opening the restore link, the user receives a new password per email

CHAPTER 2. USE CASES 10

2.5 Create a schedule poll

Actors
Primary: User, Secondary: Data system

Description
As a user, I want to create a schedule poll to find a suitable date for an event.

Triggers
1. User goes to the poll creation site

a. The user chooses schedule poll

Pre-conditions
none

Post-conditions
1. The poll is created

2. The user gets a link for sharing the poll

Main scenario
1. User goes on the website, logs in and creates a poll

2. The poll creation form is displayed

3. The user fills in the form, possible dates and submits it

a. Set deadline

b. Set title

c. Set location

d. Set description

e. Set all possible dates to choose

4. The poll gets created an a sharing link is displayed

CHAPTER 2. USE CASES 11

Alternative scenarios
1. User wants to create a poll without an account

a. The user cant edit the poll after creating it

2. User wants to create the poll in a specific group

a. The user chooses the group first

3. Its a group poll

a. Set other settings

i. Read/write rights for specific ranks if there are any

Special requirements
1. Special JavaScript libraries for an accurate presentation of the date choosing.

CHAPTER 2. USE CASES 12

2.6 Edit a schedule poll

Actors
Primary: User, Secondary: Data system

Description
As a user, I want to edit a created schedule poll.

Triggers
1. User goes to the poll directly with the sharing link

a. The user clicks on edit

2. User goes to his account and clicks edit or goes to the poll

Pre-conditions
1. The user is logged in

2. the user must be owner of the poll

3. The poll must have been created when the user was logged in

Post-conditions
1. The poll is edited

2. All poll participants with an account got notified of the change

Main scenario
1. User goes on the website, logs in and edits a poll

2. The poll edit form is displayed

3. The user updates the settings and submits it

a. Edit deadline

b. Edit title

c. Edit location

CHAPTER 2. USE CASES 13

d. Edit description

e. Edit/add/remove possible dates to choose

4. The poll gets updated and the same sharing link is displayed

Alternative scenarios
1. Its a group poll

a. Update other options

i. Update read/write rights for specific ranks if there are any

b. All administrators can edit the poll

Special requirements
1. Special JavaScript libraries for an accurate presentation of the date choosing.

CHAPTER 2. USE CASES 14

2.7 Create a text poll

Actors
Primary: User, Secondary: Data system

Description
As a user, I want to create a text poll to make a simple poll.

Triggers
1. User goes to the poll creation site

a. The user chooses text poll

Pre-conditions
none

Post-conditions
1. The poll is created

2. The user gets a link for sharing the poll

Main scenario
1. User goes on the website, logs in and creates a poll

2. The poll creation form is displayed

3. The user fills in the form, possible dates and submits it

a. Set deadline

b. Set title

c. Set location

d. Set description

e. Set all possible options to choose

4. The poll gets created an a sharing link is displayed

CHAPTER 2. USE CASES 15

Alternative scenarios
1. User wants to create a poll without an account

a. The user cant edit the poll after creating it

2. User wants to create the poll in a specific group

a. The user chooses the group first

3. Its a group poll

a. Set other settings

i. Read/write rights for specific ranks if there are any

Special requirements
1. Special JavaScript libraries for an accurate presentation of the date choosing.

CHAPTER 2. USE CASES 16

2.8 Edit a text poll

Actors
Primary: User, Secondary: Data system

Description
As a user, I want to edit a text poll I have created.

Triggers
1. User goes to the poll directly with the sharing link

a. The user clicks on edit

2. User goes to his account and clicks edit or goes to the poll

Pre-conditions
1. The user is logged in

2. the user must be owner of the poll

3. The poll must have been created when the user was logged in

Post-conditions
1. The poll is edited

2. All poll participants with an account got notified of the change

Main scenario
1. User goes on the website, logs in and edits a poll

2. The poll edit form is displayed

3. The user updates the settings and submits it

a. Edit deadline

b. Edit title

c. Edit location

CHAPTER 2. USE CASES 17

d. Edit description

e. Edit/add/remove possible dates to choose

4. The poll gets updated and the same sharing link is displayed

Alternative scenarios
1. Its a group poll

a. Update other options

i. Update read/write rights for specific ranks if there are any

b. All administrators can edit the poll

Special requirements
1. Special JavaScript libraries for an accurate presentation of the date choosing.

CHAPTER 2. USE CASES 18

2.9 Delete/cancel a poll

Actors
Primary: User, Secondary: Data system, Tertiary: Registered participants

Description
As a user, I want to cancel/delete a poll.

Triggers
1. User goes to the poll directly with the sharing link

a. The user clicks on delete

2. User goes to his account and clicks delete or goes to the poll

Pre-conditions
1. The user is logged in

2. The user must be owner of the poll

3. The poll must have been created when the user was logged in

Post-conditions
1. The poll is edited

2. All poll participants with an account got notified of the change

Main scenario
1. User goes on the website, logs in and opens the poll

2. The poll overview is displayed

3. The user clicks on the “Delete” button

4. He confirms the removal of the poll.

5. The poll is cancelled and all participants get notified

CHAPTER 2. USE CASES 19

2.10 Create a group

Actors
Primary: User, Secondary: Data system, Tertiary: Other users/group members

Description
As a user, I want to create a group with members

Triggers
1. User goes to the group creation site

Pre-conditions
1. The user is logged in

Post-conditions
1. The group is created

2. The user can add members to the group based on their email addresses

Main scenario
1. User goes on the website and creates a group

2. The group creation form is displayed

3. The user fills in the form and submits it

a. Set group name

4. he group gets created

Alternative scenarios
1. User wants to create a poll without an account

a. he user cant edit the poll after creating it

CHAPTER 2. USE CASES 20

2.11 Edit a group

Actors
Primary: User, Secondary: Data system, Tertiary: Other users/group members

Description
As a user, I want to edit a group I have created or Im administrator of.

Triggers
1. User goes to the group overview site.

Pre-conditions
1. The user is logged in

2. The user is administrator of the group

Post-conditions
1. The group is edited

2. The user can add/delete members to the group based on their email addresses

Main scenario
1. User goes on the website and edits a group

2. The group edit form is displayed

3. The user updates the form and submits it

a. Edit group name

4. The group gets updated

CHAPTER 2. USE CASES 21

2.12 Delete a group

Actors
Primary: User, Secondary: Data system, Tertiary: Other users/group members

Description
As a user, I want to delete a group I have created or Im administrator of.

Triggers
1. User goes to the group overview site.

Pre-conditions
1. The user is logged in

2. The user is administrator of the group

Post-conditions
1. The group is deleted

2. All associated polls are deleted

3. All members are not member of the group anymore

Main scenario
1. User goes on the website and deletes a group

2. All associated polls gets deleted

3. All members get a notification

4. The group gets deleted

Special requirements
1. Especially ask if the user really want to delete the group, if there are members or

associated polls.

CHAPTER 2. USE CASES 22

2.13 Add ranks to a group

Actors
Primary: User, Secondary: Data system, Tertiary: group members

Description
As a user, I want to add ranks to a group.

Triggers
1. User goes to the group overview page

Pre-conditions
1. The user is logged in

2. The user is administrator of the group

Post-conditions
1. The specific ranks are added to the group

2. Members are assigned to specific ranks

Main scenario
1. User goes on the website and adds ranks to a group

2. The rank adding form is displayed

3. The user fills in the form and submits it

a. Set rank names

4. The ranks are added

5. The user assigns ranks to some members

CHAPTER 2. USE CASES 23

Alternative scenarios
1. User wants to create a poll without an account

a. The user cant edit the poll after creating it

CHAPTER 2. USE CASES 24

2.14 Assign ranks to group members

Actors
Primary: User, Secondary: Data system, Tertiary: group members

Description
As a group administrator, I want to assign ranks to group members

Triggers
1. User goes to the group overview page and clicks on member management

Pre-conditions
1. The user is logged in

2. The user is administrator of the group

3. There already are some ranks created in the specific group

Post-conditions
1. The specific ranks are assigned to the chosen members

Main scenario
1. User goes on the website and assigns ranks to members

2. All group members are displayed

3. The user can set read/write rights for each member/rank

4. The ranks get assigned

Appendix C: Technologies evaluation

102

Contents

1 PHP Framework 2
1.1 Overview . 2
1.2 Evaluation . 3

1.2.1 Mailing . 3
1.2.2 Template Engine . 3
1.2.3 Routing . 3
1.2.4 Sessions / Security / Authentication 3
1.2.5 Translation . 3
1.2.6 Data Management . 4
1.2.7 Forms . 5
1.2.8 Validation . 5
1.2.9 3rd party bundles . 5

1.3 Conclusion . 6
1.4 Sources . 7

2 HTML front-end framework 8

1

1
PHP Framework

1.1 Overview
Available frameworks that have a good amount of features and have support:

• CakePHP

– Not that wide and has not many functions

• Symfony2

– Very promising
– Has many good features
– From SensioLabs

• Laravel

– Looks also good, has a few features that Symfony hasnt

• Silex

– Micro Framework
– From Sensiolabs
– Too small, only a few Features

The evaluation will compare Symfony2 and Laravel, because they are the two best
looking frameworks actually available.

2

CHAPTER 1. PHP FRAMEWORK 3

1.2 Evaluation

1.2.1 Mailing
Both frameworks use Swift Mailer. It is very accurate and provides all needed function-
ality.

1.2.2 Template Engine
Symfony Symfony uses Twig, a very powerful template engine with many options, filters
and extensions. It includes a caching system.
Laravel It uses Blade, a template language more like PHP. Is also powerful and has many
functions. Using translation in Twigs template engine is much easier than in Laravel,
because Twig provides a simple filter: variable—trans .
Conclusion Twig as a template engine feels right. But Blade would also be a good choice.

1.2.3 Routing
Both frameworks provide a routing class which is easy to configure. In Symfony2 the
route can be specified inside the controller. In Laravel, the routes are specified in a
separate global file.
Conclusion Is not important, both frameworks implement the routing pattern fine.

1.2.4 Sessions / Security / Authentication
Symfony CSRF-Protection: possible CSRF: Cross-Site-Request-Forgery
Authentication can be based on roles, no real example included.
Session system / variables are provided.
Laravel CSRF-Protection: possible Basic authentication service and technologies already
included as example. Session system / variables are provided. Also it supports authenti-
cation with OAuth Providers (Facebook, Google, etc.)
Conclusion Laravel has the better setting to start, but Symfony provides good basics for
different user levels.

1.2.5 Translation
Symfony Translations are specified in YAML, XML or PHP in separate files. YAML
would be the easiest syntax to use. Also, the template engine provides a simple filter to
directly get the translation of a sentence. It supports fallback mode and several reading
formats like simple PHP arrays, XML, YAML, gettext, Json, csv, etc. Language strings
can contain placeholders for variables. The definition of one translation can be a whole

CHAPTER 1. PHP FRAMEWORK 4

string or only keywords. E.x.: “Symfony is great” or “symfony.great”.
Laravel Laravel implements a part of Symfony‘s translation extension. It just supports
PHP arrays as translation definitions and also placeholders in translation strings. Conclu-
sion: Symfony handles translations better, because it‘s much more intuitive and powerful,
if the language key is the complete sentence, also for reading the code.

1.2.6 Data Management
Symfony Symfony implements Doctrine 2.0, which is an ORM (object-relational map-
ping) framework with the Data Mapper pattern that supports many database management
systems like MySQL, PostgreSQL; NoSQL, MongoDB, etc. It‘s a powerful database
abstraction layer (via PHP PDO) and objects are created with PHP and it let the Repos-
itory Manager handle the persistence. Direct mapping of object variables to database
with metadata inside the class file is also implemented. This method is more explicit, as
it is needed to declare the database structure direct in the entity.
Laravel Laravel contains Eloquent, which also is an ORM framework, but it implements
the Active Record pattern. It is more simple and lightweight, but doesn‘t provide so
much functionality and the database structure being defined in an external global file
limits the overview over an entity.
Additional Why would you want to use Doctrine2 instead of Eloquent?1

The benefit of using Doctrine2 over Eloquent is that the domain logic of the object
is kept completely separate from the logic of persisting data to the database. This means
that the things that make your application unique, don‘t need to be concerned with how
the data is actually persisted to storage.

When you use an Active Record implementation like Eloquent, each object has the
ability to change the database. This makes for code that is leaky and can cause issues if
the rules of dealing with those objects arent strictly followed.

Using a Data Mapper implementation like Doctrine 2 ensures that the business logic of
the objects are encapsulated in plain PHP objects, and all logic about how those objects
are stored is handled by a completely separate service. It‘s not that easy to manage the
database, because it must be created in a separate file and not in the entity model.
Conclusion So in conclusion, Doctrine seems better for handling and overview.

1http://culttt.com/2014/06/30/getting-started-doctrine-2-laravel/
15.02.2015

CHAPTER 1. PHP FRAMEWORK 5

1.2.7 Forms
Symfony Nice implementation of forms in the template engine, it provides a simple way
to render them. The form classes can be extended with constraints and validations.
Laravel There is not much about forms in the documentation of Laravel 5.0, but in 4.2
there are some basic things mentioned. Laravel handles requests different in comparison
to Symfony.
Conclusion The forms have similar functions, and both would be a good choice.

1.2.8 Validation
Symfony Validations and constraints can be also defined as assertion-annotations directly
in the form class. There exist constraint groups, so for one object specific constraints can
be defined, depending on the usage.
Laravel Has a simple, convenient facility for validating data and retrieving validation
error messages. It also supports form validation, but for this, it needs a separate class. It
also supports authorizing form requests. So if a user wants to update his own post for
example, it checks if its really his post.
Conclusion The Symfony validation features are pretty awesome and beat Laravel.

1.2.9 3rd party bundles
Template switching

Symfony Symfony2: A nice bundle that handles template fallback in a cool way: https:
//github.com/liip/LiipThemeBundle
Laravel There are Agent Bundles that check the User Agent, but no bundle for template
fallback with User Agent checking.

CHAPTER 1. PHP FRAMEWORK 6

1.3 Conclusion

Symfony2 Laravel
User Authentication Basic, role-based, extendable Included, extended, no native

roles/permissions
Secured areas Yes Yes
Security (CSRF) Yes Yes
Session variables Yes Yes, easy to handle
Template Engine Twig: really cool and power-

ful
Blade: nice

Language Translator Nice, with Twig extension Good
Database Entity Model
Management

Doctrine 2, extended Eloquent, good

Mobile template switch-
ing/overriding

Complicated, but powerful
bundle available

No good extension available

MVC Yes Yes
Folder structure Good and clear Okay
Supports extensions
(bundles)

Yes Yes

Unit testing Yes Yes
REST API Not native, easy with bundle Yes
Overall documentation Very good Good (Video tutorials avail-

able)
Overall complexity High Middle

The Symfony framework is more attractive because of many features that appear better
reasoned than they do in Laravel (for me personally). The Data Mapper pattern provides
a good overview over database objects, where Laravel uses separate sources.

Laravel has some nice features, like Facades. Facades provides a static object to access
an object instance of core components. So its easier to access it, with only just a static
reference like “DB::query()”.

Both frameworks have big communities, while Symfony2 is almost going to be an
industrial standard. There are also more bundles (extensions) available.

At the end, it also matters, which framework the developers prefer. So the decision
is made for Symfony2. It‘s a big and powerful framework, which will meet the require-
ments.

CHAPTER 1. PHP FRAMEWORK 7

1.4 Sources
http://symfony.com/doc/current/index.html 16.02.2015
http://laravel.com/docs/5.0 16.02.2015
http://laravel.com/docs/4.2 16.02.2015
http://phpixie.com/blog/thoughts-on-using-facades/ 16.02.2015
http://de.wikipedia.org/wiki/Cross-Site-Request-Forgery 16.02.2015
https://github.com/liip/LiipThemeBundle 16.02.2015
http://swiftmailer.org/ 14.02.2015
https://www.flynsarmy.com/2015/02/creating-a-basic-todo-application-
in-laravel-5-part-1/ 15.02.2015
http://tutorial.symblog.co.uk/ 14.02.2015
http://www.phpframeworks.com/ 13.02.2015
https://github.com/showcases/web-application-frameworks 13.02.2015

2
HTML front-end framework

There exist two big HTML frameworks: Twitter Bootstrap1 and Foundation2. Both
frameworks have good and usable features like responsiveness.
We choose Twitter Bootstrap, because there are many HTML themes that it supports and
it has good components.

To get a nice looking template, we went for a ready-to-use Symfony bundle called
AdminThemeBundle3 that implements the AdminLTE4 theme.

1http://getbootstrap.com/
2http://foundation.zurb.com/
3https://github.com/avanzu/AdminThemeBundle 20.03.2015, Version 1.3.1
4https://almsaeedstudio.com/preview, Version 2.3.1 20.03.2015

8

	1 Introduction
	2 Related Work
	3 The Problem
	3.1 Functional requirements
	3.2 Non-functional requirements

	4 The Solution
	4.1 User experience
	4.1.1 Authorization
	4.1.1.1 Login

	4.1.2 Dashboard
	4.1.3 Groups
	4.1.3.1 Create & edit a group
	4.1.3.2 Members
	4.1.3.3 Ranks

	4.1.4 Polls
	4.1.4.1 Create a poll
	4.1.4.2 Poll view
	4.1.4.3 Fix poll options
	4.1.4.4 User profile
	4.1.4.5 Calendar

	4.2 Architecture
	4.2.1 Symfony
	4.2.1.1 Request flow
	4.2.1.2 Basic file structure

	4.3 Technical implementation
	4.3.1 Routing
	4.3.2 Security
	4.3.3 User permissions on objects
	4.3.4 Translation
	4.3.5 Database

	5 The Validation
	5.1 Usability tests
	5.1.1 First test
	5.1.2 Second test

	5.2 Qualitative Case Study

	6 Future Work
	7 Conclusion
	Appendices
	A Appendix A: Anleitung zu wissenschaftlichen Arbeiten
	B Appendix B: Software Requirements Specification
	C Appendix C: Technologies evaluation

