
Talented Streams
Implementation

Bachelor’s thesis, supplementary documentation
at the

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch/

by

Manuel Leuenberger
February 2013

led by
Prof. Dr. Oscar Nierstrasz

Dr. Jorge Ressia

http://scg.unibe.ch/

Abstract

This document explains the implementation of scoped talents,
talent templates and talented streams. It makes it possible to work
with and extend the current code base or recreate the same archi-
tectures in a different programming environment.

i

Contents

1 Introduction 1

2 Scoped Talents 1
2.1 Talent Templates . 4

3 Talented Streams 4

A Get the Code 13

ii

List of Figures

1 UML class diagram for scoped talents 2
2 UML sequence diagram for reading from the stream in Listing 2 3
3 UML sequence diagram showing the adaptation of a talent using

a template class. 5
4 UML class diagram showing the inheritance hierarchy of the po-

sitioners. 6
5 UML class diagram showing the inheritance hierarchy of the read-

ers. 7
6 UML class diagram showing the inheritance hierarchy of the writers. 8
7 UML class diagram showing the inheritance hierarchy of the builders. 9
8 UML sequence diagram for the building of the stream in Listing 2 10
9 Message graph of the scoped talent of the stream in Listing 2 . . 11

List of Listings

1 The first result times of our fictional marathon. 1
2 Reading the first result of the marathon stored in the file in List-

ing 1 using Talented Streams. 1
3 Code to get the Talented Streams framework with Gofer. 13

iii

1 INTRODUCTION 1

1 Introduction

To show how the different modules of our framework work together, we will
use the same example as in the thesis [1]. In our scenario, we want to find the
winner of a marathon. The results of this marathon are stored in a file, in which
each line contains the name and time of a contestant. The lines are ordered by
the runners’ times, with the winner at the top of the file, as in Listing 1. We use
talented streams to iterate over the lines of the presumably large file. Listing 2
shows how one can create and read from such a stream.

Willy Ackermann, 2:07:29

Peter Ulrich, 2:15:34

Ursula Steiner, 2:16:01

Konrad Meyer, 2:17:51

Marco Stopfer, 2:17:52

...

Listing 1: The first result times of our fictional marathon.

1 fileStream := FileStream fileNamed: 'results.txt'.
2 stream := TSStream new.

3 (stream readFromByteStream: fileStream in: #asByte)

4 convertingIn: #asCharacter with: [:read | read asCharacter];

5 collectingIn: #asLine with: [:read | read ~= Character lf];

6 convertingIn: #asString with: [:read | read as: String].

7 stream read.

Listing 2: Reading the first result of the marathon stored in the file in Listing 1 using
Talented Streams.

2 Scoped Talents

In Figure 1 we show the architecture of our new scoped meta model, the scoped
talents. The scoped talent, represented through the class TSTalent, extends
TSScopeMetaObject which provides the basic interface to define scopes, states and
methods. In our implementation a scoped talent is incomplete in comparison to
a normal talent: Our scoped talent does not provide altering or aliasing of its
definitions, but since it is built on the same bases, the Bifröst [2] meta object
framework, it should be possible to introduce this functionality. The heart of
a scoped talent is its message graph, an instance of the TSMessageGraph class.
Instead of implementing scopes with a method dictionary, the graph’s edges are
all TSMessageEdges and those edges leaving a scope vertex, a TSScope, define the
methods defined by this scope, including transitions. The message graph’s leaf
vertices are all plain TSMethods, non-leaf vertices TSScopes which at same time
define the transition into this scope. The class TSTalentTemplate defines a talent
factory template, as described in Section 2.1.

2 SCOPED TALENTS 2

F
ig
u
re

1
:

U
M

L
cl

a
ss

d
ia

g
ra

m
fo

r
sc

o
p

ed
ta

le
n
ts

2 SCOPED TALENTS 3

F
ig
u
re

2
:

U
M

L
se

q
u
en

ce
d
ia

g
ra

m
fo

r
re

a
d
in

g
fr

o
m

th
e

st
re

a
m

in
L

is
ti

n
g

2

3 TALENTED STREAMS 4

In Figure 2 we see how the message send #read, as it occurred in Listing 2
on line 7 is delegated from the stream to its meta object, which is a scoped
talent. The meta object then traverses the current context to find the scope
that message was sent in, then looks up the method in its message graph and
runs it.

2.1 Talent Templates

Talent templates are classes which act as factories to create or adapt talents.
Through the use of classes as templates for talents, we can easily create multi-
ple instances of the same talent. We can use the same development tools e.g.,
syntax-highlighting in the Pharo browser, that were initially designed to work
with classes, for the development of talents. We use a dedicated category called
talent-define to mark methods that will be used in the created or adapted
talent. This removes the possibility to organize a talent’s methods into differ-
ent categories, but since talents are mostly small, we considered this to be an
acceptable trade-off.

In Figure 3 we show the basic scenario how a template is used to adapt a
talent with the definitions from the template. If the template should create a
new talent, use #new or #newIn: to reify the template’s definitions in a specific
scope.

3 Talented Streams

One point that is essential for streams, is the way the framework integrates
external resources, namely sockets and files. We want to create a new stream
framework, independent of any already existing implementation of streams. But
in the case of files, we see ourselves confronted with a decision for which no com-
pletely satisfying solution exists. We could either reuse the existing FileStream

which would result in the duplication of the reading and writing features, or we
could create a File class which would duplicate the file access feature. We de-
cided to reuse FileStream and SocketStream instead of duplicating any features.
With talents, we have the tool to adapt any object to what we need and even
how we want to use it. We provide talents for the standard FileStream and
SocketStream, as for the SharedQueue and SequenceableCollection. This way we
are able to decouple our framework from an external dependency as much as
possible. If the file access should get changed in future, we only have to write a
new talent for it, replacing the old one; it will not affect any other talent which
is not programmed against the implementation of the replaced talent.

Our framework consists of the utility classes TSCache and TSBuffer, talent
templates extending TSTalent-Template, composition builders extending TSStream

-Builder and a facade TSStream. TSCache is used to cache stream contents that
are already read, so rereading parts of the stream does not need to access the
underlying external resource. This cache can also be used to make streams po-
sitionable that were not positionable initially, like a stream on a network socket.

3 TALENTED STREAMS 5

Figure 3: UML sequence diagram showing the adaptation of a talent using a template
class.

3 TALENTED STREAMS 6

Figure 4: UML class diagram showing the inheritance hierarchy of the positioners.

TSBuffer is a simple buffer. It is basically a queue with a special interface for
reading and writing. The talent templates are simple classes that are used to
create and adapt the talents we are using, as discussed in Section 2.1. They pro-
vide a factory for the features positioning (see Figure 4), reading (see Figure 5)
and writing (see Figure 6). Composition builders are used to build streams
by composing features with each other. They provide a simplified interface for
the composition of scoped talents (see Figure 7). The facade TSStream proxies
the initialization on a resource and the building of readable, writable and po-
sitionable streams. Its meta object is a scoped talent, that gets adapted when
initializing and building the stream.

In the sequence diagram in Figure 8 we see how the stream from our motivat-
ing example with talented streams from Listing 2 is actually created. To keep it
short, we excluded the adaptations in the scopes #asLine and #asString. In this
process, the facade, the builders and the templates are involved. Our builder
handles the transitions from one scope to another by inserting new scopes in
the order they are declared. The feature is inserted by adapting the talent of
the stream object: a new scope is inserted and the composition connects scopes
with each other by adding or adapting transitions.

The resulting message graph of the stream’s scoped talent in Listing 2 is
shown in Figure 9. There are always two transitions added when a new scope is
added: a relative transition goes from the origin to the target scope, it is called
#readBelow: for the TSReadStreamBuilder, and an absolute transition goes from
the global to the target scope, it is named similarly to the target scope e.g., if
the target scope is named #asByte, this transition is named #inAsByte:. With
the relative transitions we are able to switch scopes from within the message
graph. This is useful in the composition because the composed features do not
need to know the identifier of a scope, they just need to know the selector of the

3 TALENTED STREAMS 7

F
ig
u
re

5
:

U
M

L
cl

a
ss

d
ia

g
ra

m
sh

ow
in

g
th

e
in

h
er

it
a
n
ce

h
ie

ra
rc

h
y

o
f

th
e

re
a
d
er

s.

3 TALENTED STREAMS 8

F
ig
u
re

6
:

U
M

L
cl

a
ss

d
ia

g
ra

m
sh

ow
in

g
th

e
in

h
er

it
a
n
ce

h
ie

ra
rc

h
y

o
f

th
e

w
ri

te
rs

.

3 TALENTED STREAMS 9

F
ig
u
re

7
:

U
M

L
cl

a
ss

d
ia

g
ra

m
sh

ow
in

g
th

e
in

h
er

it
a
n
ce

h
ie

ra
rc

h
y

o
f

th
e

b
u
il
d
er

s.

3 TALENTED STREAMS 10

F
ig
u
re

8
:

U
M

L
se

q
u
en

ce
d
ia

g
ra

m
fo

r
th

e
b
u
il
d
in

g
o
f

th
e

st
re

a
m

in
L

is
ti

n
g

2

3 TALENTED STREAMS 11

F
ig
u
re

9
:

M
es

sa
g
e

g
ra

p
h

o
f

th
e

sc
o
p

ed
ta

le
n
t

o
f

th
e

st
re

a
m

in
L

is
ti

n
g

2

3 TALENTED STREAMS 12

relative transition. Absolute transitions on the other hand are useful to access
specific scopes from the global scope e.g., we can fill a buffer manually from
outside the message graph.

We do not have a lot of code duplication in the classes we created, but if we
look at Figure 9, we have a lot of methods with the same name, and some of
them are actually exactly the same methods. e.g., in Listing 2 we composed our
stream from two instances of TSConvertingReader, which added some methods
twice to the message graph, in different scopes though. We could still lower the
level of duplication in the objects we created, if we would not define the same
method multiple times. This could be achieved by using dedicated scopes for
these methods and call them always in this particular scope.

REFERENCES 13

References

[1] Manuel Leuenberger. Talented streams. objects composed from features.
Bachelor’s thesis, University of Bern, February 2013.

[2] Jorge Ressia. Object-Centric Reflection. Phd thesis, University of Bern,
October 2012.

A Get the Code

The Talented Streams framework and the scoped talents are hosted on Squeak-
Source 1. You can install it in your Pharo 1.3 image using Gofer 2 by executing
the following code in Listing 3 in a workspace.

1 Gofer new

2 squeaksource: 'talents';
3 package: 'ConfigurationOfTalentsStreams';
4 load.

5 (Smalltalk at: #ConfigurationOfTalentsStreams) loadDefault

Listing 3: Code to get the Talented Streams framework with Gofer.

1http://www.squeaksource.com/talents.html
2http://www.lukas-renggli.ch/blog/gofer

http://www.squeaksource.com/talents.html
http://www.lukas-renggli.ch/blog/gofer

	Introduction
	Scoped Talents
	Talent Templates

	Talented Streams
	Get the Code

