

Analysis of

Polymorphism detection

Bachelor’s thesis
at the

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch/

by
Michael Morelli

July 2013

led by
Prof. Dr. Oscar Nierstrasz

Abstract

This document analyses the possibility of guessing polymorphic fields
at compile time with the bytecode manipulation library Javassist.

Acknowledgments

I would like to thank Professor Oscar Nierstrasz for providing me with guidance
and helpful support.

Also thanks to Dr. Mircea F. Lungu for his support.

Analysis of Polymorphism detection

 - 4 -

Contents

1 Introduction .. 5
2 Polymorphism in a Nutshell ... 6
3 Analysis .. 7

3.1 Procedure.. 7
3.2 Heuristics.. 8
3.3 Projects ... 9

3.3.1 Apache Commons JXPath.. 10
3.3.2 Apache Commons Collections ... 19
3.3.3 P2 Snakes and Ladders... 24

3.4 Further Projects .. 26
4 Conclusion.. 27
5 Threats to validity... 28
6 Sources ... 29
7 Appendix – Outputs ... 30

7.1 JXPath Static .. 30
7.2 JXPath Dynamic... 31
7.3 Collections Static.. 32
7.4 Collections Dynamic .. 35
7.5 Codec 1.8 Static.. 40
7.6 Codec 1.8 Dynamic .. 41
7.7 Pool 1.6 Static .. 42
7.8 Pool 1.6 Dynamic ... 43
7.9 Daemon 1.0.15 Static ... 44
7.10 Daemon 1.0.15 Dynamic.. 45
7.11 CLI 1.2 Static ... 46
7.12 CLI 1.2 Dynamic.. 47

Analysis of Polymorphism detection Introduction

 - 5 -

1 Introduction
In object oriented programming polymorphism via inheritance and interface can only be
detected at runtime. Of course we can have a look at our code and assume some
polymorphism. But we have not a 100% guarantee that our assumption is correct. Only at
runtime polymorphism can be detected, due to late-binding.
But is not there a way to guess polymorphism at development time? How good and precise
can we assume polymorphism with some heuristics?
In this project we intend to see how well polymorphic fields are predictable at compile time.
To gain this knowledge we implement an application which explores the polymorphic fields
at development time and runtime and compare these results.

Analysis of Polymorphism detection Polymorphism in a Nutshell

 - 6 -

2 Polymorphism in a Nutshell
By definition polymorphism in object oriented programming (OOP) is the possibility of a
variable or function argument to take on values of many types. In other words, a variable can
have multiple types during runtime. This happens via inheritance or interfaces.

Via inheritance:
A declared variable can refer to any object of any class that is derived from its declared type
by inheritance.
For example, if the class A is the parent of class B, then an A reference can be used to refer to
any object of class B. So in this case class A can be instantiated with the type A or B. The
reference variable can have two values with different types, so it is polymorphic.

Via interface:
Similarly to polymorphism via inheritance an interface name can be used as the type of a
reference variable. So an interface reference variable can be used to refer to any object of any
class that implements that interface.

Analysis of Polymorphism detection Analysis

 - 7 -

3 Analysis
In this document we want to see how good the results of our guessing are. Do the guessed
polymorphic fields match with the actual result at runtime?

3.1 Procedure

For our analysis we use Apache projects which are open source. We download the source
code and import it to the Eclipse IDE. Through the import Eclipse generates the bytecode of
the project we need for our detection on-the-fly. All the needed jars are imported manually.
The Apache Commons libraries contain a lot of unit tests. But to run our Dynamic Detection
we have to declare the main class we want to use for the dynamic case.
To gain such a main class we have to write one by ourself. This class is responsible to run all
unit tests of an external project one after the other. So for every project we want to analyse at
runtime, we have to write our own main class to run the simulative run. To have a consistent
nomination over all external projects we call our test runner main class MainClass. This way
we can only change the path to the external project in the Controller class and we do not
have to change the main class name for every Apache project.

For the Static Detection we do not need a main class. We can only set the path to the external
project and “parse” the whole external Apache project.

Analysis of Polymorphism detection Analysis

 - 8 -

3.2 Heuristics

To get a good guessing of polymorphic fields at compile time we have to implement
heuristics. The main heuristics are:

- Ignore primitive field data types since they cannot be polymorphic at runtime. (The
primitive data types are: Boolean, char, byte, short, int, long, float and
double)

- (Fields which have more than one type at compile time and have an Interface type can
be assumed to be polymorphic at runtime.)

The heuristic “fields with type Interface are assumed to be polymorphic” has been cancelled.
Because this heuristic gives only a good match for the snakes and ladders project as we can
see in the table below. The guessed fields would look as follows if we would put this
heuristic.

Project # polymorphic fields at

compile time (static

detection)

polymorphic fields at

runtime (dynamic

detection)

Apache Commons JXPath
1.3

54 0

Apache Commons
Collections 3.2.1

239 2

Apache Commons Codec 1.8 15 0

Apache Commons Pool 1.6 39 0

Apache Commons Daemon
1.0.15

16 0

Apache Commons CLI 1.2 5 0

P2 Snakes and Ladders 4 1

Due to the mismatch of the guessed fields at development time and polymorphic fields at
runtime we cancelled this heuristic.

Analysis of Polymorphism detection Analysis

 - 9 -

3.3 Projects

We analyse the following apache projects in detail:

Project name #Unittests #Errors #Failures Runner

JXPath 1.3 365 53 0 Unittests only

Collections
3.2.1

39143 0 66 Unittests only

Snakes and
Ladders

15 0 Unittests run the
whole
application

Note: The number of unit tests, errors and failures are the ones on my machine running all
unit tests with JUnit 4.0.

You find the whole Static and Dynamic output in the Appendix. The following references of
the analysis refer to the Appendix output tables of the corresponding project.

Analysis of Polymorphism detection Analysis

 - 10 -

3.3.1 Apache Commons JXPath

The external project Apache Commons JXPath is a Java-based implementation of XPath 1.0
that, in addition to XML processing, can inspect/modify Java object graphs and even mixed
Java/XML structures. The open source includes 365 unit tests which we want to run for our
dynamic polymorphism detector.

As we can see in the Static Detection Output (see Appendix – JXPath Static) we have no
polymorphic fields guessed, since no field has more than one type assigned when we parse the
external project and apply our heuristics.
The first field which has a field assigned, is the field nodes. As we can see in the source code
segment 1 below, the field nodes is declared as a Java.util.List. And the field has the

value type Java.util.List (return type of method unmodifiableList).

Code segment 1: Project JXPath - Method BasicNodeSet.getNodes

But as already mentioned, we do not get the assignment at line 75, since the value of nodes is
a new ArrayList() object and not a field. Only field-writers and field-readers at the same
line are merged.
The field nodes is monomorphic because it has only one value type.

The fields readOnlyPointers and values (see static output table lines 2&3) has the same
value type as the field node.

In the package axes (see static output table lines 4-14) we got several field accesses. The
class AncestorContext has the field currentNodePointer of type

org.apache.commons.jxpath.ri.model.NodePointer and value type
org.apache.commons.jxpath.ri.model.NodePointer.

Analysis of Polymorphism detection Analysis

 - 11 -

Code segment 2: Project JXPath - Method AncestorContext.nextNode

In the Apache source code we can confirm that the field currentNodePointer has the

value parentContext.getCurrentNodePointer() at code segment 2 - line 80 and at
line 88 the value currentNodePointer.getImmediateParentPointer(). So the field
has two values, but the value types are the same, since the method
getCurrentNodePointer() at line 80 and getImmediateParentPointer() at line 88
both return the type NodePointer. So again, the field currentNodePointer is not
polymorphic.

Analysis of Polymorphism detection Analysis

 - 12 -

In the class AttributeContext we have the fields: iterator and

currentNodePointer.

Code segment 3: Project JXPath - Method AttributeContext.nextNode

The field iterator (see static output table line 5) is declared as a NodeIterator and has

the value parentContext.getCurrentNodePointer().attributeIterator(name)
at source code line 93. Since the method attributeIterator(name) has the return type

NodeIterator, the value type of iterator is NodeIterator.

At code segment 3 line 102 currentNodePointer (see static output table line 6) has the

value type NodePointer, because the method getNodePointer() has the return value
NodePointer.

The same is the case for the fields at static output table line 7-11.

Analysis of Polymorphism detection Analysis

 - 13 -

At static output table line 12 we have a field called context inside the class

RecursiveAxesTest.
Like the name says, this field occurs in a unit test class.

Code segment 4: Project JXPath - Unit test method RecursiveAxesTest.setUp

As we can see at the source code segment 4 line 29 the type of the field context is
JXPathContext and the value type is JXPathContext as well (code segment 4 line 41).
Pretty the same is the case for fields at the static output table line 14-15.

At static output table line 16 we have inside class EvalContext the field rootContext of
type RootContext:

Code segment 5: Project JXPath - Method EvalContext.getRootContext

The return type of getRootContext() is RootContext so the field value has this type at
code segment 5 line 284.

For all other fields received from our Static Detector we have the same model.
So instead of confirming all other fields of our Static Detector output, we will have a closer
look at the Dynamic Detection result:

Analysis of Polymorphism detection Analysis

 - 14 -

As we can see every field has only one field type so we have no polymorphic fields at runtime
in the external project Apache Commons JXPath.

If we have a look at the first field detected by the Dynamic Detector, we see that the field
name of class NestedTestBean has the value type Java.lang.String at code segment 6
lines 26, 33, and 37.

Code segment 6: Project JXPath - Constructor NestedTestBean and method NestedTestBean.setName

Note: The field name has not been detected by the Static Detector, since the value of the field
name is not a field (here the value is a local variable (code segment 6 line 33 and 37) or a
character sequence (code segment 6 line 26)). As already mentioned there is no way in the
Javassist API to get the value type of a field if the value is not a field. That is the reason why
this field does not appear in the Static Detector. To remember, the Static Detector only merges
field-writers (here this.name) with field-readers (here local name and “Name 0”) if both
are fields and occur at the same line.

In the same class we get another field called strings, whose type is a string-array.

Code segment 7: Project JXPath - NestedTestBean methods: getStrings and setStrings

At code segment 7 lines 65 and 72 the value type of field strings is

Java.lang.String[]. The “[L” in the result table stands for a reference to a one
dimension array and is equal to Java.lang.String[]. The same counts for the base types
B (byte), C (char), D (double), F (float), I (int), J (long), S (short) and Z

(boolean).

And there are a lot of other fields with only one value type. But they are not of interest at this
point, since we are heading for polymorphic fields.

Analysis of Polymorphism detection Analysis

 - 15 -

If we compare the Static and Dynamic Detection result we can observe that we have
polymorphic fields neither in the Static nor the Dynamic case. So the guessing matches 100%.
But we have to consider that the Dynamic Detection result depends on the test coverage of the
project. The better the coverage the more LOC’s are actually touched by the simulative
dynamic run.
Remember, the static detection parses the whole code of the external project. In other words
we cover every LOC of the project. In contrast the Dynamic Detection algorithm only covers
LOC’s which are actually reached at runtime.

Since unit tests only cover a specific and small part of the code, it is very atypical to have a lot
of polymorphism while running the JUnit tests.

If we compare the fields detected by the two Detectors, it is conspicuous that we have fewer
dynamic detected fields than static detected fields. As already mentioned the reason lies in the
test coverage of the project itself.
Another noticeable thing is that the most of the dynamic detected fields do not appear in the
static result, because the Dynamic Detector saves more field accesses than the Static one. As
remarked, the Dynamic Detector is able to save field accesses whose value is not a field. For
lack of the Javassist API it is not possible to get a field’s value, if the value itself is not a field
in the Static Detector. It would be very interesting to use another more powerful library for
code manipulation to see the difference.

A further conspicuous point is that in the dynamic output there are a lot of fields which are
members of the unit tests and not the code itself. To see why that happens, we will track down
the Dynamic Detector algorithm for one specific unit test class.

If we only run the unit test class:
org.apache.commons.jxpath.ri.model.EmbeddedColonMapKeysTest().run()

We get the following three field accesses at runtime (monomorphic):

KEY: org.apache.commons.jxpath.ri.QName:

Java.lang.String:name

 VALUE(S): Java.lang.String
(see dynamic result table line 14)

KEY:org.apache.commons.jxpath.ri.QName:

Java.lang.String:qualifiedName

 VALUE(S): Java.lang.String
(see dynamic result table line 15)

KEY: org.apache.commons.jxpath.PackageFunctions:

Java.lang.String:classPrefix

 VALUE(S): Java.lang.String
(see dynamic result table line 3)

Analysis of Polymorphism detection Analysis

 - 16 -

And the call stack looks like that:

Listing 1: Project JXPath - Stack trace of MainClass

Now, we will have a look at the called methods inside the red rectangles. First the
MainClass (our self written test runner) calls the unit test
EmbeddedColonMapKeysTest().

Code segment 8: Project JXPath - Unit test method EmbeddedColonMapKeysTest.setUp

Inside the class EmbeddedColonMapKeysTest we got a field context which is not saved
at the dynamic run. Because the field context appears more than 737 occurrences in
different packages and as mentioned our fields have to be made public before being able to
inspect them. So the reason is that the variable context of type JXPathContext is shared.

Analysis of Polymorphism detection Analysis

 - 17 -

If we search in our Eclipse IDE the field name context we get this:

Listing 2: Project JXPath - Occurrences of field context

Later at runtime we get to the class JXPathContext and inside the method
getContextFactory() we get an access but since it is declared as static its ignored by the
Dynamic Detector.

Code segment 9: Project JXPath - Method JXPathContext:newContext

Code segment 10: Project JXPath - Method JXPathContext.getContextFactory

Inside the class PackageFunctions the field classPrefix appears which is a member of
our Static Detection output.
The field namespace is not saved since the field has the value null.

Note: If you have a look at the MetaClass. FieldwriteTraps which have a value null are
skipped. Otherwise we would get a NullPointerException if we want to getClass() of
a null object.

Analysis of Polymorphism detection Analysis

 - 18 -

Code segment 11: Project JXPath - Constructor PackageFunctions

Last but not least we reach the second constructor of class QName (at the top of the stacktrace)
which contains the last two detected fields: name and qualifiedName.

Code segment 12: Project JXPath - Constructors QName

The field called prefix has the value null when we have a look at the debugger’s field value
and is therefore ignored by the Dynamic Detector.

Analysis of Polymorphism detection Analysis

 - 19 -

3.3.2 Apache Commons Collections

To get some polymorphism we have to analyze a much larger project with good test coverage.
The Apache Commons Collection library contains 39’143 unit tests.

After analyzing the Static Detector output, we see that we have guessed two fields as
polymorphic at compile time:

KEY:

org.apache.commons.collections.map.AbstractHashedMap$HashEntry:org.a

pache.commons.collections.map.AbstractHashedMap$HashEntry:next

VALUE(S):

org.apache.commons.collections.map.AbstractHashedMap$HashEntry

VALUE(S):

org.apache.commons.collections.map.AbstractHashedMap$HashEntry[]

(see static output table line 82)

KEY:

org.apache.commons.collections.ReferenceMap$Entry:org.apache.commons

.collections.ReferenceMap$Entry:next

VALUE(S): org.apache.commons.collections.ReferenceMap$Entry

VALUE(S): org.apache.commons.collections.ReferenceMap$Entry[]

(see static output table line 122)

Note: The $ symbol stands for a separator between public class and private class inside the
same .class file.

The fields have both two values and are guessed as polymorphic by our implemented Static
Detector.

Analysis of Polymorphism detection Analysis

 - 20 -

The first field called next of class AbstractHashedMap$HashEntry has the value types

HashEntry and HashEntry[]. But if we have a closer look at the code where the values of
next appear, we can see that the value of the field entry.next is field data (at code

segment 13 - line 472). Data is declared as a HashEntry[] (HashEntry Array). But at code
segment 13 - line 472 we do not assign the Array data to the field next, but an element of

data, which is a HashEntry.
This case is not detected by our implementation of the Static Detector. Javassist does not offer
an API, which can detect array element accesses at source level.
So the as polymorphic guessed field next is not polymorphic because it has only one value
type in both methods, which is HashEntry.

Code segment 13: Project Collections - Method AbstractHashedMap.reuseEntry

Code segment 14: Project Collections - Method AbstractHashedMap.removeEntry

Further we have the problem that the field previous.next at code segment 14 - line 564

inside method removeEntry() is not the same instance as entry.next. But due to our
field renaming problem of Javassist, we can not distinct them. Our static implementation
detects the field next of the instances previous and entry as the same field instance.

Pretty the same is the case with the second polymorphic guessed field:

org.apache.commons.collections.ReferenceMap$Entry:

org.apache.commons.collections.ReferenceMap$Entry:next

The field next at code segment 15 - line 423 of method resize(), has the value type Entry
and the value is of type Entry and not Entry[].

Analysis of Polymorphism detection Analysis

 - 21 -

Code segment 15: Project Collections - Method ReferenceMap.resize

And in the method body of purge() at code segment 16 - line 465 we get the same access as
in the class AbstractHashedMap$HashEntry.

Code segment 16: Project Collections - Method ReferenceMap.purge

Again we have no polymorphic fields at compile time. The two fields we assumed to be
polymorphic are monomorphic due to detecting the type of an array access to an element as
an Array.

We will now compare our guessing result with the runtime result.

Analysis of Polymorphism detection Analysis

 - 22 -

The Dynamic Detector detects two fields (sortedKeys and sortedValues) as
polymorphic at runtime:

org.apache.commons.collections.bidimap.

TestDualTreeBidiMap:Java.util.List:sortedKeys

org.apache.commons.collections.bidimap.

TestDualTreeBidiMap:Java.util.List:sortedValues

org.apache.commons.collections.bidimap.

TestDualTreeBidiMap2:Java.util.List:sortedKeys

org.apache.commons.collections.bidimap.

TestDualTreeBidiMap2:Java.util.List:sortedValues

org.apache.commons.collections.bidimap.

TestUnmodifiableSortedBidiMap:Java.util.List:sortedKeys

org.apache.commons.collections.bidimap.

TestUnmodifiableSortedBidiMap:Java.util.List:sortedValues

The classes TestDualTreeBidiMap, TestDualTreeBidiMap2,

TestUnmodifiableSortedBidiMap are derived classes of
AbstractTestSortedBidiMap.

The parent class AbstractTestSortedBidiMap has the protected fields sortedKeys
and sortedValues, so the fields are shared with the subclasses.

The fields themselves are declared in the parent class AbstractTestSortedBidiMap. But
the fields are detected several times as polymorphic because every constructor of the derived
classes calls via “super” the parent constructor. Inside the constructor of the parent class
AbstractTestSortedBidiMap, the fields sortedKeys and sortedValues are assigned.
In the following screenshot we can see that the fields: sortedKeys and sortedValues of

type Java.util.List have the value Java.util.ArrayList (at code segment 17 - lines
45 and 46).
Inside the constructor AbstractTestSortedBidiMap() the fields have the new value

Collection.unmodifableList(). This method returns the value type List.

Analysis of Polymorphism detection Analysis

 - 23 -

Code segment 17: Project Collections - Constructor AbstractTestSortedBidiMap

The object Java.util.ArrayList is a derived class of List. So the fields: sortedKeys

and sortedValues are polymorphic via inheritance, since they both have two value types
ArrayList and List.

But why are these fields not detected as polymorphic via the Static Detector?
As already mentioned the access at code segment 17 - line 45 and 46 are not registered by the
static detector, since the value at this line is not a field. If we could save this access with the
Javassist API we would get these fields guessed as polymorphic.

Then the Static Detector saved one access:

KEY: org.apache.commons.collections.bidimap.

 AbstractTestSortedBidiMap:Java.util.List:sortedKeys

VALUE(S): Java.util.List
(see static result table line 10)

KEY: org.apache.commons.collections.bidimap.

 AbstractTestSortedBidiMap:Java.util.List:sortedValues

VALUE(S): Java.util.List
(see static result table line 11)

So we only need one more value type to guess these fields as polymorphic at compile-time.
That would be the case if we could save the accesses at code segment 17 - line 45 and 46.

Analysis of Polymorphism detection Analysis

 - 24 -

3.3.3 P2 Snakes and Ladders

We choose this project as source for our detectors, since the program “Snakes and Ladders”
runs the game itself via unit tests. So we have very good unit test coverage, because not only
small units of the application are tested, but the whole game itself.

Static Detector Output:

Table 1: Static Detector output (Excel table)

The field square of type ISquare has only one assigned value and is therefore
monomorphic at development time.

Table 2: Dynamic Detector output (Excel table)

At runtime we get three different value types for the fields square: FirstSquare, Square
and LastSquare. The field square is polymorphic via interface and inheritance. The

classes FirstSquare and LastSquare are subclasses of the class Square. And the class
Square implements the interface ISquare.

Inside the class snakes.Player where the polymorphic field appears we have the field
square as a writer-access at code segment 18 - line 19 and 32. The methods

firstSquare() at line 19 and moveAndLand() at line 32 return both a instance of
ISquare and can therefore be the type LastSquare, Square or FirstSquare.

Analysis of Polymorphism detection Analysis

 - 25 -

Code segment 18: Project S&L - Class Player

If we would count the heuristic “fields with interface type are polymorphic” we have
cancelled, we would get in this very project a better coverage of guessed and detected
polymorphic fields.

Analysis of Polymorphism detection Analysis

 - 26 -

3.4 Further Projects

Other Apache Commons Libraries has been analyzed but they had no polymorphic fields
whether in the Static nor in the Dynamic case.

Project name #Unittests #Errors #Failures Runner

Codec 1.8 616 52 8 Unittests only

Pool 1.6 266 Unittests only

Daemon 1.0.15 None X X Generate a
simpleDaemon
instance

CLI 1.2 187 0 0 Unittests only

For static and dynamic output see Appendix - Outputs of the projects listed above.

Analysis of Polymorphism detection Conclusion

 - 27 -

4 Conclusion

Project # polymorphic fields at

compile time (static

detection)

polymorphic fields at

runtime (dynamic

detection)

Apache Commons JXPath
1.3

0 0

Apache Commons
Collections 3.2.1

0 2

Apache Commons Codec 1.8 0 0

Apache Commons Pool 1.6 0 0

Apache Commons Daemon
1.0.15

0 0

Apache Commons CLI 1.2 0 0

P2 Snakes and Ladders 0 1

Most projects we analyzed, have no polymorphism whether at compile time or at runtime.
This is the case if we run the unit tests of a project to get the runtime. We used the unit tests
for the dynamic case because they have no interaction with the user. The problem of running
unit tests to get the dynamic detection results is that the result depends on the test coverage.
But that’s not all. A Java unit test typically covers a single method or small procedure. So if
we run our detection on this unit test we simply run a method which holds often more local
variables than fields in the body. So the chance to catch a field access in unit tests is very
small and a lot smaller if we are looking for polymorphic fields. It would be better to run the
main of the project directly. But if we run the projects without the unit tests we have the
problem that the simulative run of Javassist is in a separate JVM. Because of this fact it is not
possible to run a system like for example an Editor where a lot of interactions occur between
system and user with Javassist. More we would have to define specific use-cases to run the
system. I have tested to run the projects directly and without the tests but as already
mentioned the interaction between user and system crashed the simulative Javassist run.
The Javassist library is also not able to rename all field-name occurrences. So that does not
allow us to eliminate field duplications through renaming and avoid field sharing between
parent and subclass.
The Javassist library also does not offer an API which makes it possible to get the assigned
value of a field access if the access value is not a field itself.

As a conclusion we can say that with Javassist we can get a satisfying result of polymorphism
at compile time and runtime, despite the APIs constraint. We gain a pretty good match of
static and dynamic polymorphism. But the results are inconclusive as we did not have many
projects with demonstrable polymorphism.
But to eventually catch more polymorphism at runtime we should run the system directly via
the main class and not the unit tests. But to do so we would have to choose a more powerful
bytecode manipulation library than Javassist, which is able to run a simulative run with user
interactions.

Analysis of Polymorphism detection Threats to validity

 - 28 -

5 Threats to validity
In our implementation we concentrated on field accesses. But as we know polymorphism can
occur in different ways and not only via accesses. Our achieved findings are correct
concerning polymorphism via field accesses. Polymorphism can also occure via aliasing. For
example if we have a class A and subclass B. Both can be passed via parameter to an external
class where internally no field access occurs. So that is indeed a threat to validity. More we
save the return value of an method at an access line via the code definition of the method. We
do not track down the actually method return type. So we get the abstract return type of the
method. For example if we have a method which returns an interface it is possible that the
method returns at runtime a class which implements this interface and not the interface itself.
This case is not detected by our Static Detector implementation. In our case we just get the
return type: interface. If we want to rely on our evaluation we have to consider these threats to
validity.
More we run our project analysis via the unit tests. This further threat does not represent the
result of the project if we run it via the main method. The actually run of an application via
the main method will cover other parts of the source code at runtime than unit tests which
often only cover a single method or small procedures. This constraint can produce a wrong
estimation of polymorphic fields at runtime.

Analysis of Polymorphism detection Sources

 - 29 -

6 Sources

 Source for Apache Commons Project (freeware):
JXPath http://projects.apache.org/projects/commons_jxpath.html
Collections http://projects.apache.org/projects/commons_collections.html
Codec http://projects.apache.org/projects/commons_codec.html
Pool http://projects.apache.org/projects/commons_pool.html
Daemon http://projects.apache.org/projects/commons_daemon.html
CLI http://projects.apache.org/projects/commons_cli.html

 Project at GitHub
Polymorphism
Detector

https://github.com/mmorelli/PolymorphismDetection

External
Projects

https://github.com/mmorelli/External-Projects

Analysis of Polymorphism detection Appendix – Outputs JXPath Static

 - 30 -

7 Appendix – Outputs

7.1 JXPath Static

Analysis of Polymorphism detection Appendix – Outputs JXPath Dynamic

 - 31 -

7.2 JXPath Dynamic

Analysis of Polymorphism detection Appendix – Outputs Collections Static

 - 32 -

7.3 Collections Static

Analysis of Polymorphism detection Appendix – Outputs Collections Static

 - 33 -

Analysis of Polymorphism detection Appendix – Outputs Collections Static

 - 34 -

Analysis of Polymorphism detection Appendix – Outputs Collections Dynamic

 - 35 -

7.4 Collections Dynamic

Analysis of Polymorphism detection Appendix – Outputs Collections Dynamic

 - 36 -

Analysis of Polymorphism detection Appendix – Outputs Collections Dynamic

 - 37 -

Analysis of Polymorphism detection Appendix – Outputs Collections Dynamic

 - 38 -

Analysis of Polymorphism detection Appendix – Outputs Collections Dynamic

 - 39 -

Analysis of Polymorphism detection Appendix – Outputs Codec 1.8 Static

 - 40 -

7.5 Codec 1.8 Static

Analysis of Polymorphism detection Appendix – Outputs Codec 1.8 Dynamic

 - 41 -

7.6 Codec 1.8 Dynamic

Analysis of Polymorphism detection Appendix – Outputs Pool 1.6 Static

 - 42 -

7.7 Pool 1.6 Static

Analysis of Polymorphism detection Appendix – Outputs Pool 1.6 Dynamic

 - 43 -

7.8 Pool 1.6 Dynamic

Analysis of Polymorphism detection Appendix – Outputs Daemon 1.0.15 Static

 - 44 -

7.9 Daemon 1.0.15 Static

Analysis of Polymorphism detection Appendix – Outputs Daemon 1.0.15 Dynamic

 - 45 -

7.10 Daemon 1.0.15 Dynamic

Analysis of Polymorphism detection Appendix – Outputs CLI 1.2 Static

 - 46 -

7.11 CLI 1.2 Static

Analysis of Polymorphism detection Appendix – Outputs CLI 1.2 Dynamic

 - 47 -

7.12 CLI 1.2 Dynamic

