
F# parsing expression grammar

Bachelor Thesis

Milan Kubicek
from

Bern BE, Switzerland

Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

15. August 2016

Prof. Dr. Oscar Nierstrasz
Jan Kurš

Software Composition Group
Institut für Informatik

University of Bern, Switzerland

Abstract

The process of structuring a sequence of characters according to a given
grammar is called parsing. Computer program code must be parsed in order
to be further processed. Various parsing techniques have been developed
since the rise of programming languages mostly relying on bottom-up pars-
ing techniques. Most programming languages are described in deterministic
context-free form from which bottom-up parsers can be automatically gener-
ated. Unfortunately bottom-up parsers tend to be less human-readable and
hard to debug. Recently new parsing methodologies like parsing expression
grammars (PEGs) [8] which have compared to traditional parsing techniques
similar or better expressive power and parsing performance while promising
better grammar composition properties and seamless integration of lexical
analysis in parsing. Although PEG implementations for some computer
languages exist, the effort of transforming an existing BNF grammar into
PEG hasn’t been studied yet.

In this thesis we examine and classify the difficulties of developing
a PEG parser based on a BNF language specification. For this study we
examine the concrete example of F# as it is a mature, open source, cross
platform programming language and to our best knowledge, no PEG-based
parser for the F# language exists. Our study classifies difficulties when
implementing a PEG parser based on a BNF grammar specification. We
show that the highest effort to implement a PEG based grammar is due to
transformation to a left-recursion free form. Further we demonstrate that
AST generation and required post-processing from PEG matching results
largely depend on the BNF grammar structure and its differences to the
AST structure. We conclude that supplemental grammar documentation not
present in BNF, imposes overall the highest implementation effort while
developing a PEG based parser.

1

Acknowledgements

First of all I owe special thanks to Prof. Dr. Oscar Nierstrasz for his calm
way of handling things, his valuable inputs and his hospitality at the Software
Composition Group. I would like to express my greatest appreciation and
deepest gratitude to Dr. Jan Kurš for pushing me and providing valuable
guidance throughout this project. Without my beautiful and beloved partner
Federica I couldn’t take life to the full. Finally I would like to thank the rest
of my family, my friends and colleagues for always being there for me.

2

Contents

1 Introduction 7

2 Formal grammars 9
2.1 Notation techniques . 10
2.2 Ambiguity . 11
2.3 Complexity . 11
2.4 Parsing expression grammars . 12

2.4.1 Greedy operator . 12
2.4.2 Ordered choice . 13
2.4.3 Expressive power . 13

2.5 Left recursion . 14
2.5.1 Direct left recursion . 14
2.5.2 Indirect left recursion . 14
2.5.3 ε production rules . 14
2.5.4 Left recursion detection . 15
2.5.5 Left recursion removal . 15

3 F# 17
3.1 Introduction . 17
3.2 Syntax . 17
3.3 Documentation . 18

3.3.1 BNF specification . 19
3.3.2 Precedence and associativity of language constructs 20
3.3.3 Discrepancies between specification and implementation 20

3.3.3.1 Missing delimiters 21
3.3.3.2 Required non-terminals 22
3.3.3.3 Missing definitions 22
3.3.3.4 Inconsistent declaration of lightweight syntax keywords 22

3.4 AST . 22

3

CONTENTS 4

4 PetitParser 23
4.1 Terminal parsers . 24
4.2 Parser combinators . 24
4.3 Action parsers . 25
4.4 Layout sensitive parsing support . 25
4.5 Parsing with PetitParser . 25

5 Implementation challenges of PEG-based parsers 27
5.1 BNF to PEG . 27

5.1.1 Left recursion . 28
5.1.2 Ordered choice . 28
5.1.3 Indentation . 29

5.2 CST to AST . 29
5.2.1 Priorities . 29

5.3 Validation . 29
5.3.1 F# AST . 30

5.4 PetitParser environment . 30
5.4.1 Grammar structure . 30
5.4.2 Parsing performance . 30
5.4.3 Left recursion . 31

6 Implementation of a PEG-based F# parser 32
6.1 BNF to PEG . 32

6.1.1 Left recursion . 33
6.1.2 Ordered choice . 33

6.2 CST to AST . 34
6.2.1 Embedding AST structure . 34

6.2.1.1 Redundancies . 35
6.2.2 Resolving redundancies . 35
6.2.3 Post-processing . 36

6.2.3.1 PEG near AST structures 36
6.2.3.2 PEG far AST structures 37

6.3 Validation . 38
6.3.1 PetitParser F# parser . 38
6.3.2 Left recursion detection tool 39

6.4 PetitParser F# parser and tools . 39
6.4.1 PetitParser F# parser . 39

6.4.1.1 Lexicon . 40
6.4.1.2 Grammar . 41
6.4.1.3 Parser . 41

6.4.2 Left recursion detection . 41

CONTENTS 5

6.4.2.1 Static algorithm . 42
6.4.2.2 Dynamic algorithm 43
6.4.2.3 Static vs. dynamic left recursion detection 43

6.4.3 F# AST extraction . 43

7 Implementation effort 45
7.1 BNF to PEG . 46

7.1.1 Left recursion removal . 46
7.1.2 Ordered choice . 46

7.2 CST to AST . 47
7.2.1 Embedding AST structure . 47
7.2.2 Redundancy removal . 47
7.2.3 Post-processing . 48

7.3 PetitParser environment . 48
7.3.1 Parsing performance . 48
7.3.2 Left recursion handling . 49

8 Conclusion 50

A Appendices 51
A.1 F# AST . 51

A.1.1 Expression nodes . 51
A.1.2 Module declaration nodes . 58
A.1.3 Constant nodes . 59

B Anleitung zu Wissenschaftlichen Arbeiten: Parsing F# in PetitParser 60
B.1 Installation . 60
B.2 Usage . 61
B.3 Under the hood . 62

B.3.1 Lexicon . 62
B.3.2 AST . 65

B.4 Validation . 66
B.5 F# AST extractor . 69

B.5.1 Installation . 69
B.5.2 Usage . 69

B.5.2.1 Simple AST extraction 69
B.5.2.2 Extended let binding AST extraction 70

B.6 F# ecosystem . 71
B.6.1 F# Compiler Services . 72
B.6.2 F# untyped AST processor . 73

B.7 Left recursion detection in PetitParser 74

CONTENTS 6

B.7.1 Static PetitParser left recursion detection implementation 75
B.7.2 Dynamic PetitParser left recursion detection implementation . . 78

1
Introduction

The purpose of a parser is to ensure that a string of symbols conforms to the rules of a
computer language and to build a data structure (e.g. abstract syntax trees) which can
then be further processed.

Many popular programming languages (Java, C, C++, Python) are formally described
in specifications using Backus-Naur Form (BNF) [4], a notation for context-free gram-
mars. Parser creation by hand is a complex and error prone undertaking therefore various
tools like parser generators exist (ANTLR [17], Bison [14], YACC [11]) which turn BNF
descriptions into ready parsers. Those auto-generated parsers often must be hand-tuned
to satisfy context-sensitive language requirements posed by specification details sup-
plemental to the BNF description. Usually this hand-tuning involves the introduction
of additional pre- or post-parsing steps, increasing the overall complexity of the often
cryptic bottom-up parsing systems themselves.

The formalism of Parsing Expression Grammars (PEGs) introduced in 2004 [8] is
getting more and more attention due to its top-down parsing technique which is very
close to the mental model of language recognition, its unambiguity as for every valid
language string there exists a unique derivation, and its unlimited lookahead capability
increasing the range of recognisable languages.

Its modular structure and its ability to parse even a subset of context-sensitive lan-
guages without increasing computational complexity compared to traditional parsers
makes it an attractive alternative to existing parsing technologies.

The goal of our project is to implement a PEG based parser for the F# language in
order to study the difficulties of implementing a PEG parser based on a BNF specification.

The Smalltalk framework PetitParser [12, 18] offers an agile, simple PEG parsing

7

CHAPTER 1. INTRODUCTION 8

platform for this purpose.
We take the BNF definition of F# and transform it to a PEG. The transformation of

a grammar described in BNF into a PEG brings several problems, namely the inability
of PEGs to deal with (in-)direct left-recursion, grammatical ambiguity, as well as asso-
ciativity and precedence of in-language operators being described outside of the BNF
definition. Later we extend the working PEG to simplify the generation of abstract syntax
trees (AST) from input. Throughout the implementation section we show how some
of the described problems can be tackled by creating simple helper tools and propose
strategies to deal with others.

Our study classifies difficulties when implementing a PEG parser based on a BNF
grammar specification. We show that the highest effort to implement a PEG based gram-
mar is due to transformation to a left-recursion free form. Furthermore we demonstrate
that AST generation and required post-processing from PEG matching results largely
depend on the BNF grammar structure and its differences to the AST structure. We
conclude that supplemental grammar documentation not present in BNF, imposes overall
the highest implementation effort while developing a PEG based parser.

In this thesis we first introduce the concepts of formal grammars and show the relation
between computational complexity and the expressive power of a language they recognise
before formalising PEGs. Next we introduce the F# programming language and the
PetitParser parsing framework. Then we propose an implementation of a PEG based
F# parser, starting with the transformation of the F# BNF to PEG and refine the PEG
to simplify abstract syntax tree generation. During this process we focus on problems
posed by left-recursion, precedence and associativity of language constructs. Finally
we classify difficulties of implementing a PEG parser based on a BNF specification,
quantify implementation efforts and discuss tool opportunities to support the described
development process.

2
Formal grammars

A grammar serves to formally describe a programming language. The concept of a formal
grammar was first proposed by Noam Chomsky in 1956[6] as a tuple

(
N, Σ, P, S

)
where

N is a finite set of nonterminal symbols

Σ is a finite set of terminal symbols

P is a finite set of productions rule of the form(
Σ∪N

)∗
N

(
Σ∪N

)∗ → (
Σ∪N

)∗
where * is the Kleene star operator (”zero or more”)

S ∈N is a starting symbol

Each production rule therefore maps from at least one non terminal to zero or more
nonterminal and terminal symbols. A string in

(
Σ∪N

)∗ is called a sentential form if it
can be derived from the starting symbol S with a finite number of steps. If a sentential
form consists only of nonterminal symbols it is called a sentence. The language of a
grammarG, is denoted as L

(
G
)

and defined as all those sentences that can be derived
in a finite number of steps from the starting symbol S. The decision whether a given
string ω is part of L

(
G
)

is the membership problem.
As an example the formal grammar defined as ({S},{a, b},{S → aSb, S →

ε}, S) generates the language {anbn : n ≥ 0}. A derivation for the string aaabbb
inside this language consists of the steps S → aSa→ aaSbb→ aaaSbbb→ aaabbb.

9

CHAPTER 2. FORMAL GRAMMARS 10

Figure 2.1: The Chomsky hierarchy.

When Noam Chomsky formalized grammars in 1956, he classified them hierarchi-
cally into what is now known as the Chomsky hierarchy.[6] The classes in the Chomsky
hierarchy differ in the strictness of their production rules and in the expressiveness in
the language they generate. All regular languages are also context-free, all context-free
languages are context-sensitive and all context-sensitive languages are also recursively
enumerable. All inclusions are proper inclusions, so i.e. not all context-free languages
can be generated by a regular grammar.

Grammar Languages Constraints on production rules

Type-0 Recursively enumerable α→ β
Type-1 Context-sensitive αAβ → αγβ
Type-2 Context-free A→ γ
Type-3 Regular A→ α and A→ αB

Table 2.1: The grammar classes defined by the Chomsky hierarchy.

2.1 Notation techniques
Various notation techniques for context free grammars exist. Most common notations are
based on the Backus-Naur Form (BNF) and make use of special operators to deal with

CHAPTER 2. FORMAL GRAMMARS 11

specific applications. Most BNF like notation techniques share a common set of syntax
rules and meta-symbols listed in Table 2.2.

Symbol Description

→ Assigns a right-hand definition to a left-hand non-terminal token
| Or-operator for multiple right-hand definitions
? Optional-operator for optional right-hand tokens
+ One-or-more-operator for repeating right-hand sequences
∗ Zero-or-more-operator for repeating right-hand sequences

Table 2.2: Meta-symbols and syntax rules of BNF like grammars

2.2 Ambiguity
A context-free grammar which has multiple derivations of the same string is called
ambiguous. A common example of ambiguity in programming languages is the dan-
gling else problem. The problem arises when else-statements inside an if-then-else
construct are optional. More contextual information is required to determine whether a
else-statement inside a nested conditional belongs to the inner or the outer if-then-else
construct. Ambiguities in the context-free form are generally resolved in parser imple-
mentations by relying on further, sometimes context-sensitive, requirements in pre- or
post-parsing steps.

2.3 Complexity
The set of valid programs for almost all programming languages is not context-free due
to context-sensitive requirements like “a variable must be declared before it is used”.

Regular grammars can be directly translated into deterministic finite automata, there-
fore the membership problem can be solved in linear time. Linear complexity can only
be guaranteed for this class of languages. In context-free languages the best currently
known algorithmic solution for the membership problem is O(n2.81)[21]. Computing
whether a string w is generated by a given context-sensitive grammar requires even more
than exponential time, PSPACE and is therefore intractable for practical use.

The Chomsky hierarchy can be further sub-categorised. Especially constructs in-
creasing expressive power of a grammar class without increasing the computational
complexity of the membership problem are of great interest for parser developers and
linguists.

CHAPTER 2. FORMAL GRAMMARS 12

A variety of techniques exist for parsing context-free languages. Subsets of the CFGs
can be parsed using LALR, LR, LL and other parsers in linear time and are therefore
interesting for practical parsing.[2, 3] Techniques like GLR[20] and GLL[19] parse all
languages generated by CFGs.

For the sake of simplicity and performance, current parsers therefore pass respon-
sibility of context-sensitive language feature requirements to pre- or post-processing
routines.

2.4 Parsing expression grammars
Parsing expression grammars (PEG) are a formalism introduced by Bryan Ford in 2004
and are closely related to top-down parsing languages developed by Alexander Birman
in the early 1970.[5, 8]

Top-down parsing approaches are very similar to the derivation process in formal
grammars. Sentential forms are derived from the starting symbol and then compared to
the input string. If the terminal symbols inside a sentential form differ from the input
string w, the derivation steps that led to the difference is revoked (backtracking step) and
if other valid production can be applied the process is continued until either a sentence
form is found (w ∈ L(G)) or all possible derivation steps were unsuccessful (w /∈ L(G)).

The formal definition of a PEG is a tuple
(
N, Σ, P, S

)
that looks very similar

to the one of formal grammars. Nevertheless especially its parsing rules P , have a
different interpretation. Every parsing rule is a relation between a nonterminal symbol A
and a parsing expression e of the form A← e. An atomic parsing expression consists
either of a terminal symbol, a nonterminal symbol or the empty string ε. A parsing
expression is a hierarchical expression consisting of either an atomic parsing expression
or a composition of existing parsing expressions, as shown in Table 2.3. If a parsing
expression matches input it succeeds and it may consume parts of the input. A failed
parsing expression doesn’t consume input.

2.4.1 Greedy operator
The operators e∗, e+, and e? on a parsing expression e1 behave greedily. They consume
as much input as possible thus letting a following parsing expression fail, if its success
depends on one of the already consumed tokens. For example, the sequentially composed
parsing expression e1∗e2, where e1 and e2 are both parsing expression consuming the
same input, will always fail as e1 does not leave any input for e2 to consume.

CHAPTER 2. FORMAL GRAMMARS 13

Name Syntax Success condition

Sequence e1e2 when both e1 and e2 succeed sequantially
Ordered choice e1/e2 when e1 succeeds or e1 fails and e2 succeeds
Zero-or-more e∗ repeat e zero or more times, always succeed
One-or-more e+ only when e succeeds one or more times
Optional e? try e, always succed
And-predicate &e when e succeeds but doesn’t let e consume any input
Not-predicate !e when e does not succeed but doesn’t let e consume any

input

Table 2.3: Composed parsing expressions, given any existing parsing expressions e, e1
and e2

2.4.2 Ordered choice
A parsing expression grammar can never be ambiguous (see section 2.2) as its ordered
choice operator prioritises the first succeeding choice. Therefore a parsing expression has
only one unique valid parse tree for a specific input. If a CFG is transliterated directly
to a PEG, the choice operator automatically dissolves any ambiguity. By determining a
specific order of parsing expressions inside an ordered choice, certain parse trees can be
prioritised over others.

2.4.3 Expressive power
It is conjectured that context-free languages exist that cannot be recognised by a PEG
but this is yet unproven.

Due to PEGFLs lookahead capability some context-sensitive languages can be parsed.
An example is the language {anbncn : n ≥ 1}1 shown in Listing 1.

1 S ← &
(
A'c'

)
('a')+ B !

(
'a'/'b'/'c'

)
2 A ← 'a' (A)? 'b'
3 B ← 'b' (B)? 'c'

Listing 1: PEG parsing a context-sensitive language

Some CFG rules have to be modified in order to be recognised by PEGs. Due to
PEGFLs greedy operator behaviour and ordered choice, CFG rules like S ← xSx | x
cannot be implemented directly and have to be rewritten in PEG compatible syntax.

1https://en.wikipedia.org/wiki/Parsing_expression_grammar#Examples

https://en.wikipedia.org/wiki/Parsing_expression_grammar#Examples

CHAPTER 2. FORMAL GRAMMARS 14

Another type of rules requiring modification are rules containing left recursion as
discussed in the following subsection.

2.5 Left recursion
Most parsers processing context free grammars in a top-down left-to-right fashion are
unable to process left recursion. A grammar is called left recursive, if it contains either
direct or indirect left recursion. In this section we first define left recursion before
describing an algorithm to transform an arbitrary context-free grammar into a non-left-
recursive form.

2.5.1 Direct left recursion
A left-recursive production rule has the form A→ Aα, where A is a non-terminal and
is recursively defined by reference of itself at the left-most position in its definition.
Whenever such a parser tries to parse A at a given position of an input, its first subgoal
will be parsing A at the same input position again and again. This results in an infinite
loop.

2.5.2 Indirect left recursion
Indirect left recursion is present whenever a grammar production rule can be derived into
a sentential form containing direct left recursion. For example substitution on the indirect
left recursive grammar production rule set {A→ B|α, B → C|β, C → Aα|γ} yields
A→ Aα, which contains direct left-recursion. Therefore the grammar is left-recursive.

2.5.3 ε production rules
In BNF definitions it is common to use production rules yielding the empty string, ε.
This allows parser developers to write many grammars in a compact way. The most
common ε productions are production rules containing the zero-or-more or the optional
operators. These production rules can cause “hidden” left-recursion in a grammar. If
an ε production is placed left-most in an production containing direct left-recursion, the
direct left-recursion might not be immediately noticeable any more.

Because left-recursion is quite common in programming languages and a lot of
parsers can’t deal with them, it is necessary to rewrite production rules containing
left-recursion beforehand.

CHAPTER 2. FORMAL GRAMMARS 15

2.5.4 Left recursion detection
By traversing a grammar graph, direct and indirect left recursion can be detected by
maintaining specialised sets of already traversed vertices. We propose a concrete imple-
mentation of a left recursion detection algorithm for PEGs later in subsection 6.4.2.

2.5.5 Left recursion removal
We describe an algorithm to remove left recursion based on Aho et al.[3, p.176-178].
Any context-free grammars containing left recursion can be transformed into a non-left-
recursive grammar by performing the following steps:

Let A,B ∈ {N}
Let α1, ..., αn, β1, ..., βn ∈ {N ∪ Σ}

1. Eliminate ε in all production rules:

1 ∀AP ∈ P where A→ ε | α1 | α2 | ... do
2 AP := A→ α1 | α2 | ...
3 ∀BP ∈ P where B → β1Aβ2 do
4 BP := B → β1Aβ2 | β1β2

Line 1, 2: From every production rule A containing ε remove ε.
Line 3, 4: For every B-production rule where A is referenced right hand side, intro-

duce a new rule leaving A out.

2. Remove all direct left recursion:

1 ∀AP ∈ P where A→ Aα1 | ... | Aαn | β1 | ... | βn do
2 A′

P := A′ → α1A
′ | ... | αnA

′ | ε
3 AP := A→ β1A

′ | ... | βnA′

4 P := { P ∪A′
P }

5 Remove ε rules in P by applying step 1

Line 1: Repeat the following steps for all production rules A containing direct left
recursion.

Line 2: Introduce a new non-terminal A′ and define its production rules as follows:
Take the previous direct left recursive rules, remove its left recursive part
and add A′ as suffix.

Line 3: Replace all production rules of A by the previously non direct left-recursive
production rules of A followed by A′.

Line 4: Add the newly generated rules for A′ to P .

CHAPTER 2. FORMAL GRAMMARS 16

3. Remove all indirect left recursion:

1 Set any particular order Norder, ∀A ∈ N: A1, A2, ..., An ∈ Norder

2 for i:=1 to n do
3 for j:=1 to i-1
4 Replace each production Ai of the form Ai → Ajβ
5 by Ai → α1β | ... | αnβ
6 where Aj → α1 | ... | αn are all current Aj-productions
7 Remove any direct left recursion in Ai by applying step 2

Line 1: Establish any arbitrary order of all non-terminal symbols in N .
Line 2: Loop through all non-terminal indices i of the ordered set Norder.
Line 3: Loop through all indices j smaller than current i.
Line 4-7: Expand all current Aj productions which are left hand side definitions in

Ai of the form Ai → Ajβ. Each iteration guarantees that the resulting
Ai is free of any immediate right hand side self-references. After each
iteration, possibly introduced direct left recursion is removed as described
earlier. As after all iterations each Ai is free of any immediate right hand
side self-references the grammar becomes left recursion free.

By applying the described algorithm it is possible to remove left recursion in context
free grammars. Unfortunately the described procedure has some significant drawbacks.
In the worst case the number or production rules of the transformed grammar grows
exponentially compared to the original grammar. Some parse trees in the new grammar
do change. Left-associative constructs for example are right-associative in the new
grammar. The above technique for left recursion removal can be optimised and is a
subject of research. A careful selection of the topological order of the non-terminals in
step 3 for example, can yield more compact, left-recursion free grammars [16].

3
F#

In this chapter we give a brief overview of the F# language. First we describe the
languageFLs syntax alternatives, we then introduce its documentation and finally we give
the reader a short overview of the official F# parser implementation.

3.1 Introduction
F# was introduced by Microsoft Research and the F# Software Foundation in 2005.
It is further developed and maintained by its creators and individual contributors. F#
is a strongly typed, functional, imperative and object oriented programming language.
The language originates from the ML programming language [15] and was influenced
by many programming languages like OCaml, C#, Python, Haskell, Scala and Erlang.
Although the F# project was initiated by Microsoft it is open source. A multi-platform
compiler and tools are available from the F# Software Foundation.

3.2 Syntax
There are two forms of syntax available for many constructs in the F# language, namely
the verbose syntax and the lightweight syntax. The verbose syntax is less sensitive to
whitespace characters whereas the lightweight syntax depends on them in order to signal
the beginning and end of constructs. The lightweight syntax is shorter, as keywords can
be omitted. Verbose constructs may be used in lightweight syntax but not vice versa.

17

CHAPTER 3. F# 18

Incorrectly indented constructs in lightweight syntax cause incorrect interpretation of the
code or cause the compiler to issue warnings or fail the compilation process.

1 let rec fib n =
2 if (n=1||n=2) then begin
3 1 end
4 else begin
5 let result = fib(n-1)
6 + fib(n-2) in
7 result end in
8

9 for i in 1 .. 10 do
10 printfn "%d:%d" i (fib i)
11 done

Listing 2: Verbose syntax

1 let rec fib n =
2 if (n=1||n=2) then
3 1
4 else
5 let result = fib(n-1)
6 + fib(n-2)
7 result
8

9 for i in 1 .. 10 do
10 printfn "%d:%d" i (fib i)
11

Listing 3: Lightweight syntax

Some of the differences between verbose and lightweight syntax can be seen in
Listing 2 and Listing 3. Whereas the lightweight example uses indentation to indicate
block structure, the keywords begin and end are required for that purpose in verbose
syntax, as can be seen in lines 2&3 and lines 4&7 of Listing 2.

The in keyword in the verbose syntax example line 6, binds the declared variable
to the consequent expression. In this case the consequent expression is just the variable
itself, acting as a return value. In lightweight syntax, this keyword can be omitted by
aligning the consequent expression with the let keyword in line 5.

Listing 2 line 7, contains another in keyword which binds the declared function to
the consequent for-loop. The lightweight syntax omits the in keyword but relies on
alignment of the for-loop keyword for with the let function declaration keyword.

Most code blocks in verbose syntax require a closing keyword, like the done
keyword in line 11. In lightweight syntax code blocks span over all language constructs
that are on-site of the first token of the block.

3.3 Documentation
In this section we give an overview of the F# 3.01 language specification[1].

The F# Language Specification explains in-depth technical aspects of the F# language
constructs and required compiler behaviour. Lexical analysis, grammar, types including

1In January 2016 the F# Foundation finalised version 3.1, introducing just minor changes. A working
draft of the version 4.0 is available and can be found along side other releases under http://fsharp.
org/specs/language-spec/

http://fsharp.org/specs/language-spec/
http://fsharp.org/specs/language-spec/

CHAPTER 3. F# 19

type inference algorithm, expressions, patterns and other topics are discussed in detail.

3.3.1 BNF specification
The F# language specification [1] contains a description of the F# syntax in BNF which
consists of approximately 230 grammar production rules. Informal sections in the
language specification resolve ambiguities in the BNF grammar and impose contextually
sensitive requirements like the precedence of constructs (discussed in subsection 3.3.2)
on the language constructs. Some production rules contain large numbers, mostly further
documented sub-production rules. The F# expression rule shown in Listing 4 contains
more than 50 terminal and non-terminal sub-rules and relies on further specification of
priority and associativity clarifications outside of its BNF definition to allow thorough
understanding of the F# expression structure.

1 expr → const
2 | '(' expr ')'
3 | 'begin' expr 'end'
4 | long-ident-or-op
5 | expr'.'long-ident-or-op
6 | expr expr
7 | expr'('expr')'
8 | expr'<<<'expr'>>>'
9 | expr infix-op expr

10 | prefix-op expr
11 | expr'.['expr']'
12 | expr'.['slice-range']'
13 | expr'.['slice-range','slice-range']'
14 | expr'←←←'expr
15 | expr(, expr)+
16 | 'new' type expr
17 | '{{{' 'new' base-call object-members interface-impls '}}}'
18 | '{{{'field-initializers '}}}'
19 | '{{{'expr 'with' field-initializers '}}}'
20 | '['expr(; expr)+']'
21 | '[|'expr(; expr)+'|]'
22 | expr '{{{'comp-or-range-expr'}}}'
23 | '['comp-or-range-expr']'
24 | '[|'comp-or-range-expr'|]'
25 | 'lazy' expr
26 | 'null'
27 | expr':::'type
28 | expr':>:>:>'type
29 | expr':?:?:?'type
30 | expr':?>:?>:?>'type
31 | 'upcast' expr
32 | 'downcast' expr

CHAPTER 3. F# 20

33 | 'let' function-defn 'in' expr
34 | 'let' value-defn 'in' expr
35 | 'let' 'rec' function-or-value-defns 'in' expr
36 | 'use' ident '=' expr 'in' expr
37 | 'fun' argument-pats '→→→' expr
38 | 'function' rules
39 | 'match' expr 'with' rules
40 | 'try' expr 'with' rules
41 | 'try' expr 'finally' expr
42 | 'if' expr 'then' expr (elif-branches)? (else-branch)?
43 | 'while' expr 'do' expr 'done'
44 | 'for' ident '=' expr 'to' expr 'to' expr ('done')?
45 | 'for' pat 'in' expr-or-range-expr 'do' expr ('done')?
46 | 'assert' expr
47 | '<@'expr'@>'
48 | '<@@'expr'@@>'
49 | '%' expr
50 | '%%' expr

Listing 4: F# expression CFG production rule defined in the F# specification on p.272)

3.3.2 Precedence and associativity of language constructs
Although BNF grammars ensure whether a language construct belongs to a language
or not, in most cases further information is required to eliminate ambiguity. The string
1 + 2 is a valid language construct but its parse tree is ambiguous as the grammar

in Listing 4 can produce this construct from the rules defined in line 6 and line 9.
Moreover, a parser requires additional knowledge about the precedence and associativity
of expressions. The F# language specification contains a dedicated section to deal with
precedence of symbolic operators, pattern and expression constructs.[1, p.35].

Table 3.1 transcribes the precedence and associativity tables from the specification.
It shows the order of precedence from highest to lowest and the associativity of symbolic
operators and pattern/expression constructs. The OP -suffix represents any token that
begins with the given prefix, unless the token appears elsewhere in the table.

3.3.3 Discrepancies between specification and implementation
The authors of the F# language specification note that discrepancies may exist between the
F# parser implementation and its specification. In this section we document some of the
discrepancies we discovered while working with the F# 3.0 BNF grammar specification.

CHAPTER 3. F# 21

Operator or expression Associativity

f<types> left
f(x) left
. left
prefix-op left
"| rule" right
f x left
lazy expr

assert expr

**OP right
*OP, /OP, \%OP left
+OP, -OP left
:? not associative
:: right
ˆOP right
!=OP, <OP, >OP, =, |OP, &OP left
:>, :?> right
&, && left
or, || left
, not associative
:= right
-> right
if not associative
function, fun, match, try not associative
let not associative
; right
| left
when right
as right

Table 3.1: F# operator and expression priority and associativity, ordered by priority.

3.3.3.1 Missing delimiters

Some BNF non-terminal symbols are referenced with -s suffix, without further spec-
ification what the -s suffix implies. Two affected rules are interface-impls [1,
p.273] and val-decls [1, p.279]. The -s suffix is used both as one-or-more repeti-
tion operator and zero-or-more repetition operator throughout the grammar definition.
Consistent use of the one-or-more notation, where necessary with an optional quantifier,

CHAPTER 3. F# 22

would resolve this specification ambiguity.

3.3.3.2 Required non-terminals

The type-defn-elements non-terminal in class-type-body is falsely marked
optional [1, p.278] and correctly defined in [1, p.124]. as-defn is incorrectly
marked as required in additional-constr-defn [1, p.279]. The new-keyword
in additional-constr-init-expr is marked as required but is implemented
as optional.

3.3.3.3 Missing definitions

interface-signature [1, p.278] and stmt [1, p.279] both are referenced but
not defined.

3.3.3.4 Inconsistent declaration of lightweight syntax keywords

Some keywords are optional in lightweight syntax but the BNF grammar does not follow
a consistent definition of these, as some are marked as optional and others as required.
begin and end keywords are marked as optional in module-defn but as required
in module-defn-body [1, p.270].

3.4 AST
The F# language specification[1] does not contain any details about the implemented
AST as it serves as an internal structure in the compilation process. More than 70
distinct AST node types are used by the open edition F# 3.02 implementation of which 40
describe expression constructs (see Listing 4). We list the major AST nodes in Appendix
section A.1.

2http://github.com/fsharp/fsharp/tree/fsharp_30

http://github.com/fsharp/fsharp/tree/fsharp_30

4
PetitParser

PetitParser is a parsing-expression grammar based, top-down, parser combinator frame-
work written in Smalltalk [12, 18]. It was developed by Lukas Renggli as part of his
work on the Helvetia system, a tool for dynamic language embedding. PetitParser is
designed to fit the dynamic nature of Smalltalk. It uses four parser methodologies:

a) Scannerless Parsers perform tokenization and parsing in a single step, rather than
first breaking individual characters into words and then arranging these words into
phrases.[22]

b) Parser Combinators represent a parser in a graph like structure enabling high level of
modularisation, maintainability and interchangeability.[10]

c) Parsing Expression Grammars. PEGFLs ordered choice results in an unambiguous
parsing tree for every valid string in the described language. PEGs are discussed in
detail in section 2.4.

d) Packrat Parsers ensure that each parsing function is invoked at most once at a given
position in the input stream in order to enable linear time parsing.[7]

With parsing contexts PetitParser gains the computational power of a Turing machine
and allows parsing of some context sensitive languages.[13] A set of ready-made parsers
in PetitParser can be composed to consume and transform arbitrary complex languages
using common Smalltalk syntax.

23

CHAPTER 4. PETITPARSER 24

4.1 Terminal parsers
The simplest pre-defined parsers are the terminal parsers shown in Table 4.1. With
the help of terminal parsers, terminal grammar symbols can be modelled from literal
sequences of characters/numbers. An extendable set of symbol ranges can be accessed
with the help of factory methods.

Syntax Matches

$a asParser character ’a’
'a' asParser character ’a’
'abc' asParser string ’abc’
#any asParser any character
#digit asParser any digit 0-9
#letter asParser letters a-z and A-Z
#word asParser letters a-z, A-Z and any digit 0-9
#lowercase asParser letters a-z
#uppercase asParser letters A-Z
#blank asParser horizontal tab and space bar characters
#newline asParser carriage return and line feed characters

Table 4.1: Subset of pre-defined PetitParser terminal parsers.

4.2 Parser combinators
Parser combinators shown in Table 4.2 are used to combine simple parsers into more
complex ones. This allows arbitrary grammar reuse and composition.

Name Syntax Matches

sequence p1, p2 p1 followed by p2
ordered choice p1 / p2 if p1 cannot be matched, match p2
zero-or-more p star p zero or more times
one-or-more p plus p one or more times
optional p optional p if present else nothing
and-predicate p and p but doesn’t consume it
not-predicate p not requires p to fail and doesn’t consume

Table 4.2: Subset of pre-defined PetitParser parser combinators.

CHAPTER 4. PETITPARSER 25

4.3 Action parsers
In order to get a more convenient representation of the matched input of a parser, it is
necessary to process the parsing result. Action parsers from Table 4.3 add ability to
transform or perform certain actions on a parser. Using the ==> aBlock selector a parser
is converted into an PPActionParser where the block processes the preliminary parsing
result turning it into the desired form.

Syntax Action

p ==> aBlock transforms the result of the parser given aBlock given aBlock.
p flatten creates a string from the result of p.
p token creates a token from the result of p.
p trim trims whitespaces before and after p.

Table 4.3: Subset of pre-defined PetitParser action parsers.

4.4 Layout sensitive parsing support
Layout sensitive parsing support has been recently added to the PetitParser framework by
the PetitIdent extension[9]. The extension allows marking specific column positions of
the input by pushing indentation tokens which can further be used to check other tokens
for either off-side, aligned or on-side positions relative to the pushed indentation token.

4.5 Parsing with PetitParser
Parsers in PetitParser can be implemented using an object oriented approach by deriving
from the PPCompositeParser base class. Every instance variable corresponds to an
element of the grammar and is accessible by accessor-methods returning a dedicated
parser for the language construct. Parsers can be referenced directly via instance variables
as PPCompositeParser uses reflection to look up corresponding methods and store them
in instance variables.

The PPCompositeParser class sets up all defined parsers as PPDelegateParsers to
avoid problems caused by mutually recursive definitions. Missing accessor-methods for
any production cause the parser to fail on initialisation. A start method forms the entry
point for parsing of the specified PPCompositeParser subclass.

Test-driven development plays an important role in supporting the evolution of
a parser as they can become complex. The PPCompositeParserTest class offers a
dedicated infrastructure similar to the one for creating parsers.

CHAPTER 4. PETITPARSER 26

A PetitParser parser can be divided into multiple layers each with individual respon-
sibilities. First a language grammar can be modelled by defining terminal parsers which
subsequently can be composed into productions. A parser then can inherit from this
grammar class and process the result of productions using action parsers into an AST.
This approach includes benefits like modularity and re-usability of grammar elements.

5
Implementation challenges of PEG-based

parsers

Implementing a PEG-based parser poses multiple challenges. In this chapter we first
explain the difficulties related to transforming a BNF based grammar rules into PEG
based grammar rules, then we describe the generation of AST and finally we show
limitations of the PetitParser framework and how they affect a PetitParser based parser.
In chapter 7 we classify the described difficulties based on the manual effort and the
possibility for tool support and/or automatability.

5.1 BNF to PEG
The F# specification [1] defines the F# language using a BNF ruleset containing 250
grammar rules. Some requirements on the language syntax are not expressed by the
specified BNF but are subject to supplemental documentation, such as indentation
sensitive lightweight syntax (see section 3.2), expression, operator precedence and
associativity (see subsection 3.3.2).

Our goal, transforming the F# BNF grammar into a PEG equivalent, is composed
of multiple challenges. PEGs left recursion limitation and ordered choice result in
work-intensive transformations increasing the PEG grammars size compared to its BNF
form.

Using the simplified expression BNF definition in Listing 5 we will illustrate the
described difficulties. This basic expression rule describes the language constructs

27

CHAPTER 5. IMPLEMENTATION CHALLENGES OF PEG-BASED PARSERS 28

expression application print 2 , prefixed constants +3 , arithmetic expressions
1 + 2 , tuples 3, 1, 2 , expression sequence print 1; print 2 and compounds of these.

1 expr → const
2 | expr expr
3 | pre-op expr
4 | expr inf-op expr
5 | expr (',' expr)+
6 | expr ';' expr
7

8 const → 'print' | '1' | '2' | '3'
9 pre-op → '+' | '-'

10 inf-op → '+' | '-' | '*' | '/'

Listing 5: Simplified F# expression rule

5.1.1 Left recursion
PEG supports neither direct nor indirect left recursion (see section 2.5) thus all left
recursion has to be removed from a PEG grammar. Direct left recursion in the sample
expression rule is highlighted in Listing 6. The definition of expr refers to itself
multiple times on the leftmost side.

1 expr → const
2 | expr expr
3 | pre-op expr
4 | expr inf-op expr
5 | expr (',' expr)+
6 | expr ';' expr
7 ...

Listing 6: Direct left recursion in expression rule

Left recursion removal (see subsection 2.5.5) induces new semantically redundant
intermediate rules increasing the grammarFLs size. As the interpretation of these interme-
diate rules requires some rethinking, they have to be structured and named accordingly
to restore grammar readability.

5.1.2 Ordered choice
The fundamental difference between a BNF rule set and a PEG is that the PEG’s choice
operator is ordered (see subsection 2.4.2). If a parsing function succeeds other pars-
ing functions of the same choice set won’t be invoked at the same position in the

CHAPTER 5. IMPLEMENTATION CHALLENGES OF PEG-BASED PARSERS 29

same context. With the same rule definition order as in the sample grammar in List-
ing 5 a PEG wouldn’t parse the string 1+2 as expr infix-op expr but as 1+2 ,
expr expr because +2 is recognised as pre-op expr . Therefore re-ordering

of the BNF based grammar rules is required to ensure the correct PEG parsing behaviour.

5.1.3 Indentation
In real life the F# language is mostly used in its indentation sensitive lightweight syntax.
The F# compiler uses a specialised pre-processing scanner phase inserting indentation
tokens into the input which allow indentation handling later in the parsing process. As
PEGs are scannerless, layout has to be taken into account during the parsing process.
Preliminary layout sensitive parsing support has been recently added to PetitParser
(see 4.4).

5.2 CST to AST
Given a compatible grammar and an input, PEG generates a parse path if one is available.
This parse path, also called concrete syntax tree (CST), is the specific sequence of rules
describing how the parser interprets the input. For further processing a more abstract and
simplified syntactic representation, the AST is required.

5.2.1 Priorities
While some priority and associativity definitions of F# language constructs are defined
in the languageFLs BNF definition others are more informally described in a separate
sections of the specification document (see subsection 3.3.2). Some priority and as-
sociativity requirements can be handled directly in the syntactical PEG while others,
especially arithmetic expression, are better dealt with during the AST generation phase
as they would reduce clarity and comprehensibility of the PEG.

5.3 Validation
Pure recognition of a language sentence by a PEG is no evidence for correct parsing.
Analysis of parse trees is required for validation. The AST output of our PEG-based
parser has to be compared against an independent parser to validate the PEG and AST
generation implementations.

CHAPTER 5. IMPLEMENTATION CHALLENGES OF PEG-BASED PARSERS 30

5.3.1 F# AST
To enable meaningful validation of our F# PEG implementation it is important to choose
an appropriate representation of the parser output. As the F# specification[1] does not
contain any details about the F# AST, its structure and documentation has to be extracted
from the F# open edition compiler1 source code.

5.4 PetitParser environment
In this section we show some of the difficulties one can face when implementing complex
parsers in PetitParser.

5.4.1 Grammar structure
In PetitParser each parsing function is represented as instance variable internally. The
instance variable number per instance is limited to 255 due to design decisions of the
hosting environment. Terminal grammar symbols (e.g. keywords) can take up a large
fraction of the available parsing function instance variables. As left recursion removal
and other required PEG specific grammar refactoring tend to increase grammar size
the parsing function number limit can be exceeded quickly. Therefore the PetitParser
grammar has to be divided and structured accordingly to reduce the parsing function
count.

5.4.2 Parsing performance
A PEG can be correctly implemented and parse a specific language but its parsing
performance might suffer from invoking the same parsing function at a given position
on the input stream. Packrat Parsers [7] avoid invocation of a parsing function if their
result was previously known by memoizing all partial parsing results at a given position.
This ensures linear parsing time but results in extensive memory usage. The PetitParser
framework implements packrat parsing but the functionality must be activated manually
in each parsing function.

The example BNF grammar in Listing 5 has multiple constructs sharing the same
left-most non-terminal (expr expr and expr inf-op expr). Without further
optimisation a transformation from BNF to PEG (focusing sole on left recursion removal
and ordered choice) results in an inefficient PEG where parsing expressions are evaluated
multiple times at the same position in the input stream. A PEG suffers from worse than
linear parsing after being transformed from BNF if no precautions are taken.

1https://github.com/fsharp/fsharp

https://github.com/fsharp/fsharp

CHAPTER 5. IMPLEMENTATION CHALLENGES OF PEG-BASED PARSERS 31

5.4.3 Left recursion
Like all PEG-based parsing frameworks, PetitParser is neither able to handle direct nor
indirect left recursion. Moreover occurrence of left recursion during parsing causes a
crash of the PetitParser hosting environment. Therefore every unnoticed or accidentally
introduced left-recursion slows down development due to crash recovery and search for
left recursion. As long as this fatal restriction is present in the PetitParser development
environment, a left recursion detection tool provides the only viable workaround.

6
Implementation of a PEG-based F# parser

The implementation chapter is divided into three parts. First we show how we transformed
the F# BNF grammar into a compatible PEG, then we describe how we generated the F#
AST in PEG and finally we explain the implementation of the PetitParser F# parser and
additional tools. Although it might seem that the development process we describe is
sequential, in reality it is more iterative as for example later grammar structuring stages
can introduce left recursion or have ordered choice implications.

6.1 BNF to PEG
We present our approach of implementing the F# PEG grammar on the basis of its
BNF specification in this section. Our implementation focuses on a partial F# grammar
covering the most commonly used expression constructs.

All BNF rules from the F# specification [1] have been transformed manually into
a PEG compatible rule set. To illustrate the BNF to PEG transformation a simplified
expression rule in BNF is shown in Listing 7.

32

CHAPTER 6. IMPLEMENTATION OF A PEG-BASED F# PARSER 33

1 expr → const
2 | expr expr
3 | pre-op expr
4 | expr inf-op expr
5 | expr(','expr)+
6 | expr';'expr
7

8 const → 'print' | '1' | '2' | '3'
9 pre-op → '+' | '-'

10 inf-op → '+' | '-' | '*' | '/'

Listing 7: Simplified F# BNF expression rule

6.1.1 Left recursion
When the simplified expression grammar in Listing 7 is implemented in PetitParser
without further modification, it will fail due to the (direct) left recursive definitions.
Left recursion can be removed by manually applying the algorithm described in sub-
section 2.5.5. The resulting left recursion free grammar is shown in Listing 8. As
the left recursion removal algorithm introduces new intermediate rules, it obscures the
rule-set considerably as logical sequences like expr inf-op expr are split into
two grammar rules.

1 expr → (const)expr'
2 | (pre-op expr)expr'
3

4 expr' → (expr)expr'
5 | (inf-op expr)expr'
6 | ((','expr)+)expr'
7 | (';'expr)expr'
8 | ε
9

10 const → 'print' | '1' | '2' | '3'
11 pre-op → '+' | '-'
12 inf-op → '+' | '-' | '*' | '/'

Listing 8: Expression BNF rule after left recursion removal

6.1.2 Ordered choice
This left recursion free grammar is PEG compatible and input can be matched using a
PEG parser interpreter. Due to PEGFLs ordered choice (see subsection 2.4.2) possible
BNF ambiguities are resolved by prioritising the first successful parse tree. Therefore
the input 1 + 2 is recognised by the grammar in Listing 8, but results in the wrong
parse tree expr (expr) → expr (pre-op expr) . To solve this problem the

CHAPTER 6. IMPLEMENTATION OF A PEG-BASED F# PARSER 34

grammar rule responsible for infix operator application, line 5 in Listing 8, has to be
moved before the application rule, line 4 in Listing 8.

Now that the grammar is left recursion free and its choice sub-rules are prioritised, it
can be translated directly into the valid PEG grammar shown in Listing 9.

1 expr ← (const)(expr’)?
2 / (pre-op expr)(expr’)?
3

4 expr' ← (inf-op expr)
5 / (expr)
6 / (','expr)+
7 / (';'expr)
8

9 const ← 'print' / '1' / '2' / '3'
10 pre-op ← '+' / '-'
11 inf-op ← '+' / '-' / '*' / '/'

Listing 9: PEG compatible expression rule

6.2 CST to AST
Although the PEG grammar in Listing 9 matches expression input strings with the cor-
rect CST, its structure is lacking in terms of comprehensibility because logically bound
grammar rules are split. For example, the input 1 + 2 representing an F# infix operator
application expression is derived from the CST expr → (const)(expr’) →
const(inf-op expr) from the PEG grammar in Listing 9. The effort to trans-

form CSTs into ASTs especially depends on the similarity between the two structures.
Re-arranging the PEG grammar and logical grouping of rule definitions can simplify
this transformation by getting the grammar structure closer to the AST structure. Later
post-processing then ensures internal AST node structure details.

6.2.1 Embedding AST structure
By introducing new intermediate rules for each AST node (exprTup , exprInfApp ,
exprApp and exprConst) and grouping sub-rules, our PEG basic expression

grammar results in Listing 10. The effort to deduce an AST node type from a CST of this
grammar is reduced to the minimum, because each AST node type is part of the CST.

CHAPTER 6. IMPLEMENTATION OF A PEG-BASED F# PARSER 35

1 expr ← exprSeq
2 / exprTup
3 / exprInfApp
4 / exprApp
5 / exprConst
6

7 exprInfApp ← (exprConst)(inf-op expr)
8

9 exprApp ← (exprConst)(expr)
10

11 exprTup ← (exprInfApp / exprApp / exprConst)((','expr)+)
12

13 exprSeq ← (exprTup / exprInfApp / exprApp / exprConst)((';'expr)+)
14

15 exprConst ← const
16 / (pre-op expr)
17

18 const ← 'print' / '1' / '2' / '3'
19 pre-op ← '+' / '-'
20 inf-op ← '+' / '-' / '*' / '/'

Listing 10: PEG compatible expression rule restructured for AST generation

6.2.1.1 Redundancies

The grammar in Listing 10 contains redundancies as the sub-rule definitions have over-
lapping left-hand definition sets, reducing performance and maintainability of the PEG.

Performance suffers as some parsing expressions are applied multiple times at the
same position of the input stream. For instance to parse a constant, the grammar tries to
match sequentially exprSeq , exprTup , exprInfApp , exprApp , exprApp
and lastly succeeding with exprSeq on on the input. As exprConst is a valid
sub-rule of all these parsing expressions, this parsing expression is applied successfully
multiple times and backtracked, resulting in redundant computations.

Grammar maintainability is worsened by repetition of ordered choice sub-sequences
in the definitions of expr , exprInfApp and exprSeq and violates the reusability
principle. A new grammar rule with higher priority than exprConst but lower priority
than exprApp can’t be inserted easily as it has to be incorporated into three grammar
rules.

6.2.2 Resolving redundancies
To resolve the redundancies described in subsubsection 6.2.1.1 we can chain the parsing
expressions and mark specific right hand definitions optional. Listing 11 shows a
grammar where this chaining was applied. This parsing expression chaining has the

CHAPTER 6. IMPLEMENTATION OF A PEG-BASED F# PARSER 36

drawback of AST node types not being immediately visible in the concrete syntax parse
path. Nonetheless the AST node type can be easily deduced recursively during AST
node generation by the presence of a specific right hand definition parsing result. For
example matching of a constant results in the parse path expr → exprSeq →
exprTup → exprInfApp → exprApp → exprConst . All available non-
terminal parsing expressions are present in the parse tree, but as all parsing expressions
except exprConst are missing their suffix, only exprConst is returned as the
matching result.

This PEG structure now matches all input without backtracking and is easier to
maintain as it doesn’t contain duplicates.

1 expr ← exprSeq
2 exprSeq ← (exprTup)(';'expr)*
3 exprTup ← (exprInfApp)(','expr)*
4 exprInfApp ← (exprApp)(inf-op expr)?
5 exprApp ← (exprConst)(expr)?
6 exprConst ← const
7 / (pre-op expr)
8

9 const ← 'print' / '1' / '2' / '3'
10 pre-op ← '+' / '-'
11 inf-op ← '+' / '-' / '*' / '/'

Listing 11: PEG compatible expression rule restructured for AST generation with no
redundancies

6.2.3 Post-processing
Although most of the AST structure is incorporated into the grammar in Listing 11 some
post-processing is required during the final parsing phase, the AST node generation.
Some of the AST structure generated during post-processing could be directly generated
by PEG grammar extensions, while other parts differ to widely from the given PEG
recursive descent given structure.

6.2.3.1 PEG near AST structures

Arithmetic expression AST node compositions change when their arithmetic operators
(with different priorities) are interchanged. Figure 6.1 and Figure 6.2 show the dif-
ferent AST node structures of the arithmetic expressions A * B + C and A + B * C .
Arithmetic expression operator prioritisation can be incorporated into a PEG grammar
directly. Nevertheless, as operator precedence plays no role in sole input matching and
results in additional, hard to maintain grammar rules and more backtracking we suggest

CHAPTER 6. IMPLEMENTATION OF A PEG-BASED F# PARSER 37

post-processing of the PEG matching result to generate AST nodes with correct internal
structure based on the supplemental BNF documentation.

App

App

Ident(+) Ident(A)

App

App

Ident(∗) Ident(B)

Ident(C)

Figure 6.1: F# AST of the expression A+B ∗ C

App

App

Ident(+) App

App

Ident(∗) Ident(A)

Ident(B)

Ident(C)

Figure 6.2: F# AST of the expression A ∗B + C

6.2.3.2 PEG far AST structures

AST nesting structure sometimes differs from the PEG parse result dramatically. Gram-
mar adjustments to produce the same AST structure might be hard to realise or even not
possible. For example the result of the expression sequence, exprSeq , contains a list
of consecutive expressions which have to be hierarchically ordered. This hierarchical
ordering can be performed relatively easy by assigning each element as child of the

CHAPTER 6. IMPLEMENTATION OF A PEG-BASED F# PARSER 38

1 exprIf ← 'if' expr 'then' expr (exprIf-elif)* (else)?
2

3 exprIf-elif ← 'el-if' expr 'then' expr
4 exprIf-else ← 'else' expr

Listing 12: PEG if-else block

1 if cond1 then expr1

2 elif cond2 then expr2

3 elif cond3 then expr3

4 ...
5 elif condn then exprn

6 else exprx

Listing 13: F# if-elif-else block

preceding element. The construction of other nested AST nodes follow similar principles.
AST node structures often have some peculiarities complicating their generation. For
instance, some BNF grammar rules define syntactic sugar constructs. The F# if-else
block grammar rule shown in Listing 12 defines syntactical sugar syntax by providing
else-if branches preventing messy nested if-else blocks. Internally the F# parser con-
verts if-elif-else blocks like the one shown in Listing 13 into a nested if-else AST node
hierarchy shown in Listing 12.

6.3 Validation
In this section we show how our parser implementation and our tool for left recursion
detection were validated.

6.3.1 PetitParser F# parser
Our PetitParser F# grammar and parser were developed in a test driven way using the
PetitParser grammar testing framework. The PetitParser testing framework facilitates the
creation of tests for every defined parsing expression in a grammar encouraging modular
testing. The parsing expressions in our implementation are backed with test cases ex-
tracted from real life F# code using our F# AST extractor described in subsection 6.4.3.
Furthermore we validated our implementation by converting several hand-picked F#
source files1 manually into verbose syntax and comparing it against the official implemen-

1https://fsharpsamples.codeplex.com and http://fsharp3sample.codeplex.
com

https://fsharpsamples.codeplex.com
http://fsharp3sample.codeplex.com
http://fsharp3sample.codeplex.com

CHAPTER 6. IMPLEMENTATION OF A PEG-BASED F# PARSER 39

if cond1

expr1 if cond2

expr2 if cond3

expr3 if condn

exprn exprx

Figure 6.3: AST representation of the F# if-elif-else block from Listing 13

tation output using our F# AST extractor. As our grammar and parser implementation
is restricted to the most basic signature, class, type constructs section 6.1 and does not
implement the lightweight syntax an empirical validation on real-life F# projects is not
possible. A thorough PEG implementation of the F#grammar including support for the
indentation sensitive lightweight syntax would go beyond the scope of our study.

6.3.2 Left recursion detection tool
Our left recursion detection tool analyzes PetitParser grammars containing direct and indi-
rect left recursion in all their variants as described in subsubsection 6.4.2.1. Furthermore,
our implementation corresponds to the definition of left recursion from section 2.5.

6.4 PetitParser F# parser and tools
In this section we describe the PetitParser F# parser and peripheral support tools imple-
mentation.

6.4.1 PetitParser F# parser
We divided our parser implementation into lexical, grammar and parser layers which we
discuss at an abstract level in this section.

In summary the lexical layer is responsible for matching terminal tokens like key-
words, constants and for trimming unwanted constructs (e.g. comments) between other
lexical tokens. The syntactical layer combines tokens provided by the lexical layer into

CHAPTER 6. IMPLEMENTATION OF A PEG-BASED F# PARSER 40

Figure 6.4: PetitParser F# lexicon, grammar and parser implementation overview

valid language sentences and is the core of our parser implementation as it defines the
whole language grammar. The parser layer is responsible for processing the result of
the syntactical layer and producing the AST of matched inputs. An overview of the
implemented parser including test and validation components is shown in Figure 6.4. For
an in-depth technical description of our implementation we refer the reader to section B.3.

6.4.1.1 Lexicon

A separate parsing expression definition of terminal language tokens instead of defining
the parsing expressions ad-hoc, yields the advantage of providing a central hook-up for
trimming unwanted characters (or constructs) in the input stream. Furthermore other

CHAPTER 6. IMPLEMENTATION OF A PEG-BASED F# PARSER 41

language constructs like custom variable names depend on an aggregation of all available
language terminal tokens as they cannot be identical to keywords.

In order to avoid reaching the supported parsing function count limit described
in subsection 5.4.1, instead of defining each terminal language token as a separate
parsing expression, the lexer stores them all in an internal collection. A public function in
the lexer provides access to parsing expressions generated from the string tokens present
in this collection.

6.4.1.2 Grammar

The grammar layer implements the F# PEG grammar resulting from the BNF to PEG
transformation described in section 6.1. Some grammar rules have been grouped to
facilitate later AST generation in the parsing layer like described in section 6.2.

The grammar layer consists of approximately 210 non-terminal parsing expressions
and references parsing expressions from the lexer. The grammar layer can in conjunction
with the lexer match all valid language constructs. In its matching result the majority
of the available information about the parse tree is preserved to allow further post-
processing.

6.4.1.3 Parser

By inheriting from the grammar layer, specific parsing expression functions can be
overridden and their results can be transformed into a desired form. We use this approach
to generate F# AST nodes by transforming the matching results based on the post-
processing ideas described in subsection 6.2.3. By overriding 62 parsing expression
functions of the overlying grammar layer, we are able to generate the AST nodes of all
F# expressions and basic F# script and class definitions.

6.4.2 Left recursion detection
We propose two different approaches for detecting left recursion in PetitParser grammars.
The first approach is a tool that detects left recursion before parsing is performed (static
algorithm). Second we propose an extension to the PetitParser core that allows on-the-fly
left recursion detection while parsing (dynamic algorithm).

The left recursion detection algorithm can be derived from the definition of left
recursion: PetitParser grammars are composed into a graph like structure where each
vertex is a parsing expression. Left recursion was defined in section 2.5 as applying
a specific parsing expression at a given position on an input stream indefinitely. If a
parsing expression succeeds, it may consume some input and change the position inside
the input stream. To detect left recursion in parsing expressions we are therefore looking
for cycles inside the grammar graph where the recurring parsing expression is connected

CHAPTER 6. IMPLEMENTATION OF A PEG-BASED F# PARSER 42

through a chain of potentially non-consuming parsing expressions. Non-consuming
parsing expressions are parsing expressions matching ε as well as and- and not- predicate
parsing expressions.

6.4.2.1 Static algorithm

The idea described above can be translated into the following left recursion conditions
for the different composed parsing expression types described in Table 4.2. Traversing
the graph beginning from the starting parsing expression while maintaining a set of
visited non-consuming parsing expressions (open set), a parsing expression contains left
recursion if it was added to the open set earlier or one of the following parsing expression
type specific conditions is satisfied:

Parsing expression type Left recursion condition

Sequence First consuming parsing expression in the sequence
contains left recursion given the current open set

or
Sequence begins with one or multiple non-consuming
parsing expressions and any of them is left recursive
given the current open set

or
Any of the remaining parsing expression is left recur-
sive given a new, empty open set

Ordered choice Any of the contained parsing expressions is left recur-
sive given the current open set

One-or-more Encapsulated parsing expression is left recursive
given the current open set

Non-consuming (Zero-
or-more, Optional, And-
predicate, Not-predicate)

Encapsulated parsing expression contains left recur-
sion given the current open set

Table 6.1: Left recursion conditions per parsing expression type

To ensure the check for left recursion terminates after a finite number of steps, a set of
processed parsing expressions is kept. We refer to this set as the closed set. When a parser
doesn’t contain left recursion it is added to the closed set. The closed set is used as a
premature recursion exit condition to prevent the check for left recursion more than once.

CHAPTER 6. IMPLEMENTATION OF A PEG-BASED F# PARSER 43

When a parser is checked for left recursion that is not part of the closed set, the open
set (all parsers that didn’t consume any symbols of the input stream) represents the left
recursion context: If the parser itself or any of its non-consuming left-side descendants
are present in the open set, left recursion is present.

The implementation of the described algorithm can be found in appendix subsec-
tion B.7.1. A PetitParser grammar can be checked for left recursion occurrence in linear
time as our algorithm checks every parsing expression present in the PEG only once.

6.4.2.2 Dynamic algorithm

Ad-hoc left recursion detection during PetitParser parsing is possible by keeping track
of the current parsing context and the position in the stream. If the same parsing
context occurs in the same position in the input multiple times, left recursion is present.
subsection B.7.1 lists the implementation of the described dynamic left recursion check.
Although the idea of the dynamic algorithm may be more simplistic and natural than its
static counterpart, significant performance and space overhead results from storing the
context and input position pair in every parsing step.

6.4.2.3 Static vs. dynamic left recursion detection

While the static implementation does the job it is designed for, it needs to be triggered
by the developer after grammar changes prior to parsing, to detect left recursion. The
dynamic implementation we propose has the advantage of being relatively simple, well
incorporated into the PetitParser core and seamless for developers to use. Unfortunately
the performance penalty it introduces and the fact that itFLs left recursion detection
depends on the parsing input2 doesn’t make up for its advantages over the static im-
plementation. To combine the advantages of both static and dynamic implementation,
the static implementation may be triggered automatically during the first parse with a
PetitParser grammar.

6.4.3 F# AST extraction
Our F# AST extractor is based on the official F# Open Edition Compiler implementation.
Its output, a textual AST representation of F# code, can be used to validate independent
F# parser implementations.

The Open Edition of the F# Compiler3 contains a compiler services namespace in its
core library exposing partial access to the parsing and compiling pipeline. An overview

2PEGFLs ordered choice chooses the first matching parse tree. A PEG therefore doesn’t necessarily
traverses a parse path containing left recursion during parsing if one or more left recursions are present in
the grammar.

3https://github.com/fsharp/fsharp/tree/fsharp_30

https://github.com/fsharp/fsharp/tree/fsharp_30

CHAPTER 6. IMPLEMENTATION OF A PEG-BASED F# PARSER 44

of the exposed functionality is listed in subsection B.6.1.
We use the F# Compiler Services API to access the untyped AST from F# code,

traverse the AST and produce a textual representation of the AST that can be used to
validate our parser implementation.

The AST is encoded into a textual representation. Each node has an identifier and one
or multiple values inside brackets. The AST is therefore encoded in nested parenthesised
expressions as can be seen in Listing 14, representing the F# expression A + B * C .

PFSApp(PFSApp(PFSIdent(operator(+)),PFSIdent(A)),PFSApp(
PFSApp(PFSIdent(operator(*)),PFSIdent(B)),PFSIdent(C)))

Listing 14: Textual representation of the AST nodes of the expression A + B * C

Our F# AST extraction implementation is publicly available on GitHub4. Ap-
pendix section B.5 provides more information about the F# Compiler Services and
how to install and use the F# AST extractor.

4https://github.com/mkubicek/FSharpAST

https://github.com/mkubicek/FSharpAST

7
Implementation effort

Although the difficulties of implementing a PEG-based parser from a BNF grammar
described in chapter 5 are to some extent interleaving, in this chapter we classify them
based on the manual effort and the possibility for tool support and/or automatability.
Table 7.1 gives an overview of the categorized implementation difficulties.

Problem Tool support Manual effort

BNF to PEG
Left recursion removal medium1 high
Ordered choice low moderate

CST to AST
Embedding AST structure - high
Redundancy removal medium1 high
Post-processing - low

PetitParser environment
Left recursion handling high high
Parsing performance medium1 high2

Table 7.1: Problem classification

1Estimated
2Based on the effort for grammar redundancy removal

45

CHAPTER 7. IMPLEMENTATION EFFORT 46

7.1 BNF to PEG
In this section we discuss the implementation effort of a pure PEG grammar based on a
BNF grammar definition.

7.1.1 Left recursion removal
Application of the described left recursion removal algorithm is straightforward but
requires certain effort. Performed by hand it is easy to lose focus when introducing
intermediate rules for the nearly 30 direct left recursion occurrences present alone in the
F# expression BNF definition. Accidentally introduced indirect left recursion can be
hard to find in a large grammar hierarchy without tool support.

Tool support In subsection 2.5.5 we describe in pseudocode how left recursion can be
eliminated. We did not implement the described algorithm to investigate the automata-
bility of the process but assume its practicability as we applied it manually in a large
number of cases. Although an automatic approach might be feasible, it obscures the
grammar considerably as new intermediate rules are being introduced automatically by
the process as shown in subsection 6.1.1. The process of manual left recursion removal
benefits from PetitParserFLs functionality to visualise grammars as graphs, providing an
overall view on the grammar hierarchy.

Manual effort As we performed the process with foresight of later AST structuring,
our left recursion removal effort estimation is obscured. However we estimate the effort
rather high, because the structural differences between a grammar and its left recursion
free counterpart worsen the comprehensibility and thus complicating the process. Left
recursion removal resulted in the introduction of approximately 45 new intermediate
rules.

7.1.2 Ordered choice
PEGs ordered choice requires a BNF grammarFLs rules to be shifted based on their
relative precedence. We found it difficult to match the formally described BNF grammar
rules with the informally described precedence of the F# specification. As grammar
restructuring can easily break the delicate order of grammar rules, postponing of ordered
choice related grammar changes to the very final PEG tweaking steps can save time
during development. Especially the embedding of AST grouping into the grammar is a
major intervention performed on a grammar and has the tendency to devastate previous
ordered choice related modifications.

CHAPTER 7. IMPLEMENTATION EFFORT 47

Tool support Again PetitParserFLs functionality to visualise grammars as graphs
assists the developer in this step. We do not see any need to support the developer further
due to the low complexity of this implementation step.

Manual effort Rule shifting to comply with ordered choice isn’t a complex transforma-
tion but results in moderate effort due to the large number of grammar rule arrangements
and the fact that ordered choice related adjustments are often required after other grammar
modifications.

7.2 CST to AST
Difficulties originating from the generation of the AST from a CST are discussed in this
section.

7.2.1 Embedding AST structure
The specified F# BNF grammar doesn’t reflect its AST structure defined by the official
F# language implementation. Matching of the grammar rules to AST structure benefits
from prior F# coding experience and requires study of the available source code.

Tool support We do not see any possible automation nor tool support option for this
step as the relation between grammar rules and AST is not formally described.

Manual effort As grammar rules differ after left recursion removal and ordered choice
refactoring from the original BNF definition, embedding an AST structure into the PEG
grammar requires high manual effort to match the AST nodes with the corresponding
grammar rules and re-group them if necessary. Introduction of described redundancies
is very probable and previous ordered choice arrangements are hard to retain due to the
invasive modifications. For each AST node this step introduces a new intermediate rule.
In our case approximately 40 new intermediate AST rules have been added.

7.2.2 Redundancy removal
A precondition for this step is knowledge about the grammar rules precedence and a
solid instinct for the grammar as it is easy to lose track of the large grammar structure.
Also, careful test driven development reduces the risk of introducing potentially hard to
find bugs in the PEG like subtle but wrong parse path changes.

CHAPTER 7. IMPLEMENTATION EFFORT 48

Tool support PetitParserFLs grammar visualisation is once again a great aid to present
parsing expression chains at a glance. Adaption of AST structure in the previous step
has resulted in many partially identical sequences throughout the grammar. We believe
those sequences might be identified by a tool to assist the developer by proposing the
next chain link.

Manual effort As the grammar has to be modified for the most part in this step, the
manual effort to perform redundancy removal through chaining is high. The total number
of parsing expressions remains untouched after this step.

7.2.3 Post-processing
Ideally the need for post-processing for the generation of AST nodes from a CST is as low
as possible after incorporation of the AST structure into the PEG. Whenever the internal
AST arrangement deviates in a way that cannot be incorporated well into, or introduces
comparatively high impact on the comprehensibility of a PEG, post-processing provides
a good alternative.

Tool support We did not observe any automatable processes nor the possibility for
tool support in post-processing as post-processing requirements differ widely depending
on grammar constructs.

Manual effort Our endeavour to incorporate AST structure into the PEG resulted
in lower efforts to generate AST nodes. We couldn’t avoid post-processing in some
instances but the effort required for implementation rather was low thanks to previous
rule grouping based on AST structure.

7.3 PetitParser environment
In this section we discuss the main problems we encountered during implementation of
our parser in PetitParser.

7.3.1 Parsing performance
We observed parsing time degeneration during the development of our PEG based parser
in the order of several magnitudes due to redundancies in the PEG specification. Redun-
dancies in a PEG cause parsing inefficiencies as described in subsubsection 6.2.1.1.By
applying the parsing expression chaining technique described in subsection 6.2.2, we
were able to improve the parsing performance without the use of PetitParser memoization.

CHAPTER 7. IMPLEMENTATION EFFORT 49

Tool support Memoization can be useful when optimisation of a grammar is too
complex. PetitParserFLs parsing profiling functionality offers assistance in the discovery
of performance bottlenecks. PetitParserFLs profiling capability could be further enhanced
by monitoring the parsing process and informing the PEG developer about extensive
parsing expression applications at a given position of the input.

Manual effort As performance bottlenecks are mostly caused by grammar structure
deficiencies, the effort to remove them is identical to the effort of grammar redundancy
removal, described in subsection 7.2.2.

7.3.2 Left recursion handling
PetitParser, like other PEG based parsers can not handle left recursion. Even worse left
recursion occurring during parsing causes crashes of PetitParserFLs hosting environment
we used during our study. The left recursion detection tool we introduced in subsec-
tion 6.4.2 therefore proved essential during our parser development in PetitParser.

Tool support Our left recursion detection tool might be automated to warn the devel-
oper of left recursion, even before it causes an unsuccessful parse attempt. We consider
the benefits of left recursion detection tools in general for PetitParser developers as high
due to the described side effects.

Manual effort The effort of dealing with left recursion in a PetitParser grammar is
high as not only the input matching fails but in our case also crashed the development
environment completely.

8
Conclusion

In this work we have implemented a PEG parser based on a BNF specification with
supplemental documentation. We have divided the implementation into several steps and
we have classified effort to implement each of these steps.

We have identified left recursion elimination as a strenuous and the only step in the
development process of our PEG parser which depends solely on the BNF language
definition and not on supplemental documentation. PEGFLs ordered choice implied
rule re-ordering (to comply with priority requirements of language constructs) results
in moderate effort one is faced with throughout the development process. AST inspired
re-grouping of grammar rules results in a high manual effort and may break established or-
dered choice settings and introduce new left recursion but facilitates later post-processing
for AST generation at a large scale.

Based on these observations, the general implementation effort is reduced when
grammar rules are grouped according to AST structure first, then left recursion is removed,
later ordered choice prioritisation of language constructs is set and finally parsing results
are post-processed to generate AST output.

We have seen that BNF supplemental language documentation is responsible for a
great extent of the overall parser implementation effort. As traditional parser implementa-
tions have to deal with same challenges posed by supplemental language documentation
but are in most cases able to deal with left recursion, we consider the transformation
to a left recursion free grammar form as the most significant overhead in PEG parser
development compared to development of traditional parsers.

50

A
Appendices

A.1 F# AST
In this section we document the AST nodes created by the F# parser. The definition of
the F# AST can be found in the Microsoft.FSharp.Compiler.Ast namespace in the
ast.fs file1.

A.1.1 Expression nodes
Relevant expression CFG rules are listed in the F# specification [1, p.272].

Paren

(expr)
A parenthesized expression.

1https://github.com/fsharp/fsharp/tree/fsharp_30/src

51

https://github.com/fsharp/fsharp/tree/fsharp_30/src

APPENDIX A. APPENDICES 52

Quote

<@ expr @>
<@@ expr @@>

Quoted expressions are expressions that
are delimited in such a way that they are
not compiled as part of the main program
but instead are compiled into an object.
They are part of the code quotations lan-
guage feature which enables generation
of an abstract syntax tree that represents
F# code. This AST later can be traversed
and processed according to the needs of
an application.

Const

true
false
123

Represents constants. See subsec-
tion A.1.3.

Typed

expr : <typename>
Binds a type information to an expression.
The F# compiler deduces the exact type
for all constructs during compilation. If
there is not enough information for the
compiler to deduce a type, additional type
information is required provided by this
type annotation.

Tuple

(1, 2.0, "three")
Grouping of unnamed, ordered values,
possibly of different types.

ArrayOrList

[e1; ...; en]
[| e1; ...; en |]

Represents arrays and lists of data ele-
ments all of the same type.

APPENDIX A. APPENDICES 53

Record

{ driver="Elon"; brand="
Tesla" }

Simple aggregations of named values.

New

new Car(...)
Constructor to create and initialise class
and structure objects.

ObjExpr

{ new ... with ... }
Object expressions are expressions creat-
ing new instances of dynamically created,
anonymous object types based on existing
base types or sets of interfaces.

While

while test-expression do
expr

Iterative execution/looping while the spec-
ified test condition is true.

For

for i = expr to expr do
expr

For loop.

ForEach

for pattern in
expr_or_range do expr

For-each loop.

ArrayOrListOfSeqExpr

[expr] // list
[| expr |] // array

Collection of consecutive data elements of
the same type. Lists in F# are immutable
whereas arrays are mutable.

APPENDIX A. APPENDICES 54

CompExpr

{ expr }
Computation expressions provide a syn-
tax for writing computations that can be
sequenced and combined using control
flow constructs and bindings.

Lambda

fun pat -> expr
Lambda expressions define anonymous
functions in F#.

MatchLambda

function pat1 -> expr
| ...
| patN -> exprN

Match lambdas provide syntactic sugar
for match expressions(see section A.1.1)
used on functions.

Match

match expr with
pat1 -> expr
| ...
| patN -> exprN

Match expressions allow branching con-
trol based on comparison of an expression
with a set of patterns.

Do

do expr
Do bindings execute code without the
requirement of defining a function or a
value. Expressions in a do binding must
return unit, see section A.1.3.

Assert

assert expr
Assert expressions are a debugging fea-
ture used to test an expression when in
debug mode.

APPENDIX A. APPENDICES 55

App

f x
Application of expressions.

TypeApp

expr<type1,...,typeN>
Generic type application on expressions.

LetOrUse

let pat = expr in expr
let f pat1 .. patN = expr

in expr
let rec f pat1 .. patN =

expr in expr
use pat = expr in expr

Variable and function binding constructs.

TryWith

try expr with pat -> expr
The try..with expression is used for han-
dling exceptions. The with segment pro-
vides pattern matching (see section A.1.1)
functionality on thrown exceptions.

TryFinally

try expr finally expr
Similar to try..with, section A.1.1, but pro-
vides a finally block instead of exception
matching typically used for clean up of
resources allocated in the try block.

Lazy

lazy expr
Lazy expressions are computations that
are evaluated as soon as the result is re-
quired (instead of immediate evaluation).

APPENDIX A. APPENDICES 56

Sequential

expr; expr
Represents the sequential execution of
one expression followed by another.

IfThenElse

if expr then expr else expr
if expr then expr

Conditional expression to run different
branches of code depending on a boolean
expression given.

Ident

ident
Representing identifier patterns.

LongIdent

ident.ident...ident
Long identifier

LongIdentSet

ident.ident...ident <- expr
Assignment of values to an identifier.

DotGet

expr.ident.ident
Value retrieval of a property on an expres-
sion.

DotSet

expr.ident...ident <- expr
Value setting on a property on an expres-
sion.

DotIndexedGet

expr.[expr,...,expr]
Value retrieval on a collection expression.

APPENDIX A. APPENDICES 57

DotIndexedSet

expr.[expr,...,expr] <-
expr

Value setting on an collection expression.

TypeTest

expr :? type
Checking whether an expression contains
a specific type.

Upcast

expr :> type
Upcast of an object expression.

Downcast

expr :?> type
Downcast of an object expression.

InferredUpcast

upcast expr
Upcast of an object expression based on
inferring its super class.

InferredDowncast

downcast expr
Downcast of an object expression to a
type that is inferred from program con-
text.

Null

null
Null value. Normally not used in F# for
values or variables but defined for .NET
interoperability.

APPENDIX A. APPENDICES 58

A.1.2 Module declaration nodes

Let

module MyModule =
// top level let-binding
let topLevelName =

let nested1 = exp1
let nested2 = exp2
finalExpression

Top-level let binding, see section A.1.1.

Open

open System.IO
Opens a namespace.

Hash directive

#indent "off"
#load "library.fs"

Defines compiler directives.

Nested module

module MathStuff =
let add x y = x + y
let subtract x y = x -
y
// nested module
module FloatLib =

let add x y :float
= x + y

let subtract x y :
float = x - y

Represents modules inside modules.

APPENDIX A. APPENDICES 59

Do expression

open System
open System.Windows.Forms

let form1 = new Form()

[<STAThread>]
// top level do expression
do

Application.Run(form1)

Top-level do bindings are executed when
the overlaying module is initialised. The
do-keyword is required whereas it is op-
tionally in do expression bindings A.1.1.

A.1.3 Constant nodes
Relevant Constant CFG rules are listed in the F# specification [1, p.269]. For clarity of
presentation the following constants aren’t listed as their definitions are identical to other
programming languages: Bool, SByte, Byte, SByte, Int16, UInt16, Int32, UInt32, Int64,
UInt64, IntPtr, UIntPtr, Single, Double, Char, Decimal

Unit

()
Every F# expression must evaluate to a
value. The unit type indicates the absence
of a specific value. It acts as a placeholder
when no other value exists.

B
Anleitung zu Wissenschaftlichen

Arbeiten: Parsing F# in PetitParser

In this chapter we describe how our PetitParser F# parser can be installed, used and what
is under the hood. Finally we describe the implementation of the tool for left recursion
detection in PetitParser grammars.

B.1 Installation
The Pharo Smalltalk environment1 virtual machine is required to run the pre-configured
PetitParser F# parser Moose2 image. The following resources are required:

1. Pre-configured PetitParser F# parser Moose image3

2. Pharo40.sources file4

3. Pharo Virtual Machine

• For Linux5

1http://pharo.org/
2http://www.moosetechnology.org/
3https://github.com/mkubicek/FSharpAST/blob/master/files/moose_

suite_5_1_PetitFSharp.image
4http://files.pharo.org/get-files/40/sources.zip
5http://files.pharo.org/get-files/40/pharo-linux-stable.zip

60

http://pharo.org/
http://www.moosetechnology.org/
https://github.com/mkubicek/FSharpAST/blob/master/files/moose_suite_5_1_PetitFSharp.image
https://github.com/mkubicek/FSharpAST/blob/master/files/moose_suite_5_1_PetitFSharp.image
http://files.pharo.org/get-files/40/sources.zip
http://files.pharo.org/get-files/40/pharo-linux-stable.zip

APPENDIX B. PARSING F# IN PETITPARSER 61

• For Mac6

• ForWindows7

B.2 Usage
The Moose PetitParser F# parser image starts up with several open windows whose
purpose is to demonstrate the major functionality of PetitParser, our implementation and
give a quick start to novices in Pharo Smalltalk and PetitParser.

The windows annotated in Figure B.1 are shown when starting the image:

1. Pharo Playground parsing examples

(a) Inspecting an AST parsing result

(b) Output an AST parsing result in encoded text form

(c) Enabling the PetitParser debugger

2. Class Browser containing the implementations and tests of our PetitParser F#
parser and left recursion detection tool

Figure B.1: Starting up the Moose PetitParser F# parser image
6http://files.pharo.org/get-files/40/pharo-mac-stable.zip
7http://files.pharo.org/get-files/40/pharo-win-stable.zip

http://files.pharo.org/get-files/40/pharo-mac-stable.zip
http://files.pharo.org/get-files/40/pharo-win-stable.zip

APPENDIX B. PARSING F# IN PETITPARSER 62

The Pharo Playground examples can be run by pressing the button highlighted in
Figure B.2.

Figure B.2: Running Pharo Playground code

For a more detailed description of the possibilities Pharo Smalltalk, Moose and
PetitParser offer, we suggest the following readings:

• Pharo by example, general introduction to Pharo Smalltalk
http://PharoByExample.org/

• Deep into Pharo, explains advanced Pharo Smalltalk concepts and covers also
PetitParser
http://www.deepintopharo.com/

• The Moose Book, explains the Moose platform for software and data analysis.
Contains a useful PetitParser chapter
http://www.themoosebook.org/

B.3 Under the hood
It can be beneficial to divide parsers in PetitParser into multiple layers in order to keep
the parsing project clear and tidy. In this section we provide some insights into the
parser structure we implemented. A dedicated lexical layer ensures that keywords,
identifiers, operators, literals and noise tokens (e.g. comments) are well separated and
can be accessed while focusing on syntactical grammar rules and semantical parsing.
The grammar layerFLs sole purpose is to implement non-terminal grammar rules without
having to worry about terminal parsers. The results of the grammar layer then can be
transformed into an AST structure by a parser layer.

B.3.1 Lexicon
The responsibility of the lexical parser is to separate terminal symbols from the syntactical
parser. Terminal symbols in programming language grammars are keywords, identifiers,

http://PharoByExample.org/
http://www.deepintopharo.com/
http://www.themoosebook.org/

APPENDIX B. PARSING F# IN PETITPARSER 63

operators and literals. Other unwanted constructs (e.g. comments, compiling statements,
attributes,..) can be defined in the lexer and consumed or trimmed alongside with other
terminal symbols. Therefore the grammar layer of the parsing project can reference
terminal symbols without re-defining them multiple times.

Keywords It is important to ensure that identifiers and keywords are not confused.
Therefore it is required to store all keywords in a central place that enables distinction of
identifiers and keywords using a predicate parser.

The number of Smalltalk instance variables is limited to 255 due to hosting environ-
ment restrictions. PPCompositeParser exposes defined parsers using instance variables.
The following explains a practice that ensures keyword terminal parser accessibility and
central definition without sacrificing instance variables:

We store all keyword terminal parsers in an instance variable called keywords which
is a dictionary where the keywordFLs name is the key and the corresponding value is the
terminal parser parsing the keyword.

As PPCompositeParser instantiates all instance variable as PPUnresolvedParser
the keywords instance variable has to be added to the class side ignore list:

1 PPLanguageLexicon class >> ignoredNames
2 ˆ #('keywords')

To access the keyword terminal parsers we define an accessor method tokenFor:
which takes a string as an argument and returns a parser from the keywords dictionary:

1 PPLanguageLexicon >> tokenFor: aString
2 ˆ (keywords at: aString)

A parsing expression that matches all defined keywords from the keywords dictionary
can now be defined:

1 PPLanguageLexicon >> keyword
2 | keywordParsers |
3 keywordParsers := keywords keysSortedSafely
4 collect: [:eachKey | keywords at: eachKey].
5 ˆ self asToken: ((keywordParsers reduce: [:a :b | a / b]))

Finally, the keywords dictionary has to be initialised.

1 PPLanguageLexicon >> initialize
2

3 super initialize.
4 self initializeKeywords.
5

6 PPLanguageLexicon >> initializeKeywords
7

8 | values |
9 keywords := Dictionary new.

APPENDIX B. PARSING F# IN PETITPARSER 64

10 values := #('abstract' 'assert'
11 'void' 'volatile' 'while').
12

13 values do: [:eachKeyword |
14 keywords at: eachKeyword
15 put: (PPUnresolvedParser named:
16 ('keyword',
17 eachKeyword first asUppercase asString,
18 eachKeyword allButFirst))
19].
20

21 keywords keysAndValuesDo: [:key :value |
22 (keywords at: key) def: (key asParser , #word asParser not)]

Identifiers Now that all keywords are accessible via PPLanguageLexicon >> keyword

accessor, it is easy to write a parsing expression that matches just valid identifiers, ignor-
ing keywords.

1 PPLanguageLexicon >> identifier
2 ˆ ((keyword, #space asParser) / keywords end) not,
3 #letter asParser, #word asParser star

Trimming Source code is often annotated by comments which may span over multiple
lines. Some computer languages even allow inline comments to be placed in between
any language tokens. As handling comments around each language token would violate
the DRY principle8 it is recommended to remove them centrally by using the trimming
action parser (see section 4.3). For example the surroundings of keywords might be
trimmed by adjusting the TokenFor: method from section B.3.1.

First a parsing expression has to be defined matching language comments:
1 PPLanguageLexicon >> comment
2 ˆ '//' asParser, #newline negate star

To add more ignorable content in future, we group such constructs in a parsing
expression called ignorable:

1 PPLanguageLexicon >> ignorable
2 ˆ comment / #space asParser

Now we extend the tokenFor method that returns keywords and other terminal
symbols to trim the ignorable content around the valid terminal tokens:

1 PPLanguageLexicon >> tokenFor: aString
2 ˆ (keywords at: aString) trim: ignorable

8Acronym for the “Don’t repeat yourself” principle which was formulated by Andy Hunt as “Every
piece of knowledge must have a single, unambiguous, authoritative representation within a system”

APPENDIX B. PARSING F# IN PETITPARSER 65

B.3.2 AST
To generate AST nodes from matched input it is necessary to define a data structure
to accommodate the AST. It is common practice to define a base class for AST nodes
implementing some basic functions. We present a possible implementation that offers
easy adding of child nodes with runtime check and a way to represent its values encoded
in text.

We first define a base AST node object with a variable called children that will later
hold the subsidiary AST nodes:

1 Object subclass: #PFSASTNode
2 instanceVariableNames: 'children'
3 classVariableNames: ''
4 category: 'FSharp-AST'

The children collection is initialised in the initialise method:
1 PFSASTNode >> initialize
2 children := OrderedCollection new

An accessor method is defined for the children collection:
1 children
2 ˆ children

An method is defined that answers wether the current AST node is a valid FSharpN-
ode:

1 PFSASTNode >> isFSharpNode
2 ˆ true

Now a method that adds AST nodes to the current node is implemented, which first
checks whether the added node really is of the accepted type:

1 PFSASTNode >> addChild: node
2 node isNil
3 ifTrue: []
4 ifFalse:[self assert: node isFSharpNode.
5 self children add: node.]

To add several child nodes at once, a new method is created:
1 PFSASTNode >> addChildren: nodes
2 nodes do: [:node | self addChild: node]

In order to access the children nodes of a given node, a dedicated accessor is defined:
1 PFSASTNode >> children
2 ˆ children

Sometimes a node type contains just one child. We provide a dedicated accessor, that
ensures the presence of only one child:

APPENDIX B. PARSING F# IN PETITPARSER 66

1 PFSASTNode >> child
2 self assert: children size = 1.
3 ˆ children first

Similarly we define a shortcut accessor for the first and second children:

1 PFSASTNode >> firstChild
2 ˆ children at: 1

1 PFSASTNode >> secondChild
2 ˆ children at: 2

Finally we can define a method, that recursively enumerates all children and collects
their textual representation maintaining their nesting levels with the help of parentheses:

1 PFSASTNode >> toAstString
2 | result |
3 result := (self class name).
4 result := result copyFrom:1 to: (self class name size).
5 children size > 0
6 ifTrue: [
7 result := result,'('.
8 children do: [:child | result := result,(child toAstString),','].
9 result := result copyFrom:1 to: (result size -1).

10 result := result,')'.
11].
12 ˆ result

B.4 Validation
Since even minor changes may break a parser, test-driven development facilitates fast
discovery of bugs. The PetitCompositeTest class allows testing of each parsing
expression separately.

As a PetitParser grammar instance answers a message containing the name of a
defined parsing expression with the corresponding parsing function, testing a PetitParser
grammar is not any different from testing Smalltalk code.

Testing a PetitParser grammar is done by subclassing PPCompositeParserTest:

1 PPCompositeParserTest subclass: #PPFSharpGrammarTest
2 instanceVariableNames: ''
3 classVariableNames: ''
4 category: 'FSharp-Tests'

Then, the test case class has to be linked to the PetitParser grammar we want to test,
for example PPFSharpGrammar:

APPENDIX B. PARSING F# IN PETITPARSER 67

1 parserClass
2 ˆ PPFSharpGrammar

To test a PetitParser grammar parsing expression, a new method simply has to be
implemented which defines the test input and selects the corresponding grammar rule,
PPFSharpGrammar >> exprLet:

1 testExprLet
2 self parse:
3 'let x = 123 in
4 y' rule:#exprLet.

By using the test-prefix in test method names, corresponding parsing expression
grammar methods not only show the test status but also allow direct test execution. This
enables the developer to validate changes quickly.

APPENDIX B. PARSING F# IN PETITPARSER 68

Figure B.3: Testing the ExprLet parsing expression of the PPFSharpGrammar

Figure B.4: Representation of the test result from the test defined in Figure B.3 during
browsing of the corresponding parsing expression

APPENDIX B. PARSING F# IN PETITPARSER 69

B.5 F# AST extractor
In this section we explain the F# AST extractor we used to explore the F# AST structure
and validate our parser implementation. Our tool is built using the F# Compiler Services
Untyped AST processor explained in subsection B.6.2.

B.5.1 Installation
The implementation is available from the following GitHub repository: https://
github.com/mkubicek/FSharpAST

There are three ways to get the extraction tool up and running:

• Run the pre-compiled binary located in the bin folder in a Microsoft Windows
.NET environment or on unix using Mono9.

• Open and compile the project file in a Xamarin IDE10. The necessary F# Compiler
Service library will be added into the project automatically from a NuGet package.

• To compile the F# AST extractor project from scratch, the following dependencies
have to be installed prior:

1. F# Compiler, Core Library & Tools11

2. F# Compiler Service12

B.5.2 Usage
The AST extraction tool supports the two AST extraction modes: simple extraction and
extended let binding extraction. Whereas simple extraction generates the whole textual
encoded AST output from any parseable F# input, the extended let binding extraction
generates the ASTs of the largest let binding fragments present in the input code.

B.5.2.1 Simple AST extraction

Simple AST extractionFLs purpose is to parse F# input using the official F# compiler
and output a textual representation of the generated AST. Simple AST extraction can be
performed by passing the simple parameter to the extraction tool:
FSharpASTExtractor.exe simple <inputFile> <outputFile>

9http://www.mono-project.com/docs/getting-started/install/
10https://www.xamarin.com/platform
11https://github.com/fsharp/fsharp
12https://github.com/fsharp/FSharp.Compiler.Service

https://github.com/mkubicek/FSharpAST
https://github.com/mkubicek/FSharpAST
http://www.mono-project.com/docs/getting-started/install/
https://www.xamarin.com/platform
https://github.com/fsharp/fsharp
https://github.com/fsharp/FSharp.Compiler.Service

APPENDIX B. PARSING F# IN PETITPARSER 70

For example, FSharpASTExtractor.exe simple input.fs out.txt will
write the text encoded AST shown in Listing 15 to a file named out.txt from the input
file containing the F# code listed in Listing 16.

PFSSynModuleOrNamespace(PFSLet(PFSIfThenElse(PFSParen(
PFSConst),PFSParen(PFSLetOrUse(PFSApp(PFSApp(PFSIdent(
operator),PFSApp(PFSIdent(fib),PFSParen(PFSApp(PFSApp(
PFSIdent(operator),PFSIdent(n)),PFSConst)))),PFSApp(
PFSIdent(fib),PFSParen(PFSApp(PFSApp(PFSIdent(operator)
,PFSIdent(n)),PFSConst))));PFSIdent(result))))),
PFSDoExpr(PFSForEach(PFSApp(PFSApp(PFSApp(PFSIdent(
printfn),PFSConst),PFSIdent(i)),PFSParen(PFSApp(
PFSIdent(fib),PFSIdent(i)))))))

Listing 15: Text encoded AST generated by the simple mode of the AST extraction tool

1 let rec fib n =
2 if (n=1||n=2) then
3 1
4 else
5 let result = fib(n-1)
6 + fib(n-2)
7 result
8

9 for i in 1 .. 10 do
10 printfn "%d:%d" i (fib i)
11

Listing 16: Content of input.fsharp file, a F# program to print a Fibonacci sequence

B.5.2.2 Extended let binding AST extraction

Extended let binding extraction is useful when the AST of deeply nested F# code is
studied as it splits the the output based on the largest let bindings it contains. Complex
F# code input can be split into manageable pieces.

APPENDIX B. PARSING F# IN PETITPARSER 71

File: #(./fsharp3sample-25592/SampleProviders/Samples.
Hadoop/Helpers.fs)#

Code: #(let theProxyProcessAgent = startProxyProcessAgent
())#

AST: #(PFSLet(PFSApp(PFSIdent(startProxyProcessAgent),
PFSConst)))#

ModuleLevel: #(True)#

Listing 17: Text encoded AST and corresponding code extracted by the extended let
binding” mode of the AST extraction tool

Each extracted code fragment contains the information shown in Listing 17 about its
origin (path to F# source file), the code fragment itself, textual representation of the AST
it symbolises and additional information whether the code fragment is a module level
statement or a nested statement.

Extended let binding AST extraction can be performed by executing the extraction
tool with the three parameters
extendedLet <inputPath> <outputFile> .
In case the inputPath resolves to a directory, our tool will recursively extract F# code
fragments from all available .fs or .fsx files.

B.6 F# ecosystem
F# is being developed by the F# Software Foundation13, Microsoft14 and open source
contributors. The F# project comes with the Apache Licence 2.0 15 allowing the use of the
project for a wide field of application. Most new contributions to the F# language first go
to MicrosoftFLs Visual F# tools repository16. This repository acts as the main repository
to ensure that MicrosoftFLs main package of F# for Windows includes any contributions
that are made and makes sure that the versions do not diverge. Contributions are then
merged into the open edition of the F# compiler17, maintained by the F# Software
Foundation. It provides an open source, cross-platform compiler for F#.

Multiple development tools exist for the F# programming language. Compiler,
compiler tools, core libraries and integrated development environments (IDEs) are
available for multiple platforms. Integrated development environments typically consist
of a source code editor, build automation and a debugger.

13http://www.fsharp.org
14http://www.microsoft.com/
15http://www.apache.org/licenses/LICENSE-2.0
16https://github.com/Microsoft/visualfsharp
17https://github.com/fsharp/fsharp/

http://www.fsharp.org
http://www.microsoft.com/
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/Microsoft/visualfsharp
https://github.com/fsharp/fsharp/

APPENDIX B. PARSING F# IN PETITPARSER 72

The Visual F# tools from Microsoft are fully integrated into the Microsoft Visual
Studio18, Microsofts own IDE for a growing number of programming languages and
multi-platform app development.

B.6.1 F# Compiler Services
The F# Compiler Services namespace of the F# core library contains some internal
functions used by the F# compiler. It exposes functionality for implementing F# language
bindings, additional tools based on the compiler and refactoring tools. The compiler
services package19 contains the following public API services:

Language tokenizer. Turns any F# source code into a stream of tokens. Useful
for implementing source code colorization and basic tools. Correctly handle nested
comments, strings etc.

Untyped AST processor. Allows accessing the untyped abstract syntax tree
(AST). This represents parsed F# syntax without type information and can be used
to implement code formatting and various simple processing tasks.

Editor (IDE) services. Exposes functionality for auto-completion, tool-tips, pa-
rameter information etc. These functions are useful for implementing F# support
for editors and for getting some type information for F# code.

Signatures, types, and resolved symbols services. Many services related to type
checking return resolved symbols, representing inferred types, and the signatures
of whole assemblies.

Resolved expression services. Services related to working with type-checked
expressions and declarations, where names have been resolved to symbols.

Project and project-wide analysis services. The developer can request a check
of an entire project, and ask for the results of whole-project analyses such as
find-all-references.

F# interactive host environment. Allows calling F# interactive as a .NET library
from .NET code. The developer can use this API to embed F# as a scripting
language in his projects.

Hosting the F# compiler. Allows the developer to embed calls to the F# compiler.

18https://www.visualstudio.com
19http://fsharp.github.io/FSharp.Compiler.Service/

https://www.visualstudio.com
http://fsharp.github.io/FSharp.Compiler.Service/

APPENDIX B. PARSING F# IN PETITPARSER 73

File system API. The FSharp.Compiler.Service component has a global variable
representing the file system. By setting this variable the developer can host the
compiler in situations where a file system is not available.

B.6.2 F# untyped AST processor
The F# Compiler Services (see subsection B.6.1) offers the possibility to process
the untyped AST of arbitrary source code. It can be accessed by an instance of the
FSharpChecker found in the FSharp.Compiler.Service namespace. This type opens
a context for type checking and parsing of stand-alone F# script files or project files
with multiple source files. The FSharpChecker instance can perform an untyped parse.
Type-checking is performed at a later stage of the parsing process. Listing 18 shows
how the untyped AST can be obtained from some input files. The F# AST is defined
in the Microsoft.FSharp.Compiler.Ast namespace and can be traversed using the code
in Listing 19.20

1 #r "FSharp.Compiler.Service.dll"
2 open System
3 open Microsoft.FSharp.Compiler.SourceCodeServices
4

5 // Create an interactive checker instance
6 let checker = FSharpChecker.Create()
7

8 // Get untyped tree for a specified input
9 let getUntypedTree (file, input) =

10 // Get compiler options for the 'project' implied by a
single script file

11 let projOptions =
12 checker.GetProjectOptionsFromScript(file, input)
13 |> Async.RunSynchronously
14

15 // Run the first phase (untyped parsing) of the compiler
16 let parseFileResults =
17 checker.ParseFileInProject(file, input, projOptions)
18 |> Async.RunSynchronously
19

20 match parseFileResults.ParseTree with
21 | Some tree -> tree
22 | None -> failwith "Something went wrong during parsing!

"

20https://fsharp.github.io/FSharp.Compiler.Service/untypedtree.html

https://fsharp.github.io/FSharp.Compiler.Service/untypedtree.html

APPENDIX B. PARSING F# IN PETITPARSER 74

Listing 18: F# code to generate an AST using F# compiler services

1 #r "FSharp.Compiler.Service.dll"
2 open Microsoft.FSharp.Compiler.Ast
3

4 let rec traverseTree tree =
5 match tree with
6 | ParsedInput.ImplFile(implFile) ->
7 let (ParsedImplFileInput(_, _, _, _, _, modules,
8 _)) = implFile
9 traverseModules modules

10 | _ -> ()
11

12 and traverseModules modules =
13 for mod in modules do
14 let (SynModuleOrNamespace(_, _, decls, _, _, _, _)) =

mod
15 traverseDeclarations decls
16

17 and traverseDeclarations decls =
18 for declaration in decls do
19 match declaration with
20 | SynModuleDecl.Let(isRec, bindings, range) -> ()
21 | SynModuleDecl.<anyOtherNode>(..) -> DoSomething
22 | _ -> ()
23

24 and traverseSynExpr synExpr =
25 | SynExpr.Paren(synExpr1,i2,i3,i4) -> ()
26 | SynExpr.<anyOtherNode>(..) -> DoSomething
27 | _ -> ()

Listing 19: F# code to traverse an AST obtained by F# compiler services

B.7 Left recursion detection in PetitParser
In this section we present the concrete implementation of the left recursion algorithms
we describe in subsection 6.4.2.

APPENDIX B. PARSING F# IN PETITPARSER 75

B.7.1 Static PetitParser left recursion detection implementation
PPParser

The superclass PPParser defines default behaviour:
1 PPParser >> hasLeftRecursion
2 ˆ false

1 PPParser >> hasLeftRecursionOpen: set
2 ˆ false

1 PPParser >> hasLeftRecursionOpen: collection closed: set
2 ˆ false

1 PPParser >> isPotentiallyNonConsuming
2 ˆ false

PPDelegateParser
1 PPDelegateParser >> hasLeftRecursion
2 ˆ parser hasLeftRecursionOpen: (OrderedCollection new)
3 closed: IdentitySet new.

1 PPDelegateParser >> hasLeftRecursionOpen: set
2 ˆ parser hasLeftRecursionOpen: (OrderedCollection new)
3 closed: set.

1 PPDelegateParser >> hasLeftRecursionOpen: openCollection
2 closed: closedSet
3 (openCollection includes: self) ifTrue: [
4 openCollection add: self.
5 ˆ true
6].
7

8 (closedSet includes: self) ifTrue: [ˆ false].
9

10 openCollection add: self.
11 closedSet add: self.
12

13 ˆ (parser hasLeftRecursionOpen:
14 (openCollection copy) closed: closedSet)

PPAndParser
1 PPAndParser >> isPotentiallyNonConsuming
2 ˆ true

APPENDIX B. PARSING F# IN PETITPARSER 76

PPNotParser
1 PPNotParser >> isPotentiallyNonConsuming
2 ˆ true

PPOptionalParser
1 PPOptionalParser >> isPotentiallyNonConsuming
2 ˆ true

PPRepeatingParser
1 PPRepeatingParser >> isPotentiallyNonConsuming
2 ˆ min = 0

PPListParser
1 PPListParser >> hasLeftRecursion
2 ˆ self hasLeftRecursionOpen: OrderedCollection new
3 closed: IdentitySet new

1 PPListParser >> hasLeftRecursionClosed: set
2 ˆ self hasLeftRecursionOpen: OrderedCollection new
3 closed: set.

PPChoiceParser
1 PPChoiceParser >> hasLeftRecursionOpen: openCollection
2 closed: closedSet
3 (openCollection includes: self) ifTrue: [
4 openCollection add: self.
5 ˆ openCollection
6].
7

8 (closedSet includes:self) ifTrue:[ˆ false].
9

10 openCollection add: self.
11 closedSet add: self.
12

13 self children do: [:child |
14 | leftRecursion |
15 leftRecursion := (child hasLeftRecursionOpen:
16 (openCollection copy) closed: closedSet).
17 (leftRecursion) ifTrue: [ˆ true]].
18

19 ˆ false

APPENDIX B. PARSING F# IN PETITPARSER 77

PPSequenceParser
1 PPSequenceParser >> hhasLeftRecursionOpen: openCollection
2 closed: closedSet
3 | consumingParserEncountered |
4

5 (openCollection includes: self) ifTrue: [
6 openCollection add: self.
7 ˆ true
8].
9

10 (closedSet includes: self) ifTrue: [ˆ false].
11

12 openCollection add: self.
13 closedSet add: self.
14

15 consumingParserEncountered:= false.
16 self children do:
17 [:child |
18 | hasLeftRec |
19 (consumingParserEncountered not)
20 ifTrue: [
21 hasLeftRec := child hasLeftRecursionOpen:
22 (openCollection copy)
23 closed: closedSet.
24 (child isPotentiallyNonConsuming)
25 ifFalse: [consumingParserEncountered := true].
26]
27

28 ifFalse: [
29 hasLeftRec := child hasLeftRecursionOpen:
30 (OrderedCollection new)
31 closed: closedSet.
32].
33

34 (hasLeftRec) ifTrue: [ˆ true].
35].
36

37 ˆ false

Line 5-13: Keep track if the current parser occurred in the current traversal or if it
was already checked for left recursion

Line 16-36: Until the first true consuming parser appears, check the parser for left
recursion with a copy of the current open set. After the first consuming
parser is encountered, check with an empty open set as the parsers
subgraph still could contain left recursion.

APPENDIX B. PARSING F# IN PETITPARSER 78

B.7.2 Dynamic PetitParser left recursion detection implementation
PPParser

Note that only lines 14 to 17 and line 21 were added to detect left recursion while
performing PPParserFLs debug parsing.

1 PPParser >> enableDebug
2 | root newParser |
3 root := PPParserDebuggerResult new.
4 newParser := self transform: [:each |
5 each >=> [:context :continuation |
6 | result child pair |
7 child := PPParserDebuggerResult new
8 parser: each;
9 parent: root.

10 root := root children add: child.
11 child start: context position + 1.
12 child showChildren: each debuggerOutput.
13

14 pair := (context position -> each).
15 (context openSet includes: pair)
16 ifTrue: [self error: 'left recursion detected'].
17 context openSet add: pair.
18

19 result := continuation value.
20

21 context openSet remove: pair.
22

23 child end: context position.
24 root result: result.
25 root := root parent.
26 result
27]
28].
29

30 ˆ PPDebugParser on: newParser root: root.

Line 15: If context and position pair are known to the current context throw an error
as the parsing encountered a left recursion.

List of Figures

2.1 The Chomsky hierarchy. https://en.wikipedia.org/wiki/File:Chomsky-
hierarchy.svg. J. Finkelstein 2010, CC BY-SA 3.0 https://creativecommons.org/licenses/by-
sa/3.0/deed.en . 10

6.1 F# AST of the expression A+B ∗ C 37
6.2 F# AST of the expression A ∗B + C 37
6.3 AST representation of the F# if-elif-else block from Listing 13 39
6.4 PetitParser F# lexicon, grammar and parser implementation overview . 40

B.1 Starting up the Moose PetitParser F# parser image 61
B.2 Running Pharo Playground code . 62
B.3 Testing the ExprLet parsing expression of the PPFSharpGrammar . . . 68
B.4 Representation of the test result from the test defined in Figure B.3 during

browsing of the corresponding parsing expression 68

79

List of Tables

2.1 The grammar classes defined by the Chomsky hierarchy. 10
2.2 Meta-symbols and syntax rules of BNF like grammars 11
2.3 Composed parsing expressions, given any existing parsing expressions e,

e1 and e2 . 13

3.1 F# operator and expression priority and associativity, ordered by priority. 21

4.1 Subset of pre-defined PetitParser terminal parsers. 24
4.2 Subset of pre-defined PetitParser parser combinators. 24
4.3 Subset of pre-defined PetitParser action parsers. 25

6.1 Left recursion conditions per parsing expression type 42

7.1 Problem classification . 45

80

Bibliography

[1] F# 3.0 language specification. Technical report, September 2012.
http://fsharp.org/specs/language-spec/3.0/FSharpSpec-3.
0-final.pdf.

[2] Alfred V. Aho and Thomas G. Peterson. A minimum distance error-correcting
parser for context-free languages. SIAM Journal of Computing, 1:305–312, 1972.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison Wesley, Reading, Mass., 1986.

[4] John Warner Backus. The syntax and semantics of the proposed international
algebraic language of the Zurich ACM-GAMM conference. In Proceedings of the
International Conference on Information Processing, pages 125–132, 1959.

[5] Alexander Birman and Jeffrey D. Ullman. Parsing algorithms with backtrack. IEEE
Conference Record of 11th Annual Symposium on Switching and Automata Theory,
1970, pages 153–174, October 1970.

[6] Noam Chomsky. Three models for the description of language. IRE Transactions
on Information Theory, 2:113–124, 1956. http://www.chomsky.info/
articles/195609--.pdf.

[7] Bryan Ford. Packrat parsing: simple, powerful, lazy, linear time, functional pearl.
In ICFP 02: Proceedings of the seventh ACM SIGPLAN international conference
on Functional programming, volume 37/9, pages 36–47, New York, NY, USA,
2002. ACM.

[8] Bryan Ford. Parsing expression grammars: a recognition-based syntactic foundation.
In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 111–122, New York, NY, USA, 2004.
ACM.

[9] Attieh Sadeghi Givi. Layout sensitive parsing in the PetitParser framework. Bache-
lor’s thesis, University of Bern, October 2013.

81

http://fsharp.org/specs/language-spec/3.0/FSharpSpec-3.0-final.pdf
http://fsharp.org/specs/language-spec/3.0/FSharpSpec-3.0-final.pdf
http://www.chomsky.info/articles/195609--.pdf
http://www.chomsky.info/articles/195609--.pdf

BIBLIOGRAPHY 82

[10] Graham Hutton and Erik Meijer. Monadic parser combinators. Technical Report
NOTTCS-TR-96-4, Department of Computer Science, University of Nottingham,
1996.

[11] S.C. Johnson. Yacc: Yet another compiler compiler. Computer Science Technical
Report #32, Bell Laboratories, Murray Hill, NJ, 1975.

[12] Jan Kurš, Guillaume Larcheveque, Lukas Renggli, Alexandre Bergel, Damien
Cassou, Stéphane Ducasse, and Jannik Laval. PetitParser: Building modular
parsers. In Deep Into Pharo, page 36. Square Bracket Associates, September 2013.

[13] Jan Kurš, Mircea Lungu, and Oscar Nierstrasz. Top-down parsing with parsing
contexts. In Proceedings of International Workshop on Smalltalk Technologies
(IWST 2014), 2014.

[14] J. Levine. Flex & Bison: Text Processing Tools. O’Reilly Media, 2009.

[15] Robin Milner, M. Tofte, and R. Harper. The definition of standard ML. MIT Press,
Cambridge, 1990.

[16] Robert C. Moore. Removing left recursion from context-free grammars. Pro-
ceedings of the first conference on North American chapter of the Association for
Computational Linguistics, 2001.

[17] Terence J. Parr and Russell W. Quong. ANTLR: A predicated-LL(k) parser genera-
tor. Software Practice and Experience, 25:789–810, 1995.

[18] Lukas Renggli, Stéphane Ducasse, Tudor Gı̂rba, and Oscar Nierstrasz. Practical
dynamic grammars for dynamic languages. In 4th Workshop on Dynamic Languages
and Applications (DYLA 2010), pages 1–4, Malaga, Spain, June 2010.

[19] Elizabeth Scott and Adrian Johnstone. GLL parsing. Electron. Notes Theor. Comput.
Sci., 253(7):177–189, September 2010.

[20] Masaru Tomita. Efficient Parsing for Natural Language: A Fast Algorithm for
Practical Systems. Kluwer Academic Publishers, Norwell, MA, USA, 1985.

[21] Leslie G. Valiant. General context-free recognition in less than cubic time. Journal
of Computer and System Sciences, 10(2):308 – 315, 1975.

[22] Eelco Visser. Scannerless generalized-LR parsing. Technical Report P9707, Pro-
gramming Research Group, University of Amsterdam, July 1997.

	1 Introduction
	2 Formal grammars
	2.1 Notation techniques
	2.2 Ambiguity
	2.3 Complexity
	2.4 Parsing expression grammars
	2.4.1 Greedy operator
	2.4.2 Ordered choice
	2.4.3 Expressive power

	2.5 Left recursion
	2.5.1 Direct left recursion
	2.5.2 Indirect left recursion
	2.5.3 production rules
	2.5.4 Left recursion detection
	2.5.5 Left recursion removal

	3 F#
	3.1 Introduction
	3.2 Syntax
	3.3 Documentation
	3.3.1 BNF specification
	3.3.2 Precedence and associativity of language constructs
	3.3.3 Discrepancies between specification and implementation
	3.3.3.1 Missing delimiters
	3.3.3.2 Required non-terminals
	3.3.3.3 Missing definitions
	3.3.3.4 Inconsistent declaration of lightweight syntax keywords

	3.4 AST

	4 PetitParser
	4.1 Terminal parsers
	4.2 Parser combinators
	4.3 Action parsers
	4.4 Layout sensitive parsing support
	4.5 Parsing with PetitParser

	5 Implementation challenges of PEG-based parsers
	5.1 BNF to PEG
	5.1.1 Left recursion
	5.1.2 Ordered choice
	5.1.3 Indentation

	5.2 CST to AST
	5.2.1 Priorities

	5.3 Validation
	5.3.1 F# AST

	5.4 PetitParser environment
	5.4.1 Grammar structure
	5.4.2 Parsing performance
	5.4.3 Left recursion

	6 Implementation of a PEG-based F# parser
	6.1 BNF to PEG
	6.1.1 Left recursion
	6.1.2 Ordered choice

	6.2 CST to AST
	6.2.1 Embedding AST structure
	6.2.1.1 Redundancies

	6.2.2 Resolving redundancies
	6.2.3 Post-processing
	6.2.3.1 PEG near AST structures
	6.2.3.2 PEG far AST structures

	6.3 Validation
	6.3.1 PetitParser F# parser
	6.3.2 Left recursion detection tool

	6.4 PetitParser F# parser and tools
	6.4.1 PetitParser F# parser
	6.4.1.1 Lexicon
	6.4.1.2 Grammar
	6.4.1.3 Parser

	6.4.2 Left recursion detection
	6.4.2.1 Static algorithm
	6.4.2.2 Dynamic algorithm
	6.4.2.3 Static vs. dynamic left recursion detection

	6.4.3 F# AST extraction

	7 Implementation effort
	7.1 BNF to PEG
	7.1.1 Left recursion removal
	7.1.2 Ordered choice

	7.2 CST to AST
	7.2.1 Embedding AST structure
	7.2.2 Redundancy removal
	7.2.3 Post-processing

	7.3 PetitParser environment
	7.3.1 Parsing performance
	7.3.2 Left recursion handling

	8 Conclusion
	A Appendices
	A.1 F# AST
	A.1.1 Expression nodes
	A.1.2 Module declaration nodes
	A.1.3 Constant nodes

	B Anleitung zu Wissenschaftlichen Arbeiten: Parsing F# in PetitParser
	B.1 Installation
	B.2 Usage
	B.3 Under the hood
	B.3.1 Lexicon
	B.3.2 AST

	B.4 Validation
	B.5 F# AST extractor
	B.5.1 Installation
	B.5.2 Usage
	B.5.2.1 Simple AST extraction
	B.5.2.2 Extended let binding AST extraction

	B.6 F# ecosystem
	B.6.1 F# Compiler Services
	B.6.2 F# untyped AST processor

	B.7 Left recursion detection in PetitParser
	B.7.1 Static PetitParser left recursion detection implementation
	B.7.2 Dynamic PetitParser left recursion detection implementation

