
Dicto Auto-Complete Engine
a back end for autocompletion

Bachelor Thesis

Radunz, Kenneth
from

3052 Zollikofen BE, Switzerland

Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

2016

Prof. Dr. Oscar Nierstrasz

Andrea Caracciolo

Software Composition Group
Institut für Informatik und angewandte Mathematik

University of Bern, Switzerland

Abstract

Most programming languages have an IDE that supports autocompletion. This feature
increases productivity and makes programming an easier and smoother experience. The goal
of this project is to add autocompletion to the Dicto language. To ensure reusability, it is
implemented in a frontend-backend approach. From this it follows that any new front end
only needs to communicate to an already existing back end, which is responsible for the logic.
Performance concerns are addressed in the later parts of the thesis.

1

Contents

1 Introduction 4

2 Related Work 6
2.1 Dicto . 6

2.1.1 Entity Statement . 6
2.1.2 Rule Statement . 6

2.2 PetitParser . 7
2.3 Ace . 7
2.4 Microsoft IntelliSense . 8

3 Architecture and Design 9
3.1 Deployment Architecture . 9

3.1.1 Overview . 9
3.1.2 Interface . 9
3.1.3 Stateless Service . 10

3.2 State Machine Functionality and Components . 10
3.2.1 Tri-valued Acceptors . 11
3.2.2 The Transition . 13
3.2.3 Transition Post Processor . 17
3.2.4 Suggestors . 18
3.2.5 Environment . 19

3.3 Dicto Specific State Machine . 20
3.3.1 Entity . 20
3.3.2 Rule . 22
3.3.3 Only Can Rule . 25
3.3.4 Complete state machine . 26

4 The Validation 28
4.1 Scenarios . 28

4.1.1 Localhost scenario . 28
4.1.2 Big environment scenario . 29
4.1.3 One Hop scenario . 29

4.2 Results . 29
4.2.1 Localhost . 29
4.2.2 Big environment . 30
4.2.3 One Hop network . 31

2

CONTENTS 3

5 Future Work 32
5.1 Improvements . 32
5.2 Additional Features . 32

5.2.1 Response data . 32
5.2.2 External Configuration . 33
5.2.3 Code Highlighting . 33

6 Conclusion 34

7 Anleitung zu wissenschaftlichen Arbeiten 35
7.1 Overview . 35
7.2 Acceptors . 40

7.2.1 RangeAcceptor and NegativeRangeAcceptor 43
7.2.2 StringAcceptor . 45
7.2.3 RepeatAcceptor . 46
7.2.4 OptionalAcceptor . 47
7.2.5 ChainAcceptor . 48
7.2.6 RegionAcceptor . 49
7.2.7 Building Acceptors . 50

7.3 Building a state machine . 52
7.4 Creating an Environment . 53

7.4.1 Variable types . 54
7.5 Using the state machine . 54
7.6 Server . 55
7.7 Demo . 55

1
Introduction

Dicto[6] is a small Domain Specific Language developed at the University of Berne. Its purpose is to
provide a simple tool to specify constraints for software projects and automatically check that the imple-
mentation does not violate those formulated constraints. As Junit allows its user to ensure the functionality
of Java classes, Dicto enables the user to ensure that his project is built according to specifications at the
highest level of abstraction. For example, the user wants to ensure that components have a certain depen-
dency structure: When implementing the MVC1 pattern the model should not depend on the controller.

Most common programming languages are supported by one or more integrated development environments.
These IDEs facilitate the work of programmers by bundling many powerful tools with a source code
editor. Common features include refactoring tools that can extract methods, rename a variable everywhere
it is used, and many other editing features. In addition, IDEs have intelligent code completion, which
can be seen as one of the most prominent features. Intelligent code completion facilitates programming
by reducing the number of common mistakes the programmer makes, as well as, looking up resources
the programmer might need and otherwise has to search for manually. This information is commonly
provided using drop downs. For this purpose, this component of the source editor needs to be context
aware. This means that it needs to track all methods and variables currently available. In addition, it
needs to be aware of the syntax structures that are defined by the programming language chosen by the user.

The task proposed was to provide code completion for the Dicto language. This means not only providing
the user with language and statement specific keywords, but also contributing necessary semantic informa-
tion like variables and variable types, when the user might need it. A short overview of the Dicto language
can be found in chapter 2. In addition, the auto completion facility should be reusable, so it could be used
as a common back end to different Dicto implemenations.

The solution provides means to model the semantics and syntax of a regular language. In addition,
a state machine is provided that uses the specific model to process input and put together useful infor-
mation that might be needed by the programmer. Also, a web service is provided to give easy access to
the state machine. Further information on how the solution works on a conceptual level can be found in

1https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

4

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

CHAPTER 1. INTRODUCTION 5

chapter 3. A closer look at the implemented solution is available in chapter 7.

To show that the provided solution is actually usable, load testing needed to be done. The reviewed
scenarios involved the comparison of the server and client running on the same machine versus separating
both using a local network. The second variable examined was the number of variable and variable. In
this case, two different tests were set up, one having a rather small environment only including a few
variables and variable types. The second test was run using thousands of types and variables. The test
results indicate that of both factors, network and environment, the former has most impact on performance
of the implemented solution. The implementation can handle huge input sizes with absurd environments
without much time loss. In contrast, using a network decreases the amount of data, the service might
process until a delay is experienced, which makes the user lose focus, by a lot. Nevertheless, the tests
indicate that the service can process input sizes that are imaginable for a real application of the Dicto
language, in a timely fashion.

2
Related Work

2.1 Dicto
Before diving into the details of autocompletion, a small introduction to the language Dicto is required.
The Dicto language consists of only two statements: entity and rule.

2.1.1 Entity Statement
The purpose of the entity statement is to define a variable. An example for such a statement would be:

Model = Package with name: "org.app.model"

The first part of the statement is the variable name. It must satisfy certain restrictions, like variable names
in most programming languages, but apart from that it can be chosen freely. The variable name is then
separated from the description of its content by the equal sign. The first word after the equal sign specifies
the variable type. Possible types could be “Package”, “Class”, or “Website”. Usable Variable types are
defined by the implemenation of the dicto engine.
This is then followed by the keyword “with”. Afterwards, the last part of the entity statement consist of a
comma separated list of attributes. Each attribute is specified by its name and then followed by a colon
and the value given to the attribute. Possible values at the moment are either Strings or Integers. The user
cannot choose the attribute names freely. The chosen variable type dictates the available attributes. Not all
attributes need to be specified.

2.1.2 Rule Statement
The rule statement is then used to specify behaviour and interactions of the previously defined variables.

Model cannot depend on Test

Above is the example for a simple rule statement. It consists of four components:

1. subject “Model”

6

CHAPTER 2. RELATED WORK 7

2. mode “cannot”

3. predicate “depend on”

4. object “Test”

The user wants to ensure that his model package does not use anything from the Test Package. The mode
and predicate together determine the relation between subject and object. All modes can be used together
with any predicate. In addition, modes do not change between engines. They are fixed on a syntactical
level. Possible modes are:

1. must

2. cannot

3. can only

4. only can

The last option changes the syntax a bit, because the keyword “only” appears before the subject. For
example:

only Controller can depend on Model

Predicates are specified on a semantic level and depend on the current Dicto engine in use. It is possible to
specify more than one subject or object. For example:

Model, Controller cannot depend on Test

It must be ensured that all subjects of the same statement are of the same type. The same goes for objects.
The reason for that is that multiple subjects or objects in one statements is simply a shortened version of
the same statement repeated with different subjects (objects). The above statement is equivalent to:

Model cannot depend on Test
Controller cannot depend on Test

2.2 PetitParser
PetitParser[5] is a scannerless parser library. It is available for Smalltalk, Java, and Dart. In the early
stages of exploring the problem, a solution based on the Java version of PetitParser was implemented. This
attempt was aborted, because of the library’s exception handling. A parser that would take a keyword
would raise an exception if it encountered only half the keyword. This is the desired behaviour in most
scenarios. Autocompletion is no such scenario. If half a keyword is encountered, we might want to send
a list of suggestions to the user instead of returning an error message. For this reason it was decided to
create a new parser library that implemented the desired behaviour naturally instead of hacking it into
PetitParser. For further explanation behind this decision read section 3.2.1.

2.3 Ace
Ace[2] is a Javascript framework for web embedded code editors. It supports a variety of programming
languages by default. In addition, one can add one’s own language using the framework. It provides many
features and is highly customizable. It can be used to send Ajax requests to a back end. For this reason the
framework got used for the front end demo.

CHAPTER 2. RELATED WORK 8

2.4 Microsoft IntelliSense
This is a feature that handles a lot of convenient tools included in Microsoft’s IDEs like Visual Studio.
One of the described features is called List Members: “A list of valid members from a type (or namespace)
appears after you type a trigger character (for example, a period (.) in managed code or :: in C++). If you
continue typing characters, the list is filtered to include only the members that begin with those characters.”
[1]. This feature is similar to this bachelor project, but is more complicated for the following reasons: The
languages are more complex and a lot of resources must be scanned and included like other source files or
libraries.

3
Architecture and Design

In this chapter the project’s structure will be discussed. The first section covers a simple overview on
the topmost layer. Then the design of the state machine and its components will be explained in detail,
because it contains the most logic. Last, the specific structure of the state machine that was created to
process Dicto will be discussed step by step in section 3.3.

3.1 Deployment Architecture
In this section, the complete architecture of the solution is described. The separation of client and server is
explained.

3.1.1 Overview
Figure 3.1 displays a general overview on how the complete system was designed. The main idea is that
the user sends some form of request containing the user’s input. The server then passes the information to
the state machine. After the state machine processes the input and generates a result, it is sent back to the
client.

3.1.2 Interface
For maximum reusability an HTTP based communication format was chosen. HTTP has good support
among most programming languages and a client that sends and receives HTTP messages can be created
easily in most environments.
The client sends an HTTP POST request to the url of the server. The message body contains the complete
text the user has written thus far. A POST-request was chosen over the GET-request, because of the
restriction most HTTP servers have regarding the size of a GET-request. Since, the server demands the full
input, it might exceed those limits. Using POST-requests to submit bigger amounts of data is a common
way of doing so.
As response the client will receive an JSON-Array. The JSON format was chosen due to its high popularity
and its native support in most programming languages. This kind of response format can be adapted easily

9

CHAPTER 3. ARCHITECTURE AND DESIGN 10

Figure 3.1: An overview of the chosen architecture.

to transmit more and complex types of data. More on how the response can be extended can be read in
chapter 5.

3.1.3 Stateless Service
The most important design choice was whether to make the server stateless or state-aware.

Stateless The server is not aware of the clients state and does not store information regarding it. This
means that every request to the server can be processed in isolation.

State-aware The server caches the user input and communicates with the client in a incremental fashion.
This means the client does not need to send the complete input of the user with each request, but
only needs to update the cached version of it. This for example could mean more specifically that
the request only sends the information which lines were changed since the last request.

In the end, the server was designed in a stateless way. This was mainly to increase simplicity of both
client and server. Specifically, neither client nor server need to keep track of the other side’s state. The
client does not need to store a version of each request to determine the difference to the current state
when it needs to send a new request. Accordingly, the server does not need to cache the request either, to
determine the current state of the user’s input. This means both client and server are much more simple
and straightforward to develop. This design choice comes with a downside. Each time client and server
communicate, the client needs to submit its complete state to the server. This can mean sending big
amounts of text, each time the user requests the autocompletion feature.

3.2 State Machine Functionality and Components
In this section the state machine’s functionality and components are explained. First a new kind of regular
expressions parsing library is introduced. Next the transition logic is explained and the needed components
are described.

CHAPTER 3. ARCHITECTURE AND DESIGN 11

Figure 3.2: A simple state machine.

3.2.1 Tri-valued Acceptors
Consider the example in the figure 3.2. It shows a very basic state machine with only two states. In between
is a transition that accepts “word”. Now let’s examine this example under the scenario of autocompletion.
Table 3.1 shows a few inputs and the corresponding results we want to achieve.

input autocompletion suggestions
“” [“word”]
“wo” [“word”]
“word” []
“number” PARSING ERROR

Table 3.1: A simple list of inputs and expected results.

We assume that the suggestions we can make correlate to the transitions of the state in which the
input terminates. So if the input terminates at the left state, one transition can be looked at and included
in our autocompletion suggestions. From this follows that we suggest simply “word”. This seems to
be correct for the third input “word”: The state machine transitions from the left to the right state and
terminates. Since there is no transition originating from the right state, nothing can be suggested. The
fourth input is easily explained as well. The user enters something that the left state cannot assign to any
of its transitions and thus raises an error. The interesting situation is when the user types “wo” and then
requests autocompletion. The left state again would try to assign the input to its transitions and fail to do so,
thus raise another error. But this is not the outcome we want. The state machine is expected to terminate in
the left state and return the same suggestion as our first input in the table. A suggested workaround was to
create a transition for each character. The solution would look like the state machine in figure 3.3.

Figure 3.3: Visualization of the suggested workaround.

This seems like a good solution for an example this simple. But regarding a full language specification
the amounts of additional states and transition needed to be added raise performance and readability issues.
In addition, transitions like “[a-zA-Z][0-9a-zA-Z]*” need to be handled as well. Regarding all those
concerns a better and more intuitive solution needs to be devised.

CHAPTER 3. ARCHITECTURE AND DESIGN 12

The actual solution is inspired by the multi-valued propositional logic or Lukasiewicz Logic. This
logic contains more than the two common truth values: false and true. In addition, it has truth values in
between the mentioned two. Specifically, I worked with a three valued version containing 0, 1

2 , 1. An
acceptor library was modelled with three different outcomes in mind:

Failure If an acceptor encounters a character that can not be accepted by the state machine.

Partial If an acceptor encounters the end of input before completed.

Success If an acceptor successfully parses the input.

It can be noted that the Success outcome of the new acceptor library corresponds to any standard regex
library accepting an input. This means, if the new acceptor accepts an input, the correspondent acceptor
in a standard regex library would do so as well and vice-versa. Table 3.2 visualizes how the acceptor
outcome is transformed into the state machine outcome. The new acceptor library has functionality similar

input acceptor result state machine result autocompletion suggestions
“” partial successful termination at the left state [“word”]
“wo” partial successful termination at the left state [“word”]
“word” success successful termination at the right state []
“number” failure syntax error NA

Table 3.2: An extended list of inputs and its outcomes.

to standard regular expression, including:

optional usually noted as “?”. E.g.: a?

or usually noted as “|”. E.g.: gray|black

class usually surrounded with “[” and “]”. E.g.: [a-zA-Z]

one-or-more usually noted as “+”. E.g.: a+

The or modifier works very straightforwardly. It tries to match all concatenated sub parsers. If all fail,
it fails as well. If one sub parser results in incomplete, the or parser returns incomplete. If a sub parser
succeeds, so does the or parser.

input standard regex tri-valued regex
gray success success
black success success

gr failure incomplete
bl failure incomplete
ε failure incomplete

brown failure failure
br failure failure

Table 3.3: Comparing standard regex and tri-valued regex with the pattern “(gray|black)”

The table 3.3 compares the results of the pattern (gray|black) of a standard library with the tri-valued
version. Everytime the standard library successfully matches an input with the pattern, the tri-valued

CHAPTER 3. ARCHITECTURE AND DESIGN 13

version does the same. Only if the standard library is not able to match the input with the pattern, the
tri-valued version might return a different result. If the given input partly matches any sub pattern, the
result of the whole pattern changes from “failure” to “incomplete”. In the example, “bl” can still be
completed to “black” and “gr” can still be completed to “gray”. Instead of that, “br” does not show the
same property and thus also the tri-valued library returns “failure” for this input.
Classes work similar to the or modifier. A class matches a single character that depends on the specification
inside the brackets. For example, “[abc]” matches either “a”, “b”, or “c”. The class can be seen as a special
or pattern that only accepts single characters. That means that the result “incomplete” is only possible if
the input is empty. Any character not contained in the set will cause the pattern to return “failure”. Negated
classes are also supported by the tri-valued regex. “[ˆabc]” accepts any characters, but “a”, “b”, or “c”.
Table 3.4 summarizes the difference between a class pattern of a standard regex and a tri-valued regex.

input standard regex tri-valued regex
b success success
d failure failure
ε failure incomplete

Table 3.4: Comparing standard regex and tri-valued regex with the pattern “[abc]”

input standard regex tri-valued regex
ε failure incomplete
a failure incomplete

abc success success
abca failure incomplete

abcabc success success
dbc failure failure
abd failure failure

Table 3.5: Comparing standard regex and tri-valued regex with the pattern “(abc)+”

The one-or-more modifier takes a parser and parses it as many times as possible, but at least one time.
It returns “success” if the given sub parser parses the input completely any number of times. “incomplete”
is returned, if the last iteration of the sub parser incompletely matches the input. The parser fails if the
sub parser, fails on the first iteration. Table 3.5 visualizes possible inputs and their results for the pattern
“(abc)+”. As stated, the new implementation only fails if the sub parser, in this case “(abc)” fails on the
first try.
As the new regex library is used in a state machine, it is rather configured to support partial matches instead
of matching the whole input. This means any parser that returns “success”, specifies a range started at the
beginning of the input that it succeeded to parse. For example, the pattern “(abc)+” combined with the
input “abcabcbanana” returns that it successfully matched the first six characters opposed to the situation
that it failed to match the whole input. This is important as the state machine uses a multitude of acceptors
to switch states and those are only needed to match parts of the whole input, to let the state machine switch
states.

3.2.2 The Transition
There are four specific cases the state machine needs to account for.

CHAPTER 3. ARCHITECTURE AND DESIGN 14

1. Syntax Error

2. Incomplete input

3. Semantic Error

4. Complete input

In the first and third scenario, the state machine will not return a list of suggestions for autocompletion,
but a meaningful description where the error is and why it is an error. Consider the example state machine
in figure 3.4. Starting with the leftmost state, there are two transitions originating from it. The top one

Figure 3.4: An example state machine to illustrate the 4 transition scenarios

exclusively accepts the token “only” as it expects a keyword. The bottom transition accepts an entity,
which we assume are already defined variables. If the user types a known variable, he or she can either
follow it with “cannot” or “can only”. Considering figure 3.4, the user might type

View can only

to satisfy the illustrated state machine. Where the first word “View” would satisfy the acceptor of the first
bottom transition, and the “can only” would be accepted by the bottom transition of the following state.
The first scenario happens, if the state machine is in a state where all transitions fail to accept the current
input. For the state machine in 3.4, such a possible input would be “?”, since it is not matched by “only” or
the entity, which only matches a combination of letters and digits.
Scenario 2 happens when the remaining input does not satisfy any transition originating from the active
state. In most cases the state machine will then raise a syntax error. Consider the input “on”: The point can
be made that the acceptor of the top transition will not accept this input and an attempt will be made to

CHAPTER 3. ARCHITECTURE AND DESIGN 15

match the second transition. But as we already discussed in section 3.2.1, certain inputs can be completed,
with potential input, to actually match Dicto’s syntax. So the input “on” should satisfy the top acceptor
partially. The result of this scenario should be that the state machine does not switch to the destination
state, but stays in the current leftmost state.
A semantic error is raised if the user types something that looks like a variable, but is not defined. If
“Window” is typed, but the only previously defined variables are “Controller”, “Model”, and “View”, the
second branch will accept the input, as it is syntactically correct, but then will raise a semantic error,
when not finding an existing variable with the given name. The last case is very simple. The user types
something that satisfies a transition and then no input is remaining. The user could type “only” and the top
transition will accept the input, thus the state machine switches the active branch to the destination of said
transition.

Figure 3.5: How the active state processes the remaining input.

Figure 3.5 visualizes the process how all four described scenarios are incorporated into the state
machine logic. The chart illustrates how the input is processed and under which conditions an error is
generated.

Figure 3.6 visualizes how an input like “?” is handled and what result it yields, when giving the
input to the state machine in figure 3.4. The left half visualizes the decision process involving the top
transition, which is checked first. The right half shows what happens when trying the bottom transition.
The “parse”-block will try to match the acceptor of the first transition “only” with the input “?”, but it fails.
The “is last” then returns true if this was the last transition, originating from the active branch that was not
tried. In this case, there is still one more transition that can be tried out. But the bottom transition does not
accept the input “?” either. In addition, there is no other transition that can be tried. Thus, the process
will reach the “syntax error”-block. This terminates the state machine and returns an syntax error that an
unexpected character is encountered.
The input “on” covers the second scenario. When trying to match the input with the top acceptor that
accepts “only”, it will result in a “incomplete” result. This means the input does not satisfy the acceptor,
but might match it, if more input was available. Figure 3.7 shows how that is handled. The first condition
can split between three values: “success”, “failure”, and “incomplete”, which is further explained in section
3.2.1. The result is that the state machine does not switch to the destination state of the given transition,
but terminates at the current state.

The third scenario does not depend on the input entirely, but also on the semantic environment of
the state machine, as well as the specific look up that each state performs. For scenario 3, it is assumed
that the user input is ”Tests” that there is no variable already defined with that name, and that the bottom

CHAPTER 3. ARCHITECTURE AND DESIGN 16

Figure 3.6: How scenario 1 is handled by the state machine.

Figure 3.7: How scenario 2 is handled by the state machine.

branch of the current state matches the input against already defined variables. Given the input “Tests” the

CHAPTER 3. ARCHITECTURE AND DESIGN 17

first parser fails and switches to the next transition as seen in the left half of figure 3.6. Then, the bottom
acceptor matches the input and the process continues to perform a semantic lookup. This post-processing
of the transition tries to find a variable with the given name, but fails. Thus, the lookup fails and the state
machine terminates while returning a semantic error: “Unknown variable: Tests”

Figure 3.8: How scenario 3 is handled by the state machine.

The last scenario is similar to the third one. It simply differs in the result of the lookup. Consider the
same semantic environment, as in the scenario before, but the input is changed to “Controller”. When
the input is given to the state machine, the process takes a very similar flow as described in the previous
example. The only difference is that the specific semantic lookup connected to the transition, can only
match the input with a variable that was already specified. Thus, it does not fail and no semantic error is
generated. Instead, the state machine switches its active state to the destination of the transition.

Figure 3.9: How scenario 4 is handled by the state machine.

3.2.3 Transition Post Processor
As already explained in 3.2.2 a semantic look-up is needed to ensure proper functionality. This is added
to the state machine in the form of a post process that is added to each transition individually. This is a

CHAPTER 3. ARCHITECTURE AND DESIGN 18

simple routine that is executed if a transition’s acceptor matches the input of the state machine successfully.
The post process has access to the semantic environment, as well as the input parsed by the transition’s
acceptor. The post process cannot only access the environment, but also modify it, and also change the
flow of the state machine. This means that it can cause the state machine to abort and return an error
instead of switching the current state to the destination of the transition, which would happen usually if
the acceptor matches the input. Examples can be seen in section 3.3 where the configuration of the state
machine for Dicto is explained in more detail.

3.2.4 Suggestors
This is the component relevant for the core feature of the state machine: Generating suggestions. This
means the state machine returns a set of possible completions for the end of the given input, which is
assumed to be the cursor’s position. The suggesting part of the solution executes after the state machine
has processed the input and terminated at a specific state, without an error occurring. This state and its
transition define the suggestions returned by the state machine. For this reason each transition has another
component attached, which is referred to as “suggestor” for the rest of the thesis. The function of the
suggestor is to generate a set of possible satisfying inputs for the given transition. The state in which the
state machine terminated, combines the sets of its originating transition to a final set. Then, this set is
returned to the user. The suggestor can be static having its result already specified, when the state machine
is created. The other possibility is that the suggestor depends on the semantic environment and generates
it’s set after the state machine has terminated.

Figure 3.10: An example state machine.

CHAPTER 3. ARCHITECTURE AND DESIGN 19

Figure 3.10 represents a state machine that already terminated in state A. There are three transitions
originating from the marked state. The first accepts the keyword only. The second accepts an entity
followed by a equal sign. On a semantic level, we assume that the transition expects a variable name that
is not defined yet. The third transition accepts an entity. Semantically, we assume a name of an already
defined variable is expected. To return a meaningful set of suggestions, the state will receive a set from
each of the three transitions and then merge the results into one set. This set is returned to the user.

In our example, the top transition’s suggestor returns a set, which contains the single element “only”.
As the transition simply matches a keyword, the suggestor is static. There is no semantic information
needed for this suggestor. The second transition matches undefined variable names. This means that there
are certain possibilities that we can exclude from the set, namely all defined variable’s names. But guessing
possible variable names is difficult or nearly impossible. For the simple purpose of this example, the second
transition returns an empty set. The last transition matches known variables. This is information stored in
the environment of the state machine. Thus, the suggestor can access this information and assemble a set
of variable names, as the origin state requests it. Lastly, the state combines these three sets to a single one,
containing the keyword “only” and all variable names of already defined variables. A possible outcome of
this example can be seen in 3.11.

Figure 3.11: A possible outcome of the above example.

3.2.5 Environment
For the process described in 3.2.2 to function, an environment needs to be added to the state machine. The
responsibility of this component is to provide semantic information. In the case of Dicto, this involves
variable types and their arguments, predicates and the variable types they work with, as well as variables
including their types and attributes. In addition, the environment contains a small key-value map that stores
Strings. This cache lets post processes and store and read data, to be used by other states and transitions.
An example explains the use of the cache in the environment further

Figure 3.12: An example state machine.

In figure 3.12 a state machine is shown that maps the variable definition statement of Dicto.

Controller = Package with name: "org.app.controller"

CHAPTER 3. ARCHITECTURE AND DESIGN 20

The first transition maps the variable name “Controller” and then stores it in the cache of the environ-
ment. The same happens for the variable type “Package”. This continues until the end of the statement.
Then all the information is read from the cache and assembled into a variable that then is inserted back
into the environment.

3.3 Dicto Specific State Machine
In subsection 3.2 the functionality and components needed for autocompletion are explained. Next,
components are assembled to build a state machine that can generate suggestions for the Dicto language.
In this chapter it is explained which states and transitions are assembled to the final state machine. For
better understandability, this process is separated into two parts, covering the two statements entity and
rule separately.

3.3.1 Entity
In this statement a new variable is defined. An example for this kind of statement would be:

Model = Package with name: "org.app.model"

A variable consists of 3 main parts.

name a unique name given to the variable.

type a variable type that can be chosen out of a known set of existing variable types defined at the
construction of the state machine.

attributes a set of key-value pairs. Possible attribute names depend on the variable type.

Figure 3.13: The first part of the entity statement mapping the variable name.

Figure 3.13 shows the first transition of this part of the state machine. It matches an entity, namely
the variable name, followed by a equal sign as required by the Dicto syntax. The post processor of this
transition needs to do two different steps.

1. The post processor needs to check if there is already a variable with the specified name defined. If
this is the case, a semantic error must be raised. This ensures that all variables have unique names.

CHAPTER 3. ARCHITECTURE AND DESIGN 21

2. The post processor must store the input that is matches with the entity in the cache of the environment.
Later, when the statement is complete this information is accessed to assemble the new variable and
insert it in the environment.

The suggestor for this transition returns an empty set. As the new variable name is not known to the
environment and there is no way to reliably guess it, nothing can be suggested.

Figure 3.14: The second part of the entity statement mapping the variable name.

Figure 3.14 covers the second part of the statement. Here the user can choose between available
variable types. Each variable type gets its own state and transition. These can differ from instance to
instance, but remain the same through the life cycle of the state machine. All these transitions have simple
post processors and suggestors. Each post processor stores the variable type in the cache of the environment
for the same reason as the variable name was already stored. The suggestor for those transitions simply
returns a set, only containing the variable type’s name as single element. There needs to be a last transition
added. This transition is last in the list of transitions and again accepts an entity. The only reason for this
transition is to raise an semantic error, if the user uses a unknown variable type. Assume that there are
only two variable type: “Package” and “Class”. Now without this last transition, if the user types:

Controller = Method

The state machine would raise an syntax error: “unexpected character: M at index 14.” If we now add
this transition and let its post processor unconditionally raise an semantic error. The result from the input
would be: “unknown variable type: Method”, which is the wanted outcome in this scenario.

Following this up is the keyword “with”. The corresponding transition can be seen in figure 3.15.

This transition does not need post processing because this part of the state machine is completely syntax
dependent. In addition, this means that the suggestor is as well of static nature. It returns a single element
set containing only the keyword itself “with”. The last part of the statement consists of the attributes of the
variable, which are defined in a list using key value pairs separated by commas.

In figure 3.16 can be seen that all attributes are separated using a comma. Attribute name and value
themselves are separated using a colon. The only post processor and suggestor worth mentioning belong

CHAPTER 3. ARCHITECTURE AND DESIGN 22

Figure 3.15: The third part of the entity statement mapping the keyword “with”.

Figure 3.16: The fourth part of the entity statement mapping the variable’s attributes.

to the transition mapping the attribute’s name. The post processor looks up the variable type already stored
in the cache and its related attributes. Afterwards it checks if the attributes used in the statement match the
ones of the type in use. The corresponding suggestor works similar to the post process, as it simply returns
a list of possible attribute names, associated with the already specified variable type, which is accessed the
same way as in the post process.

The last transition that needs mentioning is the transition that leads back to the first state. The user
finishes the entity statement and then switches to the next line to begin a new statement. This transition
that accepts a new line, is very important. Its post process accesses all already stored information in the
environment’s cache, which are variable name and variable type. Then it assembles these pieces and inserts
it into the environment’s set of defined variables. Afterwards, it cleans the cache so that it can be used
again by the next statement’s post processes.

3.3.2 Rule
The rule is the second statement one can write in the Dicto Language. An example is:

Controller cannot depend on Model

This form of statement consists of 4 parts

1. subject(s)

CHAPTER 3. ARCHITECTURE AND DESIGN 23

2. mode

3. predicate

4. object(s)

A rule can contain one or more subjects. If using multiple subjects, it must be ensured that all of them
are of the same type. Figure 3.17 shows how the state machine accepts the statement’s subjects. The first
subject, the user types, is accepted by the left-to-right arrow. It’s post process is pretty straightforward:
It looks the given subject up in the list of defined variables. If the variable is not in the environment, a
semantic error is generated and the state machine terminates. Otherwise, the variable is stored in the
environment’s cache for later usage. The suggestor of this transition simply assembles a list of all variables
that were defined.

Figure 3.17: The part of the state machine that maps the rule’s subjects

The transition downwards accepts a comma. There is no need to add any post process or suggestor.
The transition upwards accepts again a subject. The transition differs from the one that was explained first,
because it must ensure that its subject’s type is identical to the type of the first subject. This means that its
post process does everything the first transition’s post process does, but additionally accesses the cache to
look up the first subject and compare the type. If the comparison fails, again a semantic error is raised and
the state machine is terminated. The suggestor of the transition going upwards again returns a set of all
defined variables in the environment, but first filters them. It removes all variables from the set that do not
share the type with the first subject.
After the user has specified all his subjects, he continues to specify the mode he wants to use. At this point
three different modes are available. The related state machine diagram for this part of the statement can be
seen in figure 3.18.

These transitions all have similar post processes and suggestors. The post process simply stores the
chosen mode in the environment’s cache. The suggestor returns a set with the specific mode as sole
element. From here the user continues specifying the predicate. The predicates are predefined by the
environment and never change as long as the state machine exists. Accepting predicates need to be handled
different than accepting entities or keywords. A predicate can consist of multiple, whitespace separated
words including special characates as “>”. A few examples of predicates are:

depend on
contain text
have latency <

CHAPTER 3. ARCHITECTURE AND DESIGN 24

Figure 3.18: The part of the state machine that maps the rule’s subjects

This makes the creation of a generic acceptor that can handle all possible predicate names very difficult.
For this reason the or acceptor is used that is described in section 3.2.1, which is used to concatenate
all predicate names. This is done once, when the state machine is created. It is possible to make this
static acceptor, because there is no way to change predicates using a Dicto statement. Using this approach
makes the post-process rather simple. It looks up the given predicate and matches it with the subject’s
variable type. This is necessary because predicates only work with a specified set of variable types. If this
fails, a semantic error is raised and the state machine is terminated. The suggestor returns the set of all
predicates known to the environment, but filters them using the subject’s type. The corresponding diagram
can be seen in figure 3.19. The last part of the rule statement consists the objects. These are either integers,

Figure 3.19: The part of the state machine that maps the rule’s subjects.

strings, or other variables. Here are a few examples using all possible object types:

Model cannot depend on View, Controller
Google must have latency < 1

CHAPTER 3. ARCHITECTURE AND DESIGN 25

BuildFile must contain text "foobarbaz"

A relevant point is that each predicate can only have one object type. This means that the states that parse
the objects, are quite similar to those, which parse the rule subjects. The relevant part of the state machine
is visualized in figure 3.20 The state machine branches into three similar sub branches. Each is responsible

Figure 3.20: The part of the state machine that maps the rule’s objects.

to match a specific object type. The first two branches match integers and strings. Those do not need post
processes, nor suggestors. The third branch takes variables as objects, as in the first example statement.
Again, if multiple objects are given, it must be ensured that all objects share a common variable type. In
addition, the predicates request a specific type. For this the first transition parses a variable. The post
process of the given transition looks up the specified variable name in the environment. If it can’t be found,
a semantic error is generated and the state machine is terminated. In addition, it matches the variable type
of the given variable against the allowed types, specified by the predicate. If this does not hold, the process
of generating suggestions is aborted and a semantic error is returned. Lastly, the variable is stored in the
cache of the environment. The suggestor simply returns a set of known variables, which share the type
with the allowed types, specified by the predicate. The transition that goes back to the intermediate state
works in a very similar way.

3.3.3 Only Can Rule
This is a sub form of the normal rule statement. Its syntax differs, but semantically it is the same. An
example for this kind of rule is:

only Tests can access Model

What is significant in this kind of statement, is that the mode “only can” encapsulates the subject. So we
need to extend our state machine to handle this special case. The corresponding diagram is visualized in

CHAPTER 3. ARCHITECTURE AND DESIGN 26

Figure 3.21: The complete state machine.

figure 3.21. The above half of the diagram matches the the beginning of the “only can” rule:

only Tests can

The transition that matches the keyword “only” has similar post process and suggestor as the transition that
matches the keyword “with” in section 3.3.1. In detail, the transition has no post process and the suggestor
statically returns a single element set containing “only”. The handling of the subject and the predicate
is working exactly the same as the corresponding part in the normal rule statement which can be read in
more detail in section 3.3.2.

3.3.4 Complete state machine
Now that all parts of the state machine are explained in detail. Each component can be assembled to the
complete state machine seen in figure 3.22.

CHAPTER 3. ARCHITECTURE AND DESIGN 27

Figure 3.22: The complete state machine.

4
The Validation

Most IDEs can handle autocompletion in a very short amount of time. This means after the user enters
his input, the suggestions pop up instantaneously, or with a barely noticeable delay. This implemented
solution needs to provide its service in a comparable time frame.
For this purpose, three test scenarios were set up. Each scenario was run a thousand times and the measured
times were averaged to ensure meaningful results.

4.1 Scenarios
The load tests were set up in a way that three different variables could be examined. The first variable is
the input size. Whenever the client sends a request to the user, it needs to include all the Dicto statements
the user has written up to the cursor’s position. From this it follows that the delay the user experiences,
after the request was sent, increases with the amount the user writes. To ensure that even bigger files can
be handled, all tests will be run with a range of inputs, the largest having 50000 statements.
Next, a limiting factor was seen in the semantic environment of the state machine. A larger number of
variable types and variables might increase lookup times. Having to do many of these lookups during
parsing, the state machine could slow down.
Lastly, the network might limit the solution. Having to send all the text, each time the user needs code
completion, might slow down things when client and server are not running on the same machine, but only
in the same local area network.

To test the performance of Dicto autocompletion three different scenarios will be introduced. Each
scenario will be run using differently sized inputs. The smallest input includes 1000 Dicto statements,
whereas the largest input has 50000 statements.

4.1.1 Localhost scenario
This scenario was set up as comparison to the following two scenarios. In this scenario both server and
client are set up on the same machine. The reason for this is to eliminate the delay a network connection
would cause. When running this scenario the delay will mostly result from the time the state machine needs

28

CHAPTER 4. THE VALIDATION 29

to parse the input, and this means that its performance can be evaluated. Additionally, the environment
was set up with very few variable types.

4.1.2 Big environment scenario
This scenario was introduced to evaluate the performance loss a bigger amount of variable types would
have. For this reason, a test scenario was set up that was similar to the localhost scenario. The difference
between the two scenarios is that the number of variable types was increased to 50000. This number is not
reasonable, but if the state machine is fast enough in this scenario, it will be able to handle all real work
application regarding environment size. Also, the inputs were set up to access the added variable types.

4.1.3 One Hop scenario
In this scenario, the effect of the network will be investigated. Server and client were separated using a
standard 1 Gbit ethernet switch, so the tests would use the same environment and inputs that the localhost
scenario already uses to ensure a meaningful comparison between them.

4.2 Results

4.2.1 Localhost
Figure 4.1 displays the measured times for the localhost scenario. The graph shows that growing input
sizes increase the processing time of the back end in linear fashion. 10000 statements take around 0.005
seconds, while 50000 take 0.02 seconds. Deduced from that, it can be said that every 10000 statements
increase the delay by around 0.005 seconds.
The literature indicates that the user perceives delays that does not exceed 0.1 seconds as immediate. In

Figure 4.1: The test results of the localhost scenario.

CHAPTER 4. THE VALIDATION 30

this scenario, this threshold is reached around 250000 statements. This would be a very big input file and
not plausible to be reached in any real world application. Even 10000 statements seem to be an exagger-
ation. In this scenario the solution is surely fast enough to satisfy the user’s demand regarding performance.

But those results are not very informative. Firstly, using a very small environment can sugar-coat the
results to look better than they actually are and, secondly, without knowing the influence of a network
based set up, these test results limit the solution to a very specific and small set of use cases. More tests
need to be run and pass before the solution can be considered applicable.

4.2.2 Big environment
In this subsection the second scenario is compared to the localhost scenario. This is needed to understand
which influence the size of the environment has on the performance of the solution.
Figure 4.2 includes the results of the second scenario and as well as the results of the localhost scenario.

Figure 4.2: The test results of the big environment scenario compared to the localhost scenario

The graph shows that the processing time of the state machine changes significantly if a bigger environment
is used. In the second scenario, it takes around 0.01 seconds to process 10000 statements. For 50000
statements it needs around 0.045 seconds. This means that the time needed to process an input increases
by around 0.0075 seconds per 10000 statements.

Those numbers are much bigger compared to the localhost scenario, but still very low. In this new
scenario, the 0.1 second threshold will be reached at around 100000 to 125000 statements. As already
explained, these dimensions of inputs are not in the range of anything expected.

Additionally, it can be argued that the size of the environment is out of range of anything expectable. Real
life environments might reach the hundreds, but those would already be considered huge. As conclusion, it

CHAPTER 4. THE VALIDATION 31

can be said that this second scenario shows that the size of the environment has only a very small impact
on the performance of the implemented solution and that it can be neglected.

4.2.3 One Hop network
In this subsection, the effects of a setup, using the network will be discussed. Figure 4.3 visualizes the
results of the third test scenario alongside the results of the localhost scenario. On first glance, it can be
seen that the network has a serious impact on the performance of the solution.
10000 statements are processed in around 0.075 seconds. For 50000 statements the state machine takes

Figure 4.3: The test results of the 1 Hop scenario.

around 0.4 seconds. It can be deduced that every 10000 statements increase the processing time by around
0.08 seconds. This means that the threshold of 0.1 second is reached faster, namely, at 10000 to 150000
statements.
The results for the network scenario are larger compared to the localhost scenario by factor 19.14. In
other words, in the third scenario, the network causes 95% of delay. This identifies the network as
a main bottleneck of the solution. In addition, the scenario only tests the set up in an unused network
with only one intermediate switch. It can be argued that the delay in a real local network will be much larger.

The usability of the solution is mainly restricted by network speed and input size. But delay only
gets troublesome when reaching bigger input sizes. Having Dicto documents containing 10000 statements
is not really expected at the moment, which means that the results of the load test can be seen positively.
The solution should be fast enough for most application in a restricted network environment.

5
Future Work

In this chapter of the thesis future additions to the project will be discussed. For this reason, the chapter is
organized into two sections. The first section examines improvements to already existing features. The
second part of this chapter talks about features that are needed or wanted, but not implemented at this point
in time.

5.1 Improvements
Acceptors need to be provided for every path of the state machine. This means that many different acceptors
need to be created in the process of modelling a language. Providing a regular expression language to assist
creating the acceptors would bring a few benefits. Firstly, It would shorten the amount of code that is needed
to create a state machine, which increases readability. In addition, most programmers are familiar with
regular expressions. This would decrease the amount of work a programmer needs to get used to the project.

Additionally, this component is still missing quantifiers and other basic functionality that most regex
libraries provide. Adding those would shorten a lot of the acceptors that are created. For example,one
must combine the equivalent of “+” and “?” to create “*”. Extending the acceptors to support functionality
that is equivalent to the regular expressions of “*”, “{n}”, “{n, m}”, or “\w” would improve the usability
significantly.

5.2 Additional Features
Here we explain features that were discussed, but not yet implemented.

5.2.1 Response data
This is a basic feature that the user would benefit a lot from. At the moment, if the state machine parses
an input successfully, it returns the suggestions as a list of strings. Afterwards, the server then formats
that list as a JSON Array and sends this as a response, to the received request. Adding meta data to each

32

CHAPTER 5. FUTURE WORK 33

element of this list could improve usability of the solution. This means, instead of just returning a list of
suggestions, the response contains information, which element is a keyword, which is a variable, and so
on. For variables, the type, and the values of its attributes could be included. Providing this information to
the user on the fly could turn out to be very informative and valuable.

5.2.2 External Configuration
This is probably the most important point on this list. The current version of the implementation uses
a state machine with a hard coded configuration. This means that the variable types that exist in the
environment need to be compiled alongside the other code. This is only a temporary solution and should
to be changed as soon as possible. But much more functionality can be added to this feature. For example,
the server could support multiple different configurations. The server’s API could then provide a list of
all configurations and the client specifies the wanted configuration when sending the actual user’s input.
In addition, a client could add its one configuration remotely to the server. What the actual range of the
supported functionality needs to be is still debatable.

5.2.3 Code Highlighting
I mention code highlighting as an example for all the other useful features a normal IDE provides. The
user does not want to search for each feature he or she wants individually. He or she wants it as a complete
package. Adding more different features might increase the appeal of Dicto and this project to other
programmers. Of course, implementing a full IDE is not the scope of this project and providing a network
based IDE might not work, but it is still something that needs to be considered.

6
Conclusion

Taking a step back, one could say that the project was a success under the aspect of proving the concept.
The validation shows that code completion can work in a client server model. The test results show that
the network transmission causes roughly 95% of the delay the user experiences. In conclusion, finding
ways that enable the solution communicate in a more efficient fashion, should be the next option to be
explored. Otherwise, a few obvious improvements and additions were already mentioned in the previous
chapter 5. A challenging task was to keep up with a quickly changing language.

Looking at the project not as a solution, but as a process of development, I can say that I have much to
learn. Not only making sure that the project stays organized, but also keeping up morale is a task not to
be underestimated. Working on a project this size for the first time generates many points in time, when
one realizes that poor decisions were made - probably as often as correct ones. Developing a solution to a
specific problem and making sure it does not miss the target, are the main issues that I stumbled upon not
only once, but more times that I can count.

In the end, I can say that I learned a lot as programmer and as person: Writing Unit tests as soon
as possible can save you a lot of time and frustration, the amount of refactoring needed for a project that I
consider to be small is immense, and lastly I improved a lot at focusing on the main features instead of
losing myself in little “side quests”. I am very proud that I was able to create my own working project and
consider it a success.

34

7
Anleitung zu wissenschaftlichen Arbeiten

In this chapter I introduce the implemented solution. First, there is an quick overview over most of the
classes. Sections 7.2 to 7.5 explain how to build and use a state machine. The last two sections cover the
server and a front end demo.

7.1 Overview
Figure 7.1 covers the model component of the implementation. It represents the semantic information a
language can have and provides an Environment class.

Variable represents a variable defined by the Dicto language. It contains a variable type as well as the
variable’s name.

VariableType specifies which arguments a variable of its type can use. In addition, it contains the
name of the represented variable type.

Rule is an enum representing all the modes available in Dicto: can not, only can, etc.

Predicate represents a predicate like “can access” or “depends on”. It contains a list of all variable
types compatible with the given Dicto predicate.

Environment manages all variables and variable types available in a context.

Figure 7.2 shows all classes that make up a state machine.

StateMachine represents a complete state machine. It contains a single State which is its initial
state. It provides a method that takes a Context and Environment object as input and returns a
StateMachineResult object.

StateMachineResult is returned by the StateMachine and indicates whether it accepts the
input or not. Depending on that condition this object either contains an error message or a list of
suggestions.

35

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 36

Figure 7.1: The uml class diagram of the model classes.

State is a collection of all Paths originating from the given state. It also contains methods that determines
which Path accepts a given input.

AfterSuccessAction is an interface. An implementation is provided to each Path. The implemented
apply method is executed after the Path’s Acceptor accepted an input.

Suggestor is an interface. A subclass is given to each Path. When the state machine terminates
successfully these are used to provide partial lists for suggestions. These lists are combined to a
definitive list by the state the machine was in when it terminated.

Path represents a connection between two states. Additionally it provides Acceptor,
AfterSuccessAction, and Suggestor objects.

StateResult is returned by a state and indicates whether the state machine can transition from the
state.

Figure 7.3 contains all classes implemented for the tri-valued parsing component. Section 7.2 covers
all the classes and their responsibility in detail.

Figure 7.4 shows all the classes needed to model the Dicto language. The Dicto class is a builder for
the actual StateMachine object and the only method relevant is the build method. The remaining
classes are implementations of AfterSuccessAction or Suggestor.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 37

Fi
gu

re
7.

2:
T

he
U

m
lc

la
ss

di
ag

ra
m

of
th

e
st

at
e

m
ac

hi
ne

cl
as

se
s.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 38

Fi
gu

re
7.

3:
T

he
U

m
lc

la
ss

di
ag

ra
m

of
th

e
pa

rs
er

s.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 39

Figure 7.4: The Uml class diagram of the Dicto classes.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 40

7.2 Acceptors
This component is responsible for parsing the input regarding syntactic information. It implements the
functionality described in section 3.2.1. The base class for implemented Acceptors has one method
of importance, as seen in figure 7.5. The parseOn method takes a Context object and returns an
AcceptorResult object. The parseOn method has no implementation in the Acceptor class. It
is implemented differently by all the various subclasses discussed later. The full code can be found at
http://github.com/grushnakk/DAWS

package ch.unibe.scg.dicto.parser;

/* imports */

public abstract class Acceptor {

public abstract AcceptorResult parseOn(Context context, AcceptorResult result);

/*
* ...

*/
}

Figure 7.5: An extract of the Acceptor base class.

Context, as outlined in figure 7.6, is a simple class that combines a String with an index. The
String is the whole input, while the index indicates where the Acceptor needs to start parsing the
code. It provides different methods to access the underlying String such as currentChar, charAt,
and substring.

The Context is not updated by the Acceptor automatically. This needs to be done by calling the
Context’s apply method passing the given AcceptorResult. If the index of the Context object is
the same value as the AcceptorResult’s begin index, it will set the index to the AcceptorResult’s
end index.

The AcceptorResult holds information about the outcome of the Acceptor’s attempt to parse the
input. Firstly, it contains the information if the Acceptor was able to parse the Context starting at its
current index. Depending on that, the AcceptorResult’s type is set to either FAILURE, SUCCESS,
INCOMPLETE, which is according to the described functionality in 3.2.1.

Further, the AcceptorResult holds information about how much of the Context was parsed by
Acceptor providing a start position and an end position.

http://github.com/grushnakk/DAWS

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 41

package ch.unibe.scg.dicto.parser

/* imports */

public class Context {

public Context(String content) {/* code */}

/**
* returns the character the current index is pointing at.

*/
public char currentChar() {/* code */}

/**
* returns the character at the given index.

*/
public char charAt(int index) {/* code */}

/**
* returns the size of the given content String.

*/
public int size() {/* code */}

/**
* returns the size of the given content String starting at the current index.

*/
public int sizeLeft() {/* code */}

/**
* returns the current index.

*/
public int getCurrentIndex() {/* code */}

public String substring(int length) (/* code */}

public String substring(int start, int end) {/* code */}

public void apply(AcceptorResult result) {/* code */}
}

Figure 7.6: An extract of the Context class.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 42

package ch.unibe.scg.dicto.parser;

/* imports */

public class AcceptorResult {

public static enum Type { FAILURE, SUCCESS, INCOMPLETE; }

public Type getType() {/* code */}

public int getBeginPosition() {/* code */}

public int getEndPosition() {/* code */}

public String getRegion(String key) {/* code */}

/*
* ...

*/
}

Figure 7.7: An extract of the AcceptorResult class.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 43

7.2.1 RangeAcceptor and NegativeRangeAcceptor
The first subclasses are the RangeAcceptor and NegativeRangeAcceptor class. Both parse only
a single character. The first of the two classes only accepts a character, which is contained by a given set.
The second class does the opposite: It accepts any character except the ones in the given set.

public ch.unibe.scg.dicto.example;

import ch.unibe.scg.dicto.parser.*;

public class RangeAcceptorExample {

public static void main(String[] args) {
RangeAcceptor rangeAcceptor = new RangeAcceptor("0123456789");
/*
* STATEMENT 1

*/
rangeAcceptor.parseOn(new Context("3")).getType();
/*
* STATEMENT 2

*/
rangeAcceptor.parseOn(new Context("34")).getType();
/*
* STATEMENT 3

*/
rangeAcceptor.parseOn(new Context("")).getType();
/*
* STATEMENT 4

*/
rangeAcceptor.parseOn(new Context("a")).getType();

}
}

Figure 7.8: An example on how the RangeAcceptor works.

The example in 7.8 illustrates how to utilize the RangeAcceptor class. Since this type of
Acceptor only accepts a single character, the first two statements have the same result, when exe-
cuted: Both succeed by parsing the “3”. Statement 3 returns the type incomplete since the parser tries
to accept a character, but there is no input left in the Context. The last statement will fail because the
character “a” is not contained by the string passed in the constructor.

7.9 shows an example on how to use the NegativeRangeAcceptor class. It works similar as the RangeAc-
ceptor. The only difference is that this class only accepts a character that is not contained by the String
parameter in the constructor.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 44

public ch.unibe.scg.dicto.example;

import ch.unibe.scg.dicto.parser.*;

public class RangeAcceptorExample {

public static void main(String[] args) {
RangeAcceptor rangeAcceptor = new RangeAcceptor("0123456789");
/*
* STATEMENT 1

*/
rangeAcceptor.parseOn(new Context("3")).getType();
/*
* STATEMENT 2

*/
rangeAcceptor.parseOn(new Context("34")).getType();
/*
* STATEMENT 3

*/
rangeAcceptor.parseOn(new Context("")).getType();
/*
* STATEMENT 4

*/
rangeAcceptor.parseOn(new Context("a")).getType();

}
}

Figure 7.9: An example on how the NegativeRangeAcceptor works.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 45

7.2.2 StringAcceptor
The StringAccepted class is initialized using a String as constructor input. When parsing, the
Acceptor succeeds if the Context contains the given String starting at the Context’s index. If
the input ends before the whole String can be read, but the characters still match, INCOMPLETE will be
returned.

public ch.unibe.scg.dicto.example;

import ch.unibe.scg.dicto.parser.*;

public class StringAcceptorExample {

public static void main(String[] args) {
StringAcceptor stringAcceptor = new StringAcceptor("Bachelor");
/*
* STATEMENT 1 + 2: SUCCESS

*/
stringAcceptor.parseOn(new Context("Bachelor")).getType();
stringAcceptor.parseOn(new Context("Bachelor Thesis")).getType();
/*
* STATEMENT 3: INCOMPLETE

*/
stringAcceptor.parseOn(new Context("Bachel")).getType();
/*
* STATEMENT 4: FAILURE

*/
stringAcceptor.parseOn(new Context("Bachek")).getType();

}
}

Figure 7.10: An example on how the StringAcceptor works.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 46

7.2.3 RepeatAcceptor
The RepeatAcceptor takes a delegate acceptor and parses it multiple times. It expects that the delegate
Acceptor will succeed at least once. Otherwise, the RepeatAcceptor will return FAILURE. If the
last time, the delegate Acceptor is run, returns INCOMPLETE, it will return INCOMPLETE as well.

public ch.unibe.scg.dicto.example;

import ch.unibe.scg.dicto.parser.*;

public class RepeatAcceptorExample {

public static void main(String[] args) {
RepeatAcceptor repeatAcceptor = new StringAcceptor(new StringAcceptor("abc"));
/*
* STATEMENT 1 + 2: SUCCESS

*/
repeatAcceptor.parseOn(new Context("abc")).getType();
repeatAcceptor.parseOn(new Context("abcabc")).getType();
/*
* STATEMENT 3 - 5: INCOMPLETE

*/
repeatAcceptor.parseOn(new Context("")).getType();
repeatAcceptor.parseOn(new Context("ab")).getType();
repeatAcceptor.parseOn(new Context("abca")).getType();
/*
* STATEMENT 6: FAILURE

*/
repeatAcceptor.parseOn(new Context("d")).getType();

}
}

Figure 7.11: An example on how the RepeatAcceptor works.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 47

7.2.4 OptionalAcceptor
The OptionalAcceptor takes a delegate Acceptor. It runs the given Acceptor. If the delegate
returns FAILURE, the OptionalAcceptor simply returns an AcceptorResult where begin index
and end index are the same and the type is set to SUCCESS. If the delegate returns something else, it
simply passes the result on.

public ch.unibe.scg.dicto.example;

import ch.unibe.scg.dicto.parser.*;

public class OptionalAcceptorExample {

public static void main(String[] args) {
OptionalAcceptor optionalAcceptor =

new OptionalAccecptor(new StringAcceptor("abc"));
AcceptorResult result = null;
/*
* STATEMENT 1

*/
AcceptorResult result = optionalAcceptor.parseOn(new Context("abc"));
result.getType(); //SUCCESS
result.getBeginIndex(); //0
result.getSize(); //3
/*
* STATEMENT 2

*/
result = optionalAcceptor.parseOn(new Context(""))
result.getType(); //SUCCESS
result.getBeginIndex(); //0
result.getSize(); //0
/*
* STATEMENT 3

*/
result = optionalAcceptor.parseOn(new Context("bcd"))
result.getType(); //SUCCESS
result.getBeginIndex(); //0
result.getSize(); //0

}
}

Figure 7.12: This example shows how the OptionalAcceptor class works.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 48

7.2.5 ChainAcceptor
The ChainAcceptor takes an array of two or more Acceptors when initialized. This Acceptor
succeeds parsing an input if all delegate parsers succeed. This means that the context is given to the
first delegate parser. If that parser fails, parsing aborts and FAILURE is returned. But if it succeeds, the
context’s index is updated and the second Acceptor parses the input. This is done until all delegate
parsers succeed or one returns FAILURE or INCOMPLETE. The Context passed by the user, will not
be altered. Instead the ChainAcceptor will create a copy of the given Context.

public ch.unibe.scg.dicto.example;

import ch.unibe.scg.dicto.parser.*;

public class ChainAcceptorExample {

public static void main(String[] args) {
ChainAcceptor chainAcceptor = new ChainAccecptor(

new RangeAcceptor("abc"),
new RangeAcceptor("012"));

AcceptorResult result = null;
/*
* STATEMENT 1

*/
AcceptorResult result = chainAcceptor.parseOn(new Context("a1"));
result.getType(); //SUCCESS
/*
* STATEMENT 2

*/
result = chainAcceptor.parseOn(new Context("a3"))
result.getType(); //FAILURE
/*
* STATEMENT 3

*/
result = chainAcceptor.parseOn(new Context("b"))
result.getType(); //INCOMPLETE

}
}

Figure 7.13: This example shows how the ChainAcceptor class works.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 49

7.2.6 RegionAcceptor
This Acceptor does not introduce any parsing functionality, but a way to mark certain parts of the
parsed input. The RegionAcceptor is handed a key and an acceptor when initialized. When pars-
ing, the RegionAcceptor simply delegates to the Acceptor. If this Acceptor succeeds, the
RegionAcceptor creates a substring of the input using the result’s begin and end index. Then the value
is stored in the AcceptorResult using the given key.

public ch.unibe.scg.dicto.example;

import ch.unibe.scg.dicto.parser.*;

public class RegionAcceptorExample {

public static void main(String[] args) {
RegionAcceptor regionAcceptor =

new RegionAccecptor("Key", new StringAcceptor("Value"));
ChainAcceptor chainAcceptor = new ChainAcceptor(

new StringAcceptor("<"),
regionAcceptor,
new StringAcceptor(">"));

AcceptorResult result = null;
/*
* STATEMENT 1

*/
AcceptorResult result = chainAcceptor.parseOn(new Context("<Value>"));
result.getType(); //SUCCESS
result.getRegion("Key"); //Value

}
}

Figure 7.14: This example shows how the RegionAcceptors class works.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 50

7.2.7 Building Acceptors
The abstract Acceptor class implements a few methods to facilitate creating complex acceptors as
shown in example 7.15. The repeat method returns a RepeatAcceptor that uses the given ac-

public abstract class Acceptor {
/*
* ...

*/

public Acceptor repeat() { /* code */};

public Acceptor optional() { /* code */};

public Acceptor region(String key) { /* code */};

public Acceptor chain(Acceptor... acceptors) { /* code */};
}

Figure 7.15: Utility methods of the Acceptor class.

ceptor as a delegate. This means that new RepeatAcceptor(someAcceptor) is equivalent to
someAcceptor.repeat(). Methods optional and region work in a similar fashion.
chain() creates a new ChainAcceptor that is initialized with an array of delegate acceptors. The
first element is the object that method was invoked on. The next elements are the acceptors specified in
the parameters. For example, someAcceptor.chain(acceptor1, acceptor2) is equivalent to
new ChainAcceptor(someAcceptor, acceptor1, acceptor2).
Also included is the Acceptors class that supports a few static methods and values to improve writ-
ing composite acceptors. It offers static Strings that can be used to initialize a RangeAcceptor
which cover letters, digits and white space. It also offers factory methods to create RangeAcceptor,
NegativeRangeAcceptor and StringAcceptor objects. Example 7.16 features a complex ac-
ceptor.
It is important to note that all acceptors are stateless and can be reused within the state machine.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 51

public ch.unibe.scg.dicto.example;

import ch.unibe.scg.dicto.parser.*;

public class AcceptorsExample {

public static void main(String[] args) {
/*
* the following composite acceptor parses an simple identifier

* followed by a equal sign.

*/
Acceptor idAcceptor = range(RANGE_LETTERS)

.chain(range(RANGE_LETTERS + RANGE_DIGITS).repeat().optional());
Acceptor assignAcceptor = idAcceptor.region("REGION_KEY")

.chain(range(RANGE_WHITESPACE).optional(), string("="));
AcceptorResult result = null;
/*
* STATEMENT 1

*/
result = assignAcceptor.parseOn(new Context("variable01="));
result.getType(); //SUCCESS
/*
* STATEMENT 2

*/
result = assignAcceptor.parseOn(new Context("variable01\t\n="));
result.getType(); //SUCCESS
/*
* STATEMENT 3

*/
result = assignAcceptor.parseOn(new Context("variable01"));
result.getType(); //INCOMPLETE
/*
* STATEMENT 3

*/
result = assignAcceptor.parseOn(new Context("variable01\t\n"));
result.getType(); //INCOMPLETE
/*
* STATEMENT 4

*/
result = assignAcceptor.parseOn(new Context("variable01 :"));
result.getType(); //FAILURE

}
}

Figure 7.16: An example using a more elaborate Acceptor

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 52

7.3 Building a state machine
In my implementation state machines are defined in Java. To aid the programmer I created three builder
classes: StateMachineBuilder, StateBuilder, and PathBuilder. The most important one
of these three is the PathBuilder class because Paths have the most room for configuration. To create
a new state machine we start by creating a new instance of StateMachineBuilder:

StateMachineBuilder stateMachineBuilder = new StateMachineBuilder();

Each state has a name represented by a String. States can’t be referenced using its State object,
because we might reference it before it is created. More precisely, all states are created when the builder’s
build method is called. To grab a stateBuilder for a state we want to add to the state machine, we
simply call the state method of our StateMachineBuilder instance passing a String. Whenever
passing the same String, we will receive the same StateBuilder instance. For this reason, I highly
recommend using constant fields instead of magic values:

StateBuilder stateBuilder = stateMachineBuilder.state(INITIAL_STATE);

The next step would be creating a path originating from our INITIAL STATE. We create a PathBuilder
by calling the pathTo method passing a String referencing a state. We don’t need to have created a
corresponding StateBuilder before referencing a state because these references will be resolved when
the state machine is finalized.

PathBuilder pathBuilder = stateBuilder.pathTo(STATE_VARIABLE_TYPE);

Using the PathBuilder, we can specify multiple attributes of the path. For starters, we might want to
define the acceptor:

pathBuilder.accept(
idAcceptor.region(REGION_ID).chain(optionalWhitespace(), string("="))

);

All methods of the PathBuilder class return the PathBuilder instance to support method chaining.
Next we can define an action we want to execute after the path’s acceptor succeeds. For this purpose we
pass a custom implementation of the AfterSuccessAction interface to the PathBuilder.

pathBuilder.onSuccess(new StoreVarNameAction());

Below is the single method that needs to be implemented.

//StoreVarNameAction#apply
@Override
public StateResult apply(StateResult result, Environment env) {

String name = result.getAcceptorResult().getRegion(Dicto.REGION_ID);
//CHECK IF VAR ALREADY EXISTS
if(env.isVariableDefined(name))

return new StateResult("variable already defined: " + name);
//OK, ITS NEW SO LETS CACHE IT
env.writeCache(Dicto.CACHE_NEW_VAR_NAME, name);
return result;

}

It passes a StateResult containing the AcceptorResult and the destination state of the current
path, as well as the Environment containing variables and variable types, etc. Using this action we
can extract the variable name the user wants to use and proceed accordingly. We interrupt parsing if the
variable name is already in use and otherwise we write the variable name into the cache for later use.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 53

In addition, we want to add an Suggestor for each path. This can be done in two different ways.
Either call suggests passing a single String:

pathBuilder.suggests("with");

This method can be used when a path represents a keyword. Otherwise, we need to pass a custom
implementation of the Suggestor interface:

pathBuilder.suggest(new Suggestor() {
@Override
public List<String> suggestions(Environment env) {

List<String> suggestions = new ArrayList<String>();
for(VariableType type : env.getVariableTypes())

suggestions.add(type.getName());
return suggestions;

}
});

This would return a list with all variable names belonging to already defined variables. Another possibility
would to call neither of these methods. PathBuilder uses a default Suggestor implementation that
returns an empty list.

In additon, PathBuilder offers two methods: startWithOptionalWhitespace and
startWithWhitespace. These methods add white space acceptors before the actual acceptor. Other-
wise the user would need to do something of the kind:

pathBuilder.accept(whitespace()
.chain(

idAcceptor.region(REGION_ID).chain(optionalWhitespace(), string("="))
)

);

This would need to be done for almost all paths. The PathBuilder uses the startWithWhitespace
option on default.

After we are done defining our path, the PathBuilder instance needs to be told that we are done
by invoking the complete method. This needs to be done for every path.

The last thing to do is to tell the builder which state we are starting at. This is done by passing a
state reference to the startAt method:

stateMachineBuilder.startAt(INITIAL_STATE);

This can be done before the specific state was defined.

After we have defined all States and Paths, we can retrieve the complete state machine using the build
method of the StateMachineBuilder class. Example 7.17 wraps up this chapter.

7.4 Creating an Environment
After we build the state machine, we must provide all variable types and predicates. This is done using the
Environment class.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 54

StateMachineBuilder stateMachineBuilder = new StateMachineBuilder();
stateMachineBuilder.state(INITIAL_STATE).pathTo(STATE_VARIABLE_TYPE)

.accept(idAcceptor.region(REGION_ID).chain(optionalWhitespace(), string("=")))

.startWithOptionalWhitespace()

.onSuccess(new StoreVarNameAction())

.complete();
StateMachine stateMachine = stateMachineBuilder.build();

Figure 7.17: How to build a state machine using StateMachineBuilder.

7.4.1 Variable types
A variable type consists of three components: its name, its predicates and its attributes. Creating an
instance of VariableType thus requires a String representing the name, a List of Rule objects
which represent the predicates, and a list of Argument objects representing the attributes.

List<Argument> packageArgs = new ArrayList<>();
packageArgs.add(new Argument("name"));
List<Rule> packageRules = new ArrayList<>();
packageRules.add(new Rule("depend on", new ArrayList<Predicate>(){{

add(MUST);
add(CANNOT);
add(CAN_ONLY);
add(ONLY_CAN);

}}));
packageRules.add(new Rule("access", new ArrayList<Predicate>() {{

add(MUST);
add(CANNOT);
add(CAN_ONLY);
add(ONLY_CAN);

}}));
VariableType pack = new VariableType("Package", packageArgs, packageRules);

The code above creates the variable type “Package” that requires a “name” attribute and can be used
with the two predicates “access” and “depend on”. After creating all variable types we pass them to the
constructor of the Environment class as a list:

Environment env = new Environment(variables, types);

The variables parameter is also a list and should be empty. But it provides a way of adding predefined
variables.

7.5 Using the state machine
Now we have our environment and state machine, the next step is to give it input. The StateMachine
class provides the run method for this purpose. It takes a Context and a Environment object. and
returns a StateMachineResult object. The code below shows how to use the state machine properly.

final Environment env = ...
final StateMachine stateMachine = ...
StateMachineResult result = stateMachine.run(context, env.copy());

Note that the state machine is passed a copy of the original environment. The state machine modifies the
environment while running. So the Environment is implemented as a prototype to ensure reusability of

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 55

the same object. The state machine is completely stateless and can be run multiple times even at the same
time. The received result is either an instance of StateMachineError or StateMachineSuccess.
The underlying interface provides methods to retrieve either an error message via getErrorMessage()
or a list of suggestions via getSuggestions().

7.6 Server
I implemented a basic server accepting HTTP POST requests. For this purpose, I used the Java Spark
library[4]. It is a Sinatra1 style HTTP web server in combination with a JSON library2 provided by Eclipse.
The web service expects the Dicto code to be the body of the HTTP POST request. POST was chosen
over GET because most HTTP servers limit the data size a GET request can have. Returned will be a
list of suggestions as JSON. The return format could be easier, but I used JSON straight away because
the return format could be enhanced easily. In the future each element could be accompanied by meta
data giving further insight to the writer. The basic web server is the ch.unibe.dicto.WebService3

class located in the server project.

7.7 Demo
A small demo can also be found in the repository. It uses a Javascript library called Ace[2]. It provides
tools to implement code editors on web sites. The demo sets up a very basic version and sends requests
to a server. It can be tested by running the Java server and then simply opening the HTML file in a web
browser.

1http://www.sinatrarb.com/
2http://eclipsesource.com/blogs/2013/04/18/minimal-json-parser-for-java/
3http://github.com/grushnakk/DAWS/blob/master/server/src/ch/unibe/dicto/WebService.

java

http://www.sinatrarb.com/
http://eclipsesource.com/blogs/2013/04/18/minimal-json-parser-for-java/
http://github.com/grushnakk/DAWS/blob/master/server/src/ch/unibe/dicto/WebService.java
http://github.com/grushnakk/DAWS/blob/master/server/src/ch/unibe/dicto/WebService.java

Bibliography

[1] Microsoft - Using IntelliSense https://msdn.microsoft.com/en-us/library/
hcw1s69b.aspx 12 06 2016

[2] Ace - The high performance code editor for the web https://ace.c9.io 12 06 2016

[3] Jakob Nielsen - ResponseT Times: The 3 Important Limits https://www.nngroup.com/
articles/response-times-3-important-limits/ 12 06 2016

[4] Spark - A micro framework for creating web applications in Java 8 with minimal effort http:
//sparkjava.com 12 06 2016

[5] PetitParser Java https://github.com/petitparser/java-petitparser 12 06 2016

[6] Andrea Caracciolo, Mircea Filip Lungu and Oscar Nierstrasz - A Unified Approach to Architecture
Conformance Checking http://scg.unibe.ch/archive/papers/Cara15b.pdf 12 06
2016

56

https://msdn.microsoft.com/en-us/library/hcw1s69b.aspx
https://msdn.microsoft.com/en-us/library/hcw1s69b.aspx
https://ace.c9.io
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
http://sparkjava.com
http://sparkjava.com
https://github.com/petitparser/java-petitparser
http://scg.unibe.ch/archive/papers/Cara15b.pdf

	1 Introduction
	2 Related Work
	2.1 Dicto
	2.1.1 Entity Statement
	2.1.2 Rule Statement

	2.2 PetitParser
	2.3 Ace
	2.4 Microsoft IntelliSense

	3 Architecture and Design
	3.1 Deployment Architecture
	3.1.1 Overview
	3.1.2 Interface
	3.1.3 Stateless Service

	3.2 State Machine Functionality and Components
	3.2.1 Tri-valued Acceptors
	3.2.2 The Transition
	3.2.3 Transition Post Processor
	3.2.4 Suggestors
	3.2.5 Environment

	3.3 Dicto Specific State Machine
	3.3.1 Entity
	3.3.2 Rule
	3.3.3 Only Can Rule
	3.3.4 Complete state machine

	4 The Validation
	4.1 Scenarios
	4.1.1 Localhost scenario
	4.1.2 Big environment scenario
	4.1.3 One Hop scenario

	4.2 Results
	4.2.1 Localhost
	4.2.2 Big environment
	4.2.3 One Hop network

	5 Future Work
	5.1 Improvements
	5.2 Additional Features
	5.2.1 Response data
	5.2.2 External Configuration
	5.2.3 Code Highlighting

	6 Conclusion
	7 Anleitung zu wissenschaftlichen Arbeiten
	7.1 Overview
	7.2 Acceptors
	7.2.1 RangeAcceptor and NegativeRangeAcceptor
	7.2.2 StringAcceptor
	7.2.3 RepeatAcceptor
	7.2.4 OptionalAcceptor
	7.2.5 ChainAcceptor
	7.2.6 RegionAcceptor
	7.2.7 Building Acceptors

	7.3 Building a state machine
	7.4 Creating an Environment
	7.4.1 Variable types

	7.5 Using the state machine
	7.6 Server
	7.7 Demo

