
Software Composition Group
University of Berne

2013

mentored by
Niko Schwarz
Oscar Nierstrasz

Bachelor‘s Thesis of
Cedric Reichenbach

A shot-gun marriage between
System.out.println and object inspectors



Developers need effective ways to inspect and explore the run-time state
of programs they are developing and debugging. Modern debuggers and
object inspectors are powerful tools, but they can only be used to explore
specific points in the execution where breakpoints have been set. As a result,
developers often resort to inserting “print statements” in code to log the state
at multiple points in the execution. Print statements, however are a “poor
man’s debugger”, since their output is static and cannot be further explored.
We propose to combine the simplicity of print statements with the graphical
sophistication and interaction of modern debugging tools. DoodleDebug is a
simple API modeled loosely after Java’s System.out.println. Objects
that are “printed” generate graphical views that can be further explored, and
can also be used to navigate back to source code in the IDE. We introduce
DoodleDebug and present the results of a usability study that shows that
DoodleDebug can be very effective for common debugging tasks.

2



1 Introduction

To understand and debug a program, developers rely on tools to track its runtime states
during execution. One method is to insert print statements like System.out.println
in Java. This method is quick and allows programmers to compare different states in
time of a specific object. However, this output is static and comes with a couple of
conceptual restrictions. On the one hand, the level of detail is hardcoded through the
textual representations of objects. If a developer decides for a simple and clear way
of representation, they will need to rewrite their code for any further inspection and
re-run the program after every change, which is particularly a problem in a long-running
program. If they initially choose a detailed and verbose object representation, the output
will grow and become tedious to read.

Another drawback of textual representation is caused by the simplicity of plain text.
Its one-dimensional nature prevents the user from encapsulating multidimensional object
representations. In other words, objects using line breaks in their toString repre-
sentation cannot be nested consistently, since switching to a new line is always a final
operation.

The other half of the two most widely used debugging tools is the family of debuggers [3].
When utilizing a debugger, a program can be stopped at a specific point of its execution,
allowing developers to inspect any detail of this very state. A clear advantage over textual
output is the ability to inspect objects on demand. Information is only displayed as
soon as the user asks for it, nevertheless available without re-running the program. As
McConnell states in Code Complete[6, p. 539], debuggers help to avoid bad practices
caused by debugging with System.out.println, like scattering print statements
randomly throughout a program. The drawbacks of debuggers arise from the fact that
their inspector is always bound to a specific point in time and therefore makes it impossible
to directly compare different states of the same object.

DoodleDebug combines the power of the above mentioned tools, erasing the conceptual
problems coming with them. Its output is generated through an API taking its cue
from System.out.println. A developer simply needs to call Doo.dle (object) to
doodle any object type. Hence, DoodleDebug’s usage, as well as that of System.out.-
println, is orthogonal to the control flow of debuggers; they can be used in combination.
A debugger can step over one Doo.dle statement at a time and new doodles instantly
appear. On the other hand, when a program is held still by a debugger, the user can
make it evaluate any custom expression, including Doo.dle statements.

For simple customization of object representations, a class can implement the Doo-
dleable interface which contains 2 methods, doodleOn and summarizeOn. In con-
trast to Java’s toString, there are two methods, allowing developers to define repre-
sentations on two levels of detail. This distinction allows inspection of objects directly in
the output window.

As output format, DoodleDebug uses the web standards HTML and CSS to enhance
formatting possibilities over simple text.

The functionality DoodleDebug offers consists of the following main points:

3



1. A log of all states of an object when it was doodled in the past

2. Zooming into one particular state in the log for more detail

3. A lean API for doodling objects

Figure 1: Doodle of a map from strings to colors with built-in renderings only.

2 Features

This section outlines the major features and properties of DoodleDebug from a user’s
perspective. Different parts are ordered by importance we gave them during development.

2.1 Lean API

The DoodleDebug API is lean. It features three ways for developers to interact with it,
though most will only ever use the first two.

• The Doo.dle(Object) method as a drop-in replacement for System.out.-
println

• The Doodleable interface and the associated interface DoodleCanvas, in which
objects can define simple custom representations

• The RenderingPlugin interface, which allows developers to provide powerful
custom renderings for any type, based on HTML and CSS; source code access is
not required here.

Altogether, DoodleDebug features no more than 10 public methods.

2.2 Configuration-Free

A key question in the design of a user interface is the level of configurability exposed
to users. Highly customizable solutions may be better for power users who are very
familiar with the software in question. Other users may always remain on default settings,
independent of their suitability. We followed the advice of Norman[7, p. 199-200] and
Buxton[1, p. 102], which says not to treat everyone as a designer, but rather take away
design decisions from users by creating sophisticated defaults. As a consequence, there is
no settings dialogue or file for DoodleDebug.

4



2.2.1 Smart Scrolling

In general, an output console can either move its view port to the bottom when new
content is appended or stay where it was before. DoodleDebug implements the scrolling
behavior of MUSHClient1 and mIRC2: The viewport will only be moved to the bottom if
it already was there before new content was added. If the user doesn’t scroll away from
the bottom, they will benefit from notifications about new doodles. On the other hand,
users can scroll up to an old doodle without being bounced away when new objects are
doodled.

2.2.2 Notifications

When new objects are doodled, DoodleDebug autonomously decides whether to set focus
to the DoodleDebug output view for user notification or not. The crucial factor for
this decision is the elapsed time since the last doodling. Focus is gained if more than 4
seconds have passed and always for the first doodle of a program run.

When debugging a program with many output events per second, like a game, there is
no sense in always notifying the user. Either they keep their attention on the output as
they see it’s rapidly changing, or they work somewhere else in the UI and don’t want
to be pulled back every time. During our study (section §5), subject Echo manually
disabled such notifications of the Eclipse console, complaining about it stealing the focus
of the UI part they were working in.

For a program expected to be silent in general, there’s no need for suppressing eventual
output notifications. One use case could be an unplanned exception that’s caught, but
doodled in order to inform the programmer about a possible problem.

2.3 Inspection of Doodled Objects

To avoid the trade-off between detail level and compactness, we implemented the principle
of semantic zoom along with DoodleDebug: Every object features two levels of detail for
its rendering. Objects that are nested into others are not graphically scaled down, nor
removed, but rendered in their summarized, less detailed version.

Object doodles are divided into levels, based on their nesting depth. An object provided
in the Doo.dle call has level 0. Every object directly referenced inside this one renders
at level 1, those referenced from level 1 render at level 2 and so on.

In DoodleDebug, objects rendered at nesting levels 0 and 1 are rendered with full
detail; objects at nesting level 2 show their summarized version. Clicking on a level 1
object opens a popup window only showing this very object, but with more detail since
it’s at the new nesting level 0 now. Level 1 objects in this window can again be clicked
in order to inspect those. This can be repeated until any end node of the doodling graph
is reached, i.e. one that has no references. Figure 5a shows a doodled address book (at
level 0) containing several contacts (at level 1). Clicking on one of them creates a pop-up
window, moving the respective contact object to new level 0 (Figure 5b).

1http://www.gammon.com.au/mushclient/
2http://www.mirc.com

5

http://www.gammon.com.au/mushclient/
http://www.mirc.com


Navigation between nesting layers inside a pop-up is aided with bread crumbs [4, p.
76-78], which traces the currently inspected branch of the object graph (figure 2). Any
parent doodle in this trace can be clicked to jump to it directly. When zooming out of
the graph this way, the just visited branch is still visible in the breadcrumbs area until
the user turns into a new path.

Figure 2: The labels at the top are bread crumbs. The developer is currently looking at a
Level object, which is the member of an ArrayList, which is the member of a
GameWorld. The object that was doodled was the GameWorld object. The
developer was previously zoomed in to player but zoomed out again to Level.

2.3.1 Tracking an Object Over Time

Thanks to DoodleDebug’s inspection feature, the summarized representation of an object
can be kept rather terse. As an example, the state of a game can be doodled on every
update cycle like in figure 3. A developer observing this output may be interested in
more detail of one particular state, which can be done by clicking on parts of it, resulting
in a pop-up (figure 4).

The program code defining a Player’s rendering looks as follows:

public class Player implements Doodleable {
public void doodleOn(DoodleCanvas c) {

c.draw(name);
c.newLine();
c.draw("Alive?");
c.draw(isAlive);
c.newColumn();
c.draw("Life points:");
c.draw(lifePoints);

}

public void summarizeOn(DoodleCanvas c) {
c.draw(name);
c.draw(isAlive);

6



}
}

Figure 3: A DoodleDebug console showing the doodles of GameRooms. The boxes beside
each are summarized booleans and indicate if the player is alive.

2.4 Built-in Renderings

DoodleDebug comes with predefined renderings for a number of commonly used data
types in Java. Those include:

• Primitives
• Arrays (same layout as Collections)
• Booleans (figure 6)
• Classes (figure 8)
• Collections (figure 3 and figure 7)
• Colors (figure 1)
• Images (various types)
• Maps (figure 1)
• Nulls (figure 6)
• Objects (default, figure 9)
• Strings

7



Figure 4: Details of a GameRoom from Figure 3.

• Tables (rectangular two-dimensional arrays and collections, figure 10)
• Trowables (figure 11)

2.5 Customization API

DoodleDebug’s API features two API layers for customization, Doodleables and Plugins.
Doodleable customizations are always preferred over plugins when both are available
for a type.

2.5.1 The Doodleable Interface

As a high-level customization layer, Doodleable utilizes an approach similar to Java’s
toString() method and targets most use cases since it’s a simple and quick solution.
The Doodleable interface features two methods: doodleOn(DoodleCanvas) for
a regular representation and summarizeOn(DoodleCanvas) for a simplified and
compact version. Distinguishing between them enables semantic zoom[9] when inspecting
doodles: instead of geometrically scaling items, they gain more detail when zooming in.

DoodleCanvas Instead of creating a string like in System.out.println, both meth-
ods receive a DoodleCanvas object for drawing contents on.

8



(a) An address book only showing the
summaries of its addresses. Clicking
reveals the details in figure 5b.

(b) A popup showing the details of an address.

Figure 5: Exposure of a contact object at two different levels of detail.

Figure 6: Summarized and detailed
renderings of booleans.

Figure 7: A doodled array of maps from strings to
collections. The collections are rendered
as summarized.

Figure 12: Example of a Contact class’ doodleOn() method. Dotted lines visualize
the effect of the structuring methods newLine() (orange) and newColumn()
(purple). The green i-beam indicates the final position of the canvas’ imaginary
cursor.

Figure 12 illustrates how output is generated from a code sample. The paradigm
behind DoodleCanvas adopts the formatting of text in terms of lines and columns. A
virtual cursor starts at the upper-left corner of the canvas. Drawn objects align one
beside each other until a new line is created, which causes the cursor to jump back to the
left which one line height offset. The second formatting option is to create new columns,
moving the cursor to a position on top, to the right of the right-most previous object.
DoodleCanvas therefore has three public methods: draw(Object), newLine() and
newColumn().

9



Figure 8: Rendering of a class object.

Figure 9: The standard rendering of an ob-
ject, visualizing all of its fields.

Figure 10: DoodleDebug’s rendering of the
same array as shown in Figure 20

2.5.2 Plugins

There are cases where implementing the Doodleable canvas is not a satisfying option
for developers. If they don’t have access to the source code, there is no (clean) way to add
an interface. Also, the Doodleable API only provides primitive formatting options.

The second layer hooks in on a lower level by allowing users to provide Rendering-
Plugins, which are also used internally for DoodleDebug’s built-in renderings. At the
plugin level, the user can directly control the generation of HTML, CSS, and JavaScript.

Implementing Plugins For advanced arrangement or additional features like coloring,
DoodleDebug includes the option to provide plugins. They must implement Rendering-
Plugin, which is most easily done by extending the built-in AbstractPlugin. Each
plugin holds information about the object types it is able to render. Instead of drawing
to a virtual canvas, a plugin receives a html Tag object and renders its own HTML code

10



Figure 11: Rendering of an exception.

into this tag. The principle of semantic zoom is retained through two different methods
for different detail levels. In addition to HTML code generation, plugins have the option
to cleanly provide CSS rules and individually adjust class attributes assigned to object
doodles.

3 Design

For the design of DoodleDebug’s output, we consulted literature to carefully plan the
different project cycles. As suggested by Buxton[1, p. 73-76], we decided to start with
an initial design phase, which later fades into implementation as soon as a reasonable
concept is available. In particular, we started off by sketching parts of the future user
interface with pen and paper and confronted possible users with them. They were not
told what a specific picture would represent, but directly had to state their intuition of
what they believed it to be (figure 13). Based on their feedback, we had an estimation of
every sketch’s quality in terms of intelligibility and could either keep, improve or dismiss
it. This cycle was repeated until our sketches reached a form where they were easily
understood by people and we could start implementing.

Since the pen and paper sketches were rough and drafted quickly, the implementation
phase initially revealed minor usability problems that had not been obvious in the design
phase. Those were eliminated dynamically, still following Buxtons idea of gradually
reducing design while implementation slowly starts.

4 Implementation

This section outlines the architecture and mechanisms DoodleDebug uses in order to
perceive data, process them and display the results.

11



Figure 13: Programmer reacting to our sketches.

4.1 Data Transport

Since DoodleDebug is an Eclipse plugin, it’s always running in a different Java VM than
the project to be debugged itself. As a consequence, object data needs to be transported
after each Doo.dle call. DoodleDebug uses a third-party library3 to serialize doodled
objects to XML, then transports the result as a string over a connection on localhost
using SIMON4.

4.2 Rendering

After a request for doodling an object has been received, DoodleDebug analyzes its
type and searches for a fitting rendering in the different customization layers. If none is
available, a default rendering is used.

3XStream, XML serializing library: http://xstream.codehaus.org/
4SIMON, Simple Invocation of Methods Over Network: http://dev.root1.de/projects/simon

12

http://xstream.codehaus.org/
http://dev.root1.de/projects/simon


Figure 14: Inspired by AWT’s FlowLayout, all objects are aligned horizontally.

4.2.1 Traversing Object Types

Renderings are iteratively searched for all types and supertypes of an object, starting at
the innermost type, defined through the object’s class name. As long as no rendering has
been found, the algorithm traverses the inheritance tree in a layer-wise manner, always
preferring the class type over interface types inside a layer. In other words, this algorithm
starts searching on the object’s direct class and interface types, then goes on for the class’
and interface’s direct ancestors and repeats until a match was found or all leaves were
reached. The only type excluded from this search is the Object type, since it might be
reached before some interface types.

4.2.2 Output

As output format, DoodleDebug uses HTML. Eclipse provides the package org.ec-
lipse.swt.browser, which includes a web browser in the form of an Eclipse UI
component. The rendering used for this browser’s content is always the one from the OS’s
built-in browser and cannot be changed. As a consequence, we had to be careful when
creating HTML output and always test in different browsers to prevent layout disparities
on different systems. All major changes or extensions affecting the output were tested in

13



Figure 15: A proposed canvas API that traverses the canvas from top to bottom, dividing
it into virtual lines.

four Browsers with different rendering engines: Gecko (tested in Firefox), Presto (tested
in Opera), Webkit (tested in Chrome) and Trident (tested in Internet Explorer). On
Windows systems, for instance, Eclipse uses the Internet Explorer rendering engine. As
a consequence, a meta tag needed to be set in order to suppress quirks or any other
compatibility mode5 and make sure the newest installed rendering engine is used for
best-possible support, especially for CSS3 features.

5 Study

We carried out a usability study [4] to validate the design of DoodleDebug. Usability
studies are qualitative rather than quantitative, offering deeper semantic insights [5, pp.
13–15] than a quantitative study while simultaneously being easier to set up. We posed
three different problems to each test subject to be alternately solved with or without
DoodleDebug, recording with screen capture videos and think aloud protocol. [4, 5] We
searched for problematic situations experienced with one tool to see if they’d been solved
more easily using other tools. Seven developers solved 3 tasks each.

5MSDN documentation about legacy document modes for Internet Explorer: http://msdn.
microsoft.com/en-us/library/jj676915%28v=vs.85%29.aspx

14

http://msdn.microsoft.com/en-us/library/jj676915%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/jj676915%28v=vs.85%29.aspx


5.1 Study Session Setup

A fully functional release candidate of DoodleDebug (version 0.9.0 for Alpha and Bravo,
0.9.1 for others) was used. It ran inside Eclipse 4.2 (Classic edition), using a ThinkPad
T410 with Windows 7 (x64) and an external mouse. The screen was captured during the
whole session and one instructor sitting beside the test subject for problem explanation
and protocol. Before the actual testing, the user had 15–30 minutes to work through a
tutorial and play around with DoodleDebug inside a sandbox. At this time, the instructor
was allowed to answer questions and support the subject, both on DoodleDebug and
standard tools. However, since System.out.println is a fairly basic tool, no question
regarding its use came up.

For the actual session, there were 3 different small programs containing some manually
inserted bug, which the subjects had to find and eliminate. For one or two of those
problems, subjects were allowed to use DoodleDebug and for the other one or two
respectively, they had to fall back to classical tools (table in 5.4). The reason for letting
some subjects only use classical debugging tools was to have a reference of behavior in
order to show that they are not trivial and detect what particular sub-problems they
pose in detail, so we would see if DoodleDebug enables better approaches to solve them.

Subjects worked on a problem until it was completely solved, none of them needing
more than 30 minutes for any particular problem.

5.2 Subjects

The subjects were convenience-sampled; programmers from our university and work
environment were asked for participation if they had free time available. Further, they
were assured of their anonymity. We informed them about the purpose of our study
beforehand, and neither promised nor gave any reward for participating. The participants
are enumerated in order of their participation.

Alias Degree Current activity

Alpha BSc in Mathematics Master student in CS
Bravo BSc in CS Master student in CS
Charlie MSc in CS PhD student in CS
Delta BSc in CS Master student in CS
Echo* MSc in CS Industry (1 year)
Foxtrot BSc in CS Master student in CS
Golf Lic.rer.pol. in Economics Industry (15 years)

*Experience with Eclipse plugin development.
CS: Computer Science

5.3 Posed Problems

In the first two tasks, the participants are given a failing unit-like test. They are informed
that the test is correct, and asked to fix the bug and thus have the test pass. Subjects
have access to all of the source code and are allowed to manipulate it. While the
posed problems might seem biased towards DoodleDebug, that doesn’t distract from

15



their demonstration that DoodleDebug can vastly outperform System.out.println.
DoodleDebug, being a generalization of System.out.println, at worst performs on
par with System.out.println. Furthermore, not claiming that those problems are
certainly best representatives of usual programming tasks, we still assume they’re realistic
enough to potentially occur once in a while during a programmers life.

5.3.1 Sorting

A couple of gray scale Color objects are put into a List and then sorted using a custom
ColorComparator, which should sort by brightness. The result then is compared in a
unit test to a hand-built List which initially has the expected order.

Bug and Solution In the comparator, completely black colors are wrongly treated as
complete white. It’s an in-line case distinction that has to be adjusted.

5.3.2 Serialization

Phone book contacts are modeled using Contact and Address objects. They should be
serialized using a SerializingUtil (simulated serialization only) and de-serialized af-
terwards. In a unit test, comparison of a contact object before and after serialization fails.

Bug and Solution In the SerializingUtil, every field of type long is cast into
an integer before serialization and back into a long afterwards. This causes a field
called phoneNumber of Address to be changed into a negative value. The solution is
to remove those casting operations from the code.

5.3.3 Decimal Alignment

In the third and last task, a class DatabaseUtil is given without source code, as a
black box simulating access to an imaginary database by returning a two-dimensional
array of floats when calling its only method getData(). Subjects are informed that
in the returned table there are duplicated tuples and have to identify them. Finding the
bug is not part of this task.

5.4 Observed behavior

For four study subjects, toString() was used as the default rendering. Two of them,
Bravo and Delta, were allowed to use DoodleDebug for solving the serialization problem
and both implemented Doodleable with Contact and Address. For three subjects,
the ObjectDoodler (which shows all instance variables) was the standard rendering.

16



Sorting Serialization Table

Alpha DD Classic -
Bravo Classic DD -
Charlie DD Classic DD
Delta Classic DD Classic
Echo DD Classic DD
Foxtrot Classic DD Classic
Golf DD Classic DD

5.4.1 Observations using System.out.println

5 out of 7 subjects (all except Delta and Echo) made use of this mechanism to visualize
runtime data. Alpha brought forward the argument of laziness to open a debugger or to
stare at foreign code. When quizzed, Alpha said they can compare things, either two
different objects as posed in the sorting problem or the same object at different points
in time, as in the Serialization problem. Both are not directly possible with a classical
debugger like the one built into Eclipse classic.

Homogenous Output Apart from Charlie, none of the subjects spent time customizing
their ad-hoc textual prints by overriding toString on objects to be visualized. If any,
they utilized in-line string concatenation for formatting purposes, like inserting delimiters
between different objects. Beta printed each element of the wrongly sorted color list and
then stared at the (unaligned) numerical values of red, green and blue color components.
Once he found out that a black element was at the end instead of the beginning, he went
on to investigate the cause, leading to the problem.

In contrast, subjects using DoodleDebug already had built-in renderings for Collec-
tion and Color, making the problem immediately obvious.

Uninspectable and Useless Output The standard implementation of System.out.-
println prints only the class name and object hash, for example:

ch.unibe.scg.spacepirates.Player@ece88d2

Bravo and Golf resorted to a compile-run cycle, where they would explore the object
graph by re-running the program, adapting the print statement to explore the parts of
the object graph they were interested in.

Charlie was the only subject to override toString methods, after being dissatisfied
with the standard printout of class name plus hash. He implemented toString to print
out all fields of an object, as seen in Figure 16. He argued that the difference between
two states of an object should be visible when seeing all its field, recursively including
fields of referenced objects.

Alpha produced a very similar output, but instead of overriding toString(), he
extracted all fields from outside using getter methods directly inside the System.out.-
println method (figure 17).

17



public class Contact { ...
public String toString() {

return "name: " + name
+ ", address: " + address;

}
}
public class Address { ...

public String toString() {
return "street: " + street

+ ", phoneNumber: " + phoneNumber
+ ", city: " + city;

}
}

Figure 16: Charlie overwrote toString() to aid debugging.

System.out.println("name: " + contact.getName()
+ ", street: "
+ contact.getAddress().getStreet()
+ ", phoneNumber: "
+ contact.getAddress().getPhoneNumber()
+ ", city: "
+ contact.getAddress().getCity();

Figure 17: Alpha used System.out.println to aid debugging.

Another approach to solve insufficient output was to switch from System.out.-
println to the debugger, observed with Bravo and Foxtrot.

5.4.2 Observations using a Debugger

Four subjects (Bravo, Delta, Echo and Foxtrot) used the Eclipse debugger to inspect
objects, only Delta and Echo using it exclusively. Echo’s argumentation for this usage was
that debuggers are more powerful in comparison to System.out.println, because they
allow one to inspect objects dynamically and additionally provide simple improvements of
standard textual representations (e.g. arrays are represented in the form of [objectA,
objectB, ...]instead of [Ljava.lang.Object;@4cb162d5. Echo mentioned
that they missed the feature to compare two objects from different points in time.

Comparison Between Objects The built-in Eclipse debugger only allows you to inspect
one object at one point in time. As the serialization problem consists of two objects
unexpectedly being unequal, part of the debugging process was somehow comparing

18



them in order to find their difference. Every subject except Golf did this — Golf only
tried to understand the serialization and de-serialization process to find out where the
implementation has mistakes. Echo never used System.out.println, but attempted
to compare objects before and after serialization using the debugger. Even though the
debugger supported simple and fast inspection to any point inside the object, Echo
explicitly pointed out that he missed the feature to inspect two objects simultaneously.

Non-Selective Output Eclipse’s Java debugger simply lists all contents of an object,
since there is no information about relevance of its respective parts. The debugger is
working at runtime and therefore only knows the instantiated type of an object, so it
will visualize all properties and contents of this, potentially resulting in a overly verbose
output. In particular, programmers only interacting with an object over some super
type may have a much simpler mental model of what it is than represented in the
debugger on the basis of its runtime type. We observed this in the color list problem,
where ArrayList was used as implementation for the interface List. Subject Bravo
initially tried to perceive the structure of a list right after sorting by pausing the program
using the debugger and inspecting the mentioned list (Figure 18), but instantly gave
up and switched to writing a for loop which sequentially prints out all elements using
System.out.println.

Figure 18: Eclipse’s debugger visualizes all fields of an object’s runtime type (ArrayList)

19



5.4.3 Observations using DoodleDebug

When allowed (but not forced) to use DoodleDebug, every subject solved the problem
without making use of any other tool. Only two subjects ever implemented the Doo-
dleable interface for solving a problem. Based on their implementation and toString
implementations of other subjects, we changed the default object rendering from using
toString to listing all instance variables. As a consequence, subjects found relevant
information directly after doodling an object, making any customization unnecessary.

Two methods in Doodleable interface Echo was confused about the difference
between the two methods in the Doodleable interface. After going back to the
documentation of the interface, he understood. Alpha did not show any reaction when
implementing the Doodleable interface, but misunderstood the meaning of its two
methods: Instead of reducing the number of objects on the canvas, he simply delegated
the zoom mechanism to each one by using the Canvas.drawSmall method (figure 19).

Since none of the other subjects ever made used of Canvas.drawSmall and Alpha
misunderstood its purpose, we removed this method from the API.

public void doodleOn(Canvas c) {
c.draw(name);
c.newLine();
c.draw(phoneNumber);
c.newColumn();
c.draw(address);

}
public void summarizeOn(Canvas c) {

c.drawSmall(name);
c.newLine();
c.drawSmall(phoneNumber);
c.newColumn();
c.drawSmall(address);

}

Figure 19: Alpha mistakenly delegated the zooming mechanism to each printed object.

Console Keeps Stealing Focus When certain output is printed onto the Eclipse console,
it gains the UI’s focus by default. Due to the problem setup, every program initially
threw an exception at the end of its execution, signaling the problem had not been
solved yet. Every user experienced the following problem at least once: They were using
DoodleDebug and therefore had this view tab opened when the exception was thrown
and Eclipse switched to the console. Only Echo managed to disable its focus-on-change
setting, while the other subjects just switched back to the DoodleDebug view tab after a
few seconds.

20



Problem immediately obvious Charlie doodled both the wrongly sorted color list and
the correctly sorted one. Since they were both on-screen immediately, he instantly noticed
both their similarity and the difference, which was that the black color was on the wrong
side of one list.

On the serialization problem, all three subjects (Bravo, Delta, Foxtrot) using Doodle-
Debug managed to find the changed field instantly after calling Doo.dle() once before
and once after the de-/serialization step. That’s because DoodleDebug’s ObjectPlugin
shows all instance variables, which was enough to immediately see the problem.

Default doodles were useless When Alpha used the default visualization without
implementing the Doodleable interface, DoodleDebug simply defaulted to printing the
output of the toString() method. This was entirely useless, as it only printed the
name of class plus an object hash. Thus, Alpha implemented the Doodleable interface,
and included all instance variables of the questioned object for its representation.

On sessions without DoodleDebug, Golf iteratively re-ran the program, each time
printing another field of the same object and Bravo wrote a custom textual representation,
printing all fields labelled with their names.

Based on these findings, we modified DoodleDebug’s standard rendering: Instead of
falling back to the object’s toString() method, the new default rendering prints all
fields, including field name, as seen in Figure 9.

5.4.4 Observations Without Any Debugging Tool

Subject Golf was the only one to solve a problem without using any debugging tool. On
the serialization problem, he tried to comprehend the logic of the problem’s Serial-
izingUtil. Unlike others, he found the problem source at the same time as the nature of
the problem itself. He fixed the bug and verified the result using System.out.println.

6 Future Work

Highlighting Object Diffs When tracking an object over time, the most important
information is located where properties of an object have changed. Therefore, a mechanism
comparing objects when they are doodled multiple times could be a powerful feature.

Clickable Doodles One problem of using System.out.println over a long period
of time is that it’s indeed clear which object is printed, but not where the System.-
out.println call has been made. To find it, some tedious text search over the whole
project is needed in the worst case. As a solution in DoodleDebug, doodles could include
a link pointing to the line in source code where the Doo.dle call was triggered, similar
to the way Throwables are tracked.

Debugger Integration Since the eclipse debugger only uses textual representations and
doesn’t allow any customization, a way to enhance it could be to include doodles. A

21



user would be allowed to switch from the standard textual mode to DoodleDebug mode,
where an object would be inspected using DoodleDebug’s rendering. Or a button beside
the textual representation would create a popup with the doodled version of it.

7 Related Work

7.1 Existing Debugging Tools

In the world of programming languages, there are two classes of widely used debugging
tools: Textual output like Java’s System.out.println and Debuggers.

7.1.1 Textual Output

Java’s System.out.println provides a default textual representation for any object.
Primitives and Strings are rendered in a trivial way; all other objects, including arrays,
are represented with their class name and object hash. Any object’s representation can
be changed by overriding its toString method.

Debugging by directly writing into source code may be easier and quicker than having
to equip other debugging tools for a session[2, p. 119]. Also, objects can be tracked
over time by printing them at different points of execution and comparing the resulting
outputs.

Best Practice For Textual Output To understand in detail how programmers use tex-
tual output for debugging, we wrote a script that searches for such methods in open source
projects. It analyzed SqueakSource, a hosting service for Smalltalk projects, searching for
printOn methods, Smalltalk’s equivalent to Java’s System.out.println. Achieved
results[8] gave us hints on how to design default renderings on the one hand and showed
shortcomings of text-only output.

Missing Features On Textual Output To achieve two-dimensional renderings in text,
the developer only has the newline character as an option. Since a line can have
only one new-line character, putting two 2-dimensional structures next to each other
requires coordination. In practice, developers instead refrain from printing 2-dimensional
structures next to each other [8], and instead print them below each other, as illustrated
in Figure 20. Furthermore, the resulting output is purely static, and offers no possibility
to navigate to related objects or back to the source code.

7.1.2 Debuggers

Debuggers allow users to stop a program’s execution at any line of source code. When
stopped, any detail of the current state is inspectable. Unlike System.out.println,
debuggers allow their users to put additional or remove existing break points at runtime,
which makes changing the target piece of code to debug quicker, especially because the
current program state doesn’t need to be re-created like on a new run.

22



an Array(
MatrixTransform2x3(

2.0 0.0 0.0
0.0 2.0 0.0

) MatrixTransform2x3(
1 -0.707107 0.0
0.707107 0.707107 0.0

))

Figure 20: Textual visualization of an array of 2D-matrices, without DoodleDebug.

Drawbacks Of Using A Debugger Since a debugger only shows the program’s state at
one point in time, comparison of two time slices is hardly possible. Important details
may only be memorized and mentally compared to the ones at a later point in time.

Eclipse’s built-in Java debugger brings no options to customize its output. When
inspecting an object, all its fields are listed by name, together with a textual representation.
An object containing many fields may be costly to inspect if only few of them are relevant
to the current user.

8 Conclusion

DoodleDebug is a valuable drop-in replacement for Java’s System.out.println. It
introduces techniques to enhance debugging output by adopting well-proven mechanisms
from debuggers and console printing on the one hand and introducing simple new ones
on the other hand. Getting started is rather easy since one single API method already
enables the core features of DoodleDebug. Previous System.out.println statements
can be directly replaced by Doo.dle calls without losing any ground.

Since the output is held in HTML and DoodleDebug is bound to be an Eclipse plugin,
the possibilities for additional features are infinite. The output view with JavaScript
running in it is Turing-complete and supports any graphical output a monitor can display.
Any IDE-related actions can be implemented because a stable communication between
output and plugin code is already running.

The DoodleDebug Eclipse plugin, all source code and a demo video are available at
http://scg.unibe.ch/wiki/projects/DoodleDebug.

9 Acknowledgements

I’m not good with speeches. But I can truly say that the following people spared no effort
while accompanying me on this journey, thank you: Niko Schwarz, Oscar Nierstrasz,
Mircea Lungu, Andrei Chis, the SCG, and all study participants.

23

http://scg.unibe.ch/wiki/projects/DoodleDebug


References

[1] Bill Buxton. Sketching User Experiences: Getting the Design Right and the Right
Design (Interactive Technologies). Morgan Kaufmann, 1 edition, April 2007.

[2] Brian W. Kernighan and Rob Pike. The Practice of Programming (Addison-Wesley
Professional Computing Series). Addison-Wesley, 1 edition, February 1999.

[3] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view-
controller user interface paradigm in Smalltalk-80. Journal of Object-Oriented Pro-
gramming, 1(3):26–49, August 1988.

[4] Steve Krug. Don’t make me think! A Common Sense Approach to Web Usability.
New Riders Publishing, Indiana, United States, 2000.

[5] Darren Langdridge and Gareth Hagger-johnson. Introduction to Research Methods
and Data Analysis in Psychology. Prentice Hall, 2 ill edition, June 2009.

[6] Steve McConnell. Code Complete: A Practical Handbook of Software Construction,
Second Edition. Microsoft Press, 2nd edition, July 2004.

[7] Donald A. Norman. The Design of Everyday Things. The MIT Press, 1988.

[8] Niko Schwarz. DoodleDebug, objects should sketch themselves for code understanding.
In Proceedings of the TOOLS 2011, 5th Workshop on Dynamic Languages and
Applications (DYLA’11)., 2011.

[9] Allison Woodruff, James Landay, and Michael Stonebraker. Goal-directed zoom. In
CHI 98 conference summary on Human factors in computing systems, CHI ’98, pages
305–306, New York, NY, USA, 1998. ACM.

24


	Introduction
	Features
	Lean API
	Configuration-Free
	Smart Scrolling
	Notifications

	Inspection of Doodled Objects
	Tracking an Object Over Time

	Built-in Renderings
	Customization API
	The Doodleable Interface
	Plugins


	Design
	Implementation
	Data Transport
	Rendering
	Traversing Object Types
	Output


	Study
	Study Session Setup
	Subjects
	Posed Problems
	Sorting
	Serialization
	Decimal Alignment

	Observed behavior
	Observations using System.out.println
	Observations using a Debugger
	Observations using DoodleDebug
	Observations Without Any Debugging Tool


	Future Work
	Related Work
	Existing Debugging Tools
	Textual Output
	Debuggers


	Conclusion
	Acknowledgements

