
EggShell
A workbench for modeling scientific communities

Bachelor Thesis

Dominik Seliner
from

Biel BE, Switzerland

Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

26. August 2016

Prof. Dr. Oscar Nierstrasz
Leonel Merino

Software Composition Group
Institut für Informatik

ii

University of Bern, Switzerland

Abstract

The collaboration in a scientific community can be analysed through the publication
record of its members. The analysis of the metadata (e.g., title and authors) of those
publications can help researchers to identify groups of collaboration, their evolution,
and key authors. However, the criteria for collecting the papers of some communities
might exceed the expressiveness offered by public databases and search engines available.
Hence, the data has to be retrieved from the papers’ files themselves.

Usually, scientific papers are available in unstructured file formats for which auto-
matic extraction of data poses a challenge. To model the metadata of a community users
have to define a pipeline. In it, each step contributes to the accuracy of the extracted data.
The main challenge is to identify to which type of field of the document a piece of text
corresponds.

Previous research proposed heuristics to identify certain fields like the title and
authors from papers’ files by analyzing their layout. The performance of such heuristics
might vary across papers that use different layouts. Hence, ensuring the accuracy of a
given heuristic is a challenging problem. Small improvements in a heuristic that tackles a
popular layout can make a high impact on its overall performance. However, identifying
popular layouts and evaluating the impact of improvements can be a laborious task.

Visualization offers techniques that fit the analysis of such multivariate data. Through
visualization, a developer who is implementing a heuristic for data extraction can obtain
an overview of how it performs and find hotspots that can lead to improvements that
impact the overall efficacy.

In this thesis, we propose EggShell, a workbench that incorporates visualization
to assess the performance of modeling pipelines for scientific papers in PDF format.
We elaborate on examples of how EggShell allows users to define multiple pipelines.
Pipelines can then be improved by assessing their output using visualization. We collected
a corpus of 300 papers published by SOFTVIS/VISSOFT venues. We used a subset of
100 papers as a learning set to develop the pipelines, and then used the remaining 200
papers to evaluate their performance for modeling collaboration in the community. We
observed that our best performing pipeline exhibits an accuracy of 70%.

i

Contents

1 Introduction 1

2 EggShell 3
2.1 A Modeling Pipeline . 3

2.1.1 Data Transformation . 3
2.1.2 Semantic Structure Recovery 4
2.1.3 Modeling the Extracted Data 6

2.2 Analysis Examples . 7
2.2.1 Text-based Data Extraction . 7
2.2.2 XML-based Data Extraction 10
2.2.3 Mutual Modeling Step . 15

2.3 Assessment Visualization . 16
2.3.1 The Assessment Grid . 17
2.3.2 Popup . 19

2.3.2.1 Upper Part of the Popup 20
2.3.2.2 Lower Part of the Popup 22

2.3.3 Details-on-Demand . 23
2.3.4 Analysis Example . 24

2.4 Technical Details . 26
2.4.1 Installing EggShell . 27
2.4.2 Usage Example . 27

3 Conclusion and Future Work 31

4 Anleitung zu wissenschaftlichen Arbeiten 33
4.1 Creating a new pipeline for EggShell 33

4.1.1 Importer . 33
4.1.2 Modeler . 35

ii

1
Introduction

Proceedings published by an event such as a conference are interesting data for under-
standing how a community of scientists is composed and evolves over time. Authors
collaborate among such communities in publications and these collaborations form clus-
ters which differ in shape and size. To analyze such collaborations, we need a model
of the community which contains the metadata of its publications. Although in some
cases the metadata like the title and the authors that contributed to a paper are available
digitally, extracting the data directly from papers’ files give users the flexibility to model
communities based on specific criteria (for which databases and search engines are
limited). In order to automatically create such models, users have to define a pipeline.
Such a pipeline consists of multiple steps that we show in Figure 1.1.

Data Transformation

Data Extraction

Semantic Structure Recovery

Modeling

Figure 1.1: A modeling pipeline for the analysis of collaboration in a scientific commu-
nity.

The first step, data transformation, consists of transforming the binary content of a
PDF file into a a text version. Then the second step, semantic structure recovery, aims at

1

CHAPTER 1. INTRODUCTION 2

recovering the meaning of each part of that text. These two steps combined are known as
data extraction. Finally, users can interact with a model of the extracted data to analyze
collaborations. In Chapter 2 we provide a detailed description of the steps.

Previous research [5] proposed algorithms for recovering the semantic structure of
papers in PDF format by analyzing their layout. Such algorithms need upfront knowledge
of the location of each type of data (e.g. title, authors) specified by the layout used in
a paper. Because these layouts can sometimes be unexpected, the algorithm cannot
assure an correct result in all cases. Such an algorithm with an unsure outcome is
referred to as a heuristic. In effect, the papers of a research community can be published
in various venues and in multiple years exposing vastly different layout conventions.
Hence, the performance of a modeling pipeline can vary across papers. Improving the
performance of a pipeline for a popular layout can make a high impact on its overall
performance. However, the process of identifying such popular layouts and assessing the
effect of changes to the pipeline on the overall outcome can be a laborious task. Through
visualization, users can obtain an overview of how heuristics perform and find hotspots
that can lead to improvements that impact the performance for many papers.

We propose EggShell, a workbench for assessing modeling pipelines for scientific
communities. In it, users define modeling pipelines and assess their performance using
visualization. We elaborate on examples of how users define such a pipeline. Then, we
explain how EggShell is used to assess its performance on a data set and how EggShell
helps users to improve its overall accuracy.

The contributions of the thesis are (1) a design and implementation of a system that al-
lows users to define and customize modeling pipelines, and (2) a study of the performance
of two pipelines that model publications of the VISSOFT/SOFTVIS community.

The remainder of the thesis is structured as follows: Chapter 2 describes the EggShell
workbench and is split into section 2.1 to explain how a pipeline is built, section 2.2 to
describe the performance of two pipelines that we created, section 2.3 to explain how
users interact with EggShell to assess and improve the performance of these pipelines,
and section 2.4 to introduce technical aspects of how to install EggShell. Conclusions
and future work are presented in Chapter 3. Finally, Chapter 4 describes the steps to
create a pipeline such as the ones presented in the example analysis of this thesis.

2
EggShell

In this chapter we describe the steps involved in a modeling pipeline. Then, we present
analysis examples of two pipelines. Lastly, we show how visualization offered by
EggShell is used to assess and improve the performance of such pipelines.

2.1 A Modeling Pipeline
Modeling pipelines include three main steps as shown in Figure 1.1, they: 1) transform
the PDF files into a text representation, 2) recover the semantic structure of each paper
from the transformed text (e.g., title and authors), and 3) model the community based on
the extracted data. In the following we explain these steps in more detail.

2.1.1 Data Transformation
The Portable Document Format (PDF) is a widely established file format, used for digital
documents. In contrast to file formats for data exchange (e.g., CSV), PDF is focused on
presenting documents to a human reader. The binary file has the text encoded, then a
program that wants to manipulate that text has first to transform it. However, the extracted
text from PDF files of scientific papers may contain unexpected special characters that
are only intended for presentation to a human reader known as ligatures. Ligatures are
joined letters like æ. Multiple PDF files contain such ligatures for various pairs of letters
(e.g. fi is a single character for the letters f and i). These ligatures can lead to unexpected
behaviors. For example, classifying two occurrences of the name “Winfield” as two

3

CHAPTER 2. EGGSHELL 4

different names, because one of them contains the ligature fi and the other does not.
These ligatures originate from the behavior of TeX1, which is a typesetting system that
has a prominent role in the creation of scientific papers. TeX automatically transforms
certain pairs of letters into ligatures [1]. Ultimately, the ligatures are not present in the
source file from which the PDF was created, but only in the PDF file itself.

2.1.2 Semantic Structure Recovery
The PDF format includes metadata such as title and authors. However, in our experi-
ence documents rarely occupy those fields with reliable data (as we describe later in
Section 2.2). The text of a scientific document is structured into multiple fields (e.g.,
title, authors, abstract, introduction). Although each of them has a specific semantic, the
semantic is not explicit in the extracted text. For example, paragraphs, words or even
characters are often stored as multiple separate objects (e.g. ö is often split into o and ¨).
Visually identifying these fields is not a problem for a human reader. Each field has a
well-known location in the documents’ layout. However, it is still a challenge to extract
them programmatically.

To understand the basic mechanism of recovering the semantic structure of a paper,
we first have to introduce the concept of a block. Multiple lines of text are called a block
if they can be confined in a box that does not overlap with the boxes of other blocks such
as a paragraph. We recover the semantic structure of the paper by identifying the blocks
in a PDF document and analyzing their position.

In order to identify what blocks correspond to the title and contributors, based on our
experience, we make three assumptions about the layout of the paper:

1. We assume that the title and the contributors of the paper are mentioned in the
header. We define the header as the section on the first page between the top of the
page and the body of the paper (e.g. everything above the abstract or introduction)
as can be seen in Figure 2.2. With this assumption we can narrow down the scope
of the search when identifying the blocks that contain the title and the authors.

HEADER

BODY

Figure 2.2: Example of a header
1http://tug.org/

http://tug.org/

CHAPTER 2. EGGSHELL 5

A

B

Integrating Anomaly Diagnosis Techniques into

Spreadsheet Environments

2014 Second IEEE Working Conference on Software Visualization

Daniel Kulesz

Institute of Software Technology

University of Stuttgart

daniel.kulesz@informatik.uni-stuttgart.de

Fabian Beck

Visualisation Research Centre

University of Stuttgart

fabian.beck@visus.uni-stuttgart.de

Jonas Scheurich

University of Stuttgart

 jonas.scheurich@gmx.net

Abstract—Although spreadsheets are often faulty, end-users
like them for their flexibility. Most existing approaches to
spreadsheet diagnosis are fully automated and use static analysis
techniques to find anomalies in formulas or methods to derive
test cases without user interaction. The few more interactive
approaches are based on values already present in spreadsheets
as well. In our work, we advance the idea of testing spreadsheets
with user-defined test scenarios but encourage visually aided
creation of independent test cases by separating the defini-
tion of test scenarios from the specific values present in the
spreadsheet—just like test code is separated from production
code in professional software. We combine the testing approach
with static analysis and integrate it into a common visual
spreadsheet environment named SIFEI. It supports users in
interactively creating, executing, and analyzing their own test
scenarios with a number of visual markers. Findings from two
qualitative studies indicate that the concept is suitable for casual
spreadsheet users.

I. INTRODUCTION

Whileenduserslovespreadsheetsfortheirflexibility,sev-

Partially automated (e.g., [5]): These tool-based ap-

proaches require considerable amounts of interaction

because they rely on user-defined specifications. But

typically, they have a higher chance of detecting semantic

errors than fully automated approaches.

Manual (e.g., [6]): These approaches can be executed

even without tools and are comparable to design and code

inspections in professional software development [7].

They are executed manually by experts. Formal inspec-

tion process definitions accompanied by checklists are

typical representatives of such approaches. The efficiency

of manual approaches can be boosted by tools that aid in

(structure) comprehension or identify ‘high-risk areas’ to

narrow the inspection scope.

In general, automated approaches tend to be the cheapest

but least effective ones. Manual approaches promise the best

results but are time-consuming and rely on experts who are

hard to find even in larger organizations. Partially automated

Figure 2.1: Page with highlighted blocks

2. The title of the paper is the text with the largest font at the top of the first page (as
seen in Figure 2.1-A).

3. The names of the contributors are written below the title and are followed by one
or more lines of text (e.g. e-mail or affiliation) as shown in Figure 2.1-B. However,
we notice that papers use multiples layouts in the contributors’ block, such as:

a) One block below the title that mentions all contributors in the first line as shown
in Figure 2.3.

Ala Abuthawabeh and Dirk Zeckzer

TU Kaiserslautern, Germany

Email: {abuthawa, zeckzer}@informatik.uni-kl.de

Figure 2.3: Single block

b) Multiple blocks aligned horizontally as shown in Figure 2.4.

Andrea Adamoli
Faculty of Informatics
University of Lugano
Lugano, Switzerland

andrea.adamoli@usi.ch

Matthias Hauswirth
Faculty of Informatics
University of Lugano
Lugano, Switzerland

matthias.hauswirth@unisi.ch

Figure 2.4: Single-row layout

CHAPTER 2. EGGSHELL 6

c) Three author blocks horizontally aligned followed by additional blocks below.
In the example shown in Figure 2.5, we highlight with a red-border a block that
does not mention any contributor names but the affiliation of the aforementioned
contributors.

Edward E. Aftandilian
eaftan@cs.tufts.edu

Sean Kelley
sean.kelley@tufts.edu

Sara L. Su
sarasu@cs.tufts.edu

Samuel Z. Guyer
sguyer@cs.tufts.edu

Connor Gramazio
connor.gramazio@tufts.edu

Department of Computer Science
Tufts University

http://www.cs.tufts.edu/r/redline

Nathan Ricci
nricci01@cs.tufts.edu

Figure 2.5: Grid layout with shared affiliation block

d) A layout of author blocks that do not follow rows and columns (shown in Figure
2.6).

Michael Balzer

University of Konstanz, Germany

Oliver Deussen

University of Konstanz, Germany

Claus Lewerentz

Brandenburg University of Technology Cottbus, Germany

Figure 2.6: Non-grid layout

e) Author blocks that share a block with additional information (e.g., affiliation
and e-mail) is shown in Figure 2.7.

Christian Collberg1 * Stephen Kobourov1† Jasvir Nagra 2‡ Jacob Pitts 1 Kevin Wampler 1†

1 Department of Computer Science,

Universit y of Arizona, Tucson, AZ 85721.

{collberg, kobourov, jpitts, wamplerk}@cs.arizona.edu
2 Department of Computer Science,

Universit y of Auckland, Auckland, New Zealand.

jas@cs.auckland.ac.nz

Figure 2.7: Non-grid layout with shared contact information block

2.1.3 Modeling the Extracted Data
We model the extracted data as first-class objects to encapsulate the data extracted from
papers. Each modeled paper has a title and references to author objects.

We observe that authors who contributed to multiple papers may have varying
representations of their name. Figure 2.8 illustrates an example of this circumstance. The
task of identifying unique authors in a community is known as author disambiguation.

CHAPTER 2. EGGSHELL 7

D. Zeckzer*

Fraunhofer Institute for Experimental Software Engineering

Kaiserslautern Germany

Dirk Zeckzer
University of Kaiserslautern

Kaiserslautern, Germany

zeckzer@informatik.uni-kl.de

Figure 2.8: Different representations of the same name in two papers

2.2 Analysis Examples
In this section we elaborate on the two concrete pipelines that we created. In these
examples we look at the problems that arise during pipeline development and show how
EggShell can help users to solve them. The pipelines use different implementations for
the data extraction steps while they share the same implementation for the modeling
step.

2.2.1 Text-based Data Extraction
For the data transformation step, this heuristic transforms the PDF files into plain text.
It relies on the pdftotext binary from the tool XPDF 2 to obtain the plain text version.
The tool mimics the visual appearance of the paper by inserting white spaces and empty
lines. The resulting document allows us to identify blocks by analysing the position of
the text that we use when recovering its semantic structure. However, we observe that
some aspects are lost such as the size of the text.

 TrustNeighborhoods in a Nutshell

 Niklas Elmqvist Philippas Tsigas

 Department of Computer Science & Engineering

 Chalmers University of Technology, Sweden

 Figure 1: TrustNeighborhood visualization for a network of 2000 hosts.

Abstract In this paper, we review TrustNeighborhoods, our visualization sys-

 tem designed to address this problem by making trust and sharing

In this short paper, we review the TrustNeighborhoods system for relationships explicit and providing a mental model of the network

2D and 3D visualization of trust relationships on the Internet for that users can quickly and easily adopt. Based on a theoretical

novice and intermediate-level users. Intended to convey a tangible model of human trust, TrustNeighborhoods uses the metaphor of

mental model of security, the system is based on the concept of the network being represented by a layered city (or fortress) obey-

"circles of relationship" as a model for computer usage proposed ing an intuitive geographical representation of trust, where individ-

by Ben Shneiderman, and uses a strong visual metaphor of a multi- ual users or documents are visualized as buildings on the city grid.

layered city or fortress representing the computer network. Trust The 2D mode of the system allows for trust management and con-

relationships are shown using an intuitive geographic relation. The figuration, whereas the 3D mode provides a non-intrusive overview

tool has both 2D and 3D modes, one intended for configuration and of trust and sharing relationships on the network in a manner that is

trust management, the other for non-intrusive situational awareness easy to interpret even for novice users.

of security for the local computer. In this short paper, we give a brief description of TrustNeighbor-

CR Categories: H.5.1 [Information Systems]: Multimedia Infor- hoods (presented in full detail in [Elmqvist and Tsigas 2005]), fo-

mation Systems--animations; H.5.2 [Information Systems]: User cusing on the theoretical background and design of the system.

Interfaces; I.3 [Computer Methodologies]: Computer Graphics

Keywords: trust visualization, security visualization 2 Related Work

1 Introduction The TrustNeighborhoods system draws influences from a number

 of sources; it uses a radial space-filling (RSF) technique, but it is

Application developers are doing their best to blur the border be- not used for hierarchy visualization and thus does not possess the

tween the local computer and the remote network in the interest of parent-child property for circle arcs of classic RSF techniques.

improved usability, yet this trend also means that it is becoming in- Many examples of hierarchy visualizations that could be used

creasingly harder for novice and intermediate users to know what for file systems, both local and distributed, exist; see Stasko et

they are sharing and to whom. Studies show that a large percentage al. [Stasko et al. 2000] for a survey. However, objects in distributed

of users are inadvertently sharing private information without their file sharing networks are typically organized in flat and shallow

knowledge [Whitten and Tygar 1999]. In general, many users lack a hierarchies, and thus the focus of TrustNeighborhoods lies not on

clear mental model of their computer in the context of security and scalable hierarchy visualization, but rather on the cognitive aspects

the network, causing security breaches that are not due to software relating to security and trust.

failure but rather due to human error.

e-mail: elm@cs.chalmers.se 3 Circles of Relationship

e-mail: tsigas@cs.chalmers.se

Copyright © 2006 by the Association for Computing Machinery, Inc. In his book, Leonardo's Laptop [2002], Ben Shneiderman presents

Permission to make digital or hard copies of part or all of this work for personal or his model of human needs for computer usage called circles of re-

classroom use is granted without fee provided that copies are not made or distributed for lationship and is a simple concentric stack of circles describing hu-

commercial advantage and that copies bear this notice and the full citation on the first man relations (see Figure 2). Each circle represents a specific class

page. Copyrights for components of this work owned by others than ACM must be of relationship in terms of trust, shared knowledge, and personal

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on contact, and the hierarchy starts with your own self, and proceeds

servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request outwards to circles of weaker relationships.

permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail

permissions@acm.org.

SOFTVIS 2006, Brighton, United Kingdom, September 04≠05, 2006.

© 2006 ACM 1-59593-464-2/06/0009 $5.00

 189

�

Figure 2.9: Transforming a PDF file into plain text

During the semantic structure recovery step the heuristic searches the plain text
version of the paper for an author block. It does so by going through several tests which
look at different properties of the text, like the position of empty lines and blocks, and

2http://www.foolabs.com/xpdf/

http://www.foolabs.com/xpdf/

CHAPTER 2. EGGSHELL 8

stops on the first positive test. In the following we explain the tests included in the
activity diagram shown in Figure 2.10.

[The word „department“ is mentioned

in the header]

[The �rst non-empty line is followed by a

block of at least four lines of text] Regard the block

as an author block

Regard the �rst block

after the third line as an

author block

[Else]

[Else]

[Else]

Regard the block

containing the word

 „department“

as an author block

[Paper has an isolated line after the

 �rst non-emty line]
Regard the block after

the isolated line as an

author block

1

2

3

4

Figure 2.10: Extracting author names from the text version of a paper

1. If after the first non-empty line comes an empty line followed by a block of at least
four lines, we assume that it is an author block.

2. We check if there are lines that contain the word Department in the first 20 lines of
the page. We also make sure that we only check for such a line above the abstract.
If such a line is present, we can assume that it comes right below the first line of
an author block.

Two-dimensional C++

 Johannes Reichardt

 Department of Computer Science

 Hochschule Darmstadt

 j.reichardt@fbi.h-da.de

1

2

3

4

5

6

7

Figure 2.11: Contributor name above a line that states the department.

3. We check if the paper contains a single isolated line after the first non-empty line.
An isolated line is a non-empty line that is surrounded by empty lines. If such
an isolated line exists, we view the first non-empty line after it as the start of an
author block.

CHAPTER 2. EGGSHELL 9

4. If all tests above fail, we view the second non-empty line of the document as the
start of an author block

In this heuristic we identify the first line of only one author block. For papers using
the single-row layout presented in Section 2.1.2, this is enough to retrieve the authors
from all blocks because they are all mentioned on the same line of the plain text version
as shown in Figure 2.12.

 Web Software Visualization Using Extensible3D (X3D) Graphics

 CraigAnslow, JamesNoble, Stuart Marshall* Robert Biddle†

 Victoria University of Wellington, New Zealand Carleton University, Canada

1

2

3

4

5

6

7

Web Software Visualization Using Extensible 3D (X3D) Graphics

Craig Anslow, James Noble, Stuart Marshall*

Victoria University of Wellington, New Zealand

Robert Biddle†

Carleton University, Canada

Figure 2.12: A paper with a Single-row layout with three author blocks is transformed to
plain text where all contributors are present on one line.

The heuristic extracts individual authors from the identified line. We notice that
authors are usually separated by: 1) multiple white spaces 2) a comma, 3) the word
“and”, and 4) a comma followed by the word “and”.

Once we have extracted the names of the contributors, we use their position to detect
the block that contain the title. In this heuristic, we assume that the title block starts on
the first non-empty line of the plain text version of the paper and continues until right
before the line with the contributor names. Notice that this approach will return a wrong
title if the paper contains text above the title or if it contains a subtitle.

We executed the described heuristic on a learning set of 100 papers and iteratively
improved it. For each iteration we compared the results to a ground truth reference model
that allowed us to spot failures.

Then we analyzed the accuracy of the heuristic on several sets of disjoint papers of
various sizes (up to 140). The results showed that titles and contributors were detected
correctly in 55% of the papers. The analysis of the the remaining (incorrect) cases,
showed that in 52% of them the heuristic was not able to detect any of the contributors
of the paper.

One limitation of this heuristic is that it cannot handle papers that mention contributors
on multiple lines. However, in our learning data set this represents less than 10% of the
cases.

CHAPTER 2. EGGSHELL 10

2.2.2 XML-based Data Extraction
In the following we describe the data extraction steps of the second pipeline that is based
on a XML representation of papers.

For the data transformation step, we transform the first page of each PDF to the
XML format as shown in Figure 2.13. We created the tool pdftoxml which is a modified
version of the pdftohtml binary of XPDF 2, to transform the PDF files. While pdftohtml
transforms the PDF files to the HTML format, pdftoxml creates an XML version with the
following elements:

1. A page element encapsulates all the data from a page of a PDF file. The page
element does not have any attributes.

2. A line element contains a line of text up to a carriage return. In a multi-column
paper, lines of text that have the same vertical position will be part of different
line elements. All immediate children of a page element are line elements. A line
element has the attributes left, right, top, bottom to describe its respective position.

3. A span element is always a child of a line element. Its content is the actual text
from the paper. It has the following attributes:

(a) id (assigns each distinct combination of values for the following attributes
an id. This way we can easily determine if two span elements have the same
font attributes),

(b) font-size,

(c) color,

(d) font-family,

(e) font-weight, and

(f) font-style.

<page>

 <line left="82" right="527" top="71" bottom="88">

 <span id="f1" font-size="17" vertical-align="baseline" color="#000000" font-family="san...

 </line>

 <line left="126" right="483" top="116" bottom="127">

 <span id="f2" font-size="11" vertical-align="baseline" color="#000000" font-family="san...

 <span id="f3" font-size="11" vertical-align="baseline" color="#990000" font-family="san...

 </line>

 ...

Figure 2.13: XML version of a paper

CHAPTER 2. EGGSHELL 11

For the structure recovery step we first identify all blocks from the first page of the
paper and then determine which of these blocks represent the title block and author
blocks. Figure 2.14 summarizes the process of determining the blocks of the XML
version of the paper.

complete_blocks = OrderedCollection new;

new_block = OrderedCollection new;

new_block.add(candidate);

[candidate satisfies the

requirements for being part

of new_block]

complete_blocks.add(new_block);

new_block = OrderedCollection new;

candidate = upmost

line-element that is not

already part of a block;

[Else]

[Else]

[All line-elements from the XML version

are part of a block]

Figure 2.14: Activity Diagram for determining the blocks of the header

To detect each block, we first determine the upmost line-element in the XML version
of a paper that is not already part of a block as shown in Figure 2.15. If multiple such
line-elements exist, we choose the one with the leftmost position.

CHAPTER 2. EGGSHELL 12

Detected blocks First line that is not

yet part of a block

Figure 2.15: Determining first line of a new block

We then collect other lines in the same block. To this end, we first check if there is
another line that is close and is horizontally centered to be considered part of the same
block. Figure 2.16 shows examples of the possible cases. The distance between the lines
must be under a certain threshold which we determined on the basis of the findings from
our learning set.

Michele Lanza

Faculty of Informatics

Michele Lanza

Faculty of Informatics

Michele Lanza

Faculty of Informatics

- Not centered at the same horizontal position

- The second line is too far away from the first line

+ Both lines are centered at the same horizontal

position and close to one another

+ The lines are close to one another

+ Both lines are centered at the same position

Figure 2.16: Multiple cases how lines are positioned in relation to eachother

The system records the vertical distance between these first two lines and looks for a
centered line below at that same distance as shown in Figure 2.17.

CHAPTER 2. EGGSHELL 13

Michele Lanza

Faculty of Informatics

University of Lugano, Switzerland

Romain Robbes

Distance 1

Distance 2 is identical to Distance 1.
The third line is therefore added to the block

Distance 3 is larger than distance 1.
The fourth line is therefore not part of the block

Figure 2.17: Allowed distance when adding lines to a block

An overview of the process of checking if a candidate line-element satisfies the
requirements to be part of a block is shown in figure 2.18.

[Else]

[Else]

[Else]

[Else]

[Else]

[Block contains only

one line-element]

Dismiss the candidate

Approve the candidate

[Candidate is horizontally

centered at the same position

as the last line-element of

the block]

[Block already contains at least one line-element]

[Vertical distance

of the candidate to

the line-element in

the block is smaller

than the threshold]
[Distance of the candidate

to the last line-element

of the block is the same

as the distance of the

last line-element of the

block to the second-last

line-element of the block]

Figure 2.18: Activity Diagram for determining if a line-element satisfies the requirements
for being part of a block

Once we have identified all blocks in the XML version, we select the blocks that are
part of the header. We do this by first identifying the body of a paper because we assume
that all blocks that are positioned at a higher vertical position than the body are part of
the header. We identify the beginning of the body by looking for a title named abstract or
introduction. If a paper contains neither of those, we look for the first block that contains
at least two lines, that has the text fully justified, and on which the distance from the

CHAPTER 2. EGGSHELL 14

left edge of the page does not surpass a certain threshold. Such a block is highlighted in
Figure 2.19

A metro map metaphor for visualization of software projects

Amaia Aguirregoitia Martínez

Dept. of Comp. Languages and

Systems

University of the Basque Country

amaia.aguirregoitia@ehu.es

J. Javier Dolado Cosín

Dept. of Comp. Languages and

Systems

University of the Basque Country

javier.dolado@ehu.es

Concepción Presedo García

Dept. of Comp. Languages and

Systems

University of the Basque Country

conchi.presedo@ehu.es

Software project management involves assessing the
software system risks and costs, establishing a master schedule,
integrating the various engineering specialities and design
groups, maintaining configuration control and continuously
auditing the effort to ensure that cost and schedule are met and
the technical requirements objectives are satisfied.

 This paper presents a new graphical representation model
for controlling and managing a project development process
using metaphors and visual representation techniques. Our
main objective is not the visualization of technical
implementation aspects but the integrated representation of the

The metro map is a well-known type of diagram that is
widely used in illustrating transportation networks. The metro
map metaphor has also been used successfully for visualising
abstract information as conceptual ‘‘train of thought’’
networks, biochemical pathways involved in cancer
development, networks of related book titles, and websites and
used as a tool for the organisation of learning resources and for
the communication of project planning information within an
organisation. These studies suggest that the metro map can be a
powerful metaphor for the presentation and communication of
information and based on these studies we decided to apply this

Figure 2.19: The first block of the body of a paper

Next, we identify the title block which is always the block of the header that contains
the text with the biggest font size. The author blocks are then identified by looking at
each block from the header that is positioned below the title. We filter out blocks where
the first line does not describe a contributor by detecting certain words such as names of
universities and country names. We regard the remaining blocks as author blocks and
proceed to extract the names of the authors from the first line of each of them.

We assessed the accuracy of this heuristic using the same sets of papers as the
ones we have used to assess the accuracy of the text-based data extraction described in
Section 2.2.1. The titles and contributors were detected correctly in 70% of the papers.
In the remaining 30% of papers only some of the contributors were extracted correctly.

In conclusion, while we were not happy with the accuracy achieved by the Text-based
data extraction, the flexibility of our framework allowed us to improve the accuracy
by exchanging the technology used. Hence, the XML-based data extraction correctly
detected the title and the contributors of approximately 15% more papers than the Text-
based approach. Additionally, the XML-based data extraction was able to create a better
approximated model, in 75% of the cases, where it had partial data. Neither of the
heuristics rely on metadata stored in fields of the PDF files, because it was only correct
in 12% of the papers. In all the other cases it was either incorrect, incomplete or not
available at all.

CHAPTER 2. EGGSHELL 15

2.2.3 Mutual Modeling Step
Once we have extracted the desired data from papers, we move to the next step in the
pipeline which is to model the data. It consists of two steps: (1) author disambiguation,
and (2) name normalization.

For the author disambiguation part, we use an algorithm that is inspired by the
research in the field of Strotmann et al. [4].

The algorithm starts by associating all identical names to unique authors. It then
groups the resulting authors into compatibility groups. Each compatibility group con-
tains candidate authors that could refer to the same individual but have different name
representations. The algorithm identifies unique authors from the analysis of co-authors
within a compatibility group. Figure 2.20 shows an example of this process.

Holger Eichelberger

Jürgen Wol� von Gudenberg

Holger Eichelberger

Jürgen Wol� von Gudenberg

J. Wol� v. Gudenberg

J. Wol� v. Gudenberg

J. Wol� v. Gudenberg

H. Eichelberger

Figure 2.20: Identifying unique authors based on their co-authors. Circles with the same
color indicate authors of the same compatibility group.

After the author disambiguation we normalize the authors’ names. A normalized
name is written with the family name in the beginning, followed by a comma and the
initials of all given names in order as shown in the following example:

Concepción Presedo Garcı́a → Garcı́a, C. P.

We observe that, although usually the family name and each given name are each
made up of one word, there are exceptions. We only consider two of such exceptions
that were the most common cases found in our learning set:

CHAPTER 2. EGGSHELL 16

• If a given name contains a hyphen, we turn it into two initials as follows:

Anne-Marie → A.-M.

• In some languages, family names that consist of multiple separate words are
common (e.g. family names that consist of two or more words like ”von de
Guzman”). For this implementation we created a list that contains some of these
special cases. If such a case is detected, we normalize the name accordingly.

When making changes to the steps of a pipeline, it is hard to assess the impact on its
performance. In order to faciliate such assessments, EggShell provides a visualization
that helps in the process of improving pipelines. We explain this visualization in the next
section.

2.3 Assessment Visualization
We observe that given the complexity of the process of extracting and modeling data
from papers, we expect that some modeled papers might have an incorrect title, and/or
contributors. Consequently, we want to assess the accuracy of each implemented pipeline.
For each pipeline we want to understand what failed. We formulate the following
questions as requirements that the assessment tool should satisfy.

RQ1) How different is the performance between multiple pipelines?

RQ2) How do pipelines perform for each paper?

RQ3) What data was modeled wrongly (if any) for each paper (e.g., title, authors)?

RQ4) What does the data of failed models look like for each pipeline and compared to a
ground truth data set?

RQ5) What led to failures for poorly modeled papers?

To satisfy these requirements we designed a visualization that consists of three parts:
1) The Assessment Grid provides an overview also allows users to spot failures, users can
investigate a failure through a 2) Pop-up that appears when one of the papers is focused,
and users can also require 3) Details-on-demand of each paper towards detecting the
cause of a failure.

CHAPTER 2. EGGSHELL 17

2.3.1 The Assessment Grid

XML-based

Text-based

Figure 2.21: Assessment grid of the assessment visualization

In the Assessment Grid each modeled paper is represented by a glyph as shown in
Figure 2.21. The shape of the glyph encodes an overview of the accuracy of the modeled
data. The visualization can be used to assess the result of several pipelines simultaneously.
Glyphs representing paper models from the same pipeline are grouped together by vertical
position and color. Edges connect glyphs that represent different models of the same
paper. The horizontal alignment of glyphs encodes how accurately the contributors of a
paper were modeled. The further right the position, the more accurate the contributors of
the respective model.

A paper can have several contributors. We observe that during the process of modeling
the authors of papers two main issues arise: 1. The modeled paper has assigned an author
who is not an actual contributor of the paper (fake author), and 2. The pipeline overlooks
a contributor who is, therefore, missing in the model (missing author).

The accuracy of matched contributors for each paper is evaluated. The glyphs
representing those papers are grouped into five groups according to that score. Groups
are then aligned horizontally, and ordered by increasing score from left-to-right. We
opted for this discrete sort, instead of encoding the score in the vertical position of glyphs,
to avoid overlapping.

The edges in the assessment grid connect the glyphs that represent the same paper.
The direction of the edges between the glyphs of two pipelines provides users insight
into their overall performance. That is, outgoing edges that end in a glyph located more
to the right, expose more accurately modeled papers. We use bi-color edges to denote the
assigned color of the pipeline of the glyph on each side of the edge. This can be specially
useful when the user wants to answer RQ1).

Initially, we considered multiple complex glyphs, but we observed that their readabil-
ity decreased for a larger number of modeled papers. The chosen shape is therefore rather

CHAPTER 2. EGGSHELL 18

simple. The design of the glyph is meant for coping with RQ2). It specifically answers:
RQ2.1) Did the pipeline extract the title from the paper correctly?, and RQ2.2) How
accurately did the pipeline extract the contributors of the paper?

H1

H2

H3

Figure 2.22: A glyph representing a paper used in the Assessment Grid

The glyph consists of the three vertically aligned parts shown in Figure 2.22:

1. An up-facing triangle at the top. Its height H1 indicates the proportion of extracted
authors who are not present in the actual paper (fake authors)

2. A rectangle in the middle. Its height H2 indicates the proportion of correctly
mapped authors.

3. A down-facing triangle at the bottom. Its height H3 indicates the proportion of
authors who are missing in the modeled paper.

Each part has the size of the proportion it represents encoded in its height, which we
calculate as follows:

height =
α

β + γ + δ
(2.1)

Where:

• α = number of authors who are represented by the part

• β = number of authors correctly matched

• γ = number of missed authors

• δ = number of fake authors

CHAPTER 2. EGGSHELL 19

If either β, γ or δ is zero, the height of that part of the glyph will have a height of
zero and will therefore not be visible. Figure 2.23-A shows the case where γ and δ are
zero and Figure 2.23-B shows the case where β and δ are zero. Figure 2.23-C shows
the case where β and γ are zero which cannot occur because each paper has at least one
matched or missed author as shown in Figure 2.23-D.

A B C D

Figure 2.23: Extreme cases for the paper glyph

Additionally, a red dot over the glyph indicates that the title in the model is faulty.
We observe that our pipelines are quite accurate in extracting the title, in consequence
we decided on not highlighting these failures to ease the readability of glyphs. We rather
disclose more detail in the popup of the visualization.

2.3.2 Popup

Algorithm visualization using concept Keyboards

Algorithm visualization using concept keyboards

Baloian, N.

Middleton, Chr.

Breuer, H.

de Chile U. (Universidad de Chile)

Luther, W.

Sandl13a

Lower part

Upper part

Figure 2.24: Popup view

CHAPTER 2. EGGSHELL 20

After obtaining an overview of the accuracy of the various pipelines and probably spotting
some issues, users get more details of a modeled paper by hovering over it and seeing a
popup. The popup, which is shown in Figure 2.24, is designed to answer the questions
RQ1), RQ2), RQ3) and RQ4). Consequently, the popup consists of two vertically aligned
parts:

1. In the upper part is shown a glyph that compares the accuracy of all pipelines for
the underlying paper.

2. In the lower part the modeled data is displayed and, eventually, hints to infer where
the pipeline failed.

2.3.2.1 Upper Part of the Popup

Initially, we designed the pop up as a glyph to be used in the Assessment Grid but soon
we realized that it hindered comprehension, and instead we developed a more simple
glyph. However, we felt that the information provided by the design helps to answer
important questions and therefore we decided to build upon the idea and use it as a pop
up.

The pop up is composed of a glyph that contains three vertically aligned sections
dedicated to analysing the possible outcomes of the modeling process of authors of a
paper: matched authors, missing authors, and fake authors. The type of the outcome is
encoded by a colored border. Matched authors are represented in the middle section with
a green border, fake authors are at the top with a red border and missing authors are at the
bottom with a blue border. Each section, in turn, is split into horizontally aligned cells
which each represent a group of authors modeled by a pipeline that can be identified by
its fill-color. The cells are themselves split into rectangles which each represent a single
author. The glyph tackles the following specific questions which match with RQ1) and
RQ2):

RQ1) How different is the performance between two pipelines?

50% of authors

from model #1

16.67% of authors from model #2

3/4 1/4

Figure 2.25: Comparing the size of the cells in a section

CHAPTER 2. EGGSHELL 21

The user can compare the differences in amounts of fake, missed and matched
authors of a paper between models by comparing the widths of cells in the
corresponding section as shown in Figure 2.25 (e.g., If a cell takes up most of
the width of the section representing matched authors, we know that it modeled a
bigger percentage of its authors correctly than the other models).

RQ2) How do pipelines perform for each paper?

25%

75%

100%

Takes up 75% of the blue surface

Takes up 100% of the brown surface

Takes up 25% of the blue surface

Figure 2.26: Comparing glyphs from the main view to the glyph from the pop up

The user can determine how accurately a pipeline modeled the authors by compar-
ing the size of its cells as shown in Figure 2.26. The surface of one cell has the
same relation to the surface of all cells of that model as the number of authors that
are represented by the cell to the number of all authors from that model (e.g., if
the cell for matched authors of a model takes up 75% of the volume of all cells
from that model, this means that 75% of all authors of the model are matched
correctly). The total area of the cells is the same for each pipeline.

CHAPTER 2. EGGSHELL 22

Average Percentage of authors in this group = (16.67% + 16.67%)/2 = 16.67%

Average Percentage of authors in this group = (50% + 16.67%)/2 = 33.33%

Average Percentage of authors in this group = (33.3% + 66.67%)/2 = 50%

Figure 2.27: The height of each section represents the average percentage of the corre-
sponding authors for each pipeline

Additionally, the user can determine the average performance across all pipelines
by comparing the height of each section from the glyph as shown in Figure 2.27.
The height of each section corresponds to the average percentage of represented
authors (e.g. If the section for matched authors takes up 33.33% of the height of
all sections, this means that across all models, on average 33.33% of the authors
from each model are matched correctly).

2.3.2.2 Lower Part of the Popup

The lower part of the pop up shows an overview of the extracted data as well as informa-
tion that is missing in the model.

On top, there is the extracted title as shown in Figure 2.28. If it matches with the title
from the reference data, it is completely green. However, if the titles do not match, the
title is colored grey on the left, and red from where the first error occurs. In this case, the
pop up also shows the actual title on the next line.

Performance Evolution Blueprint: Understanding the impact of Software Evolution on Performance

Performance Evolution Blueprint: Understanding the Impact of Software Evolution on Performance

Figure 2.28: Title of a paper as shown in the Popup

Below the title, the pop up lists the various authors of the paper. First it lists all the
author names that were extracted correctly by the pipeline in green. Next, it lists, in red,
all the author names that are present in the model, but not in the reference data. The text
between the parentheses shows the names before they were normalized. Lastly, all author
names that are present in the reference model but not in the model, are listed in blue.

Users can use this list to answer the questions RQ3) and RQ4). The example in
Figure 2.29 shows a fake author and a missing author. When we look at the name in the

CHAPTER 2. EGGSHELL 23

parentheses we can see that the pipeline was able to detect the position of the name in
the paper, but was not able to normalize it correctly. Therefore, the paper in our model
contained the fake author Alcocer, J.P.S. which should be replaced with the missed author
Sandoval Alcocer, J.P..

Ducasse, S.

Denker, M.

Alcocer, J.P.S (Juan Pablo Sandoval Alcocer)

Bergel, A.

Sandoval Alcocer, J.P

Figure 2.29: Author names from the Popup

2.3.3 Details-on-Demand
When a user has analyzed the outcome of some pipelines through the Assessment Grid,
she may want to get a better understanding of what led to failures and therefore answering
RQ5), so she can eventually improve the pipeline. Although viewing the paper with an
external tool can provide some clues, we see at least two drawbacks:

1. Leaving EggShell to search for the PDF file is not convenient.

2. The information of the outcome of the internal steps of the pipeline is missing.

To overcome this, when a user selects a paper in the assessment grid she gets details-
on-demand. In it, a view of the extracted version (before it is normalized and modeled)
of the first page of the paper is displayed. Thus, users can investigate the cause that
triggered a failure.

CHAPTER 2. EGGSHELL 24

Figure 2.30: Details-on-demand representing the extracted first page of a paper from two
pipelines: Text-based and XML-based.

Figure 2.30 shows the view in which a reconstruction of the extracted data of each
pipeline is presented side-by-side. Each one is surrounded by a border with a distinct
color. In the presence of ground truth data set, correctly determined contributor names
are colored green and those of faulty contributor names are colored red.

Through this view users can answer the following three questions which help us
answer RQ5): RQ5.1) determine where in the paper a fake author has been found.
RQ5.2) get an idea of the layout of the paper. RQ5.3) verify if the first step of the pipeline
performed well by comparing the representation in the view to the PDF file.

The view is created with the extracted data (first step of the pipeline). Therefore, if
the representation in the view differs from the PDF file, we can conclude that the first
step of the pipeline failed, which answers RQ5.3).

2.3.4 Analysis Example
In this section we give an example of how the assessment visualization was used while de-
veloping the presented pipelines. In the example, we show how we used the visualization

CHAPTER 2. EGGSHELL 25

for implementing blacklisted words to prevent false positives when identifying author
blocks in the semantic structure recovery step of the XML-based pipeline. Supposed
author blocks are dismissed if they contain any of the blacklisted words on the first line
as shown in Figure 2.31.

Michael Burch Stephan Diehl

Catholic University Eichstätt-Ingolstadt

Ostenstr. 14, 85072 Eichstätt,Germany

Peter Weißgerber

michael.burch@ku-eichstaett.de diehl@acm.org pieter.weissgerber@ku-eichstaett.de

Figure 2.31: If the word University is blacklisted, the shared affiliation block is dismissed
from being an author block because it contains a blacklisted word on the first line.

Whenever we wanted to assess the impact of a candidate for a blacklisted word, we
created two versions of the pipeline:

1. old version of the pipeline where the word is not blacklisted

2. new version of the pipeline where the word is blacklisted

Old Version

New Version

Figure 2.32: Assessment grid for two pipelines from the example analysis

Using the assessment grid of our visualization, we were able to assess the difference
in performance between the two versions of the pipeline as shown in Figure 2.32 where
we assessed the impact of blacklisting the word Software. We found that for all papers
where the two versions of the pipeline did not perform the same, the new version always
performed better.

CHAPTER 2. EGGSHELL 26

Figure 2.33: Popup showing that Software Composition Group was mistaken as an author
name

The assessment grid also helped us identify potential words for the blacklist by
exposing poorly performing papers with fake authors through the glyphs and their
position. We then used the Popup to identify what the authors of the failed papers look
like and how they compare to the reference model as seen in Figure 2.33, in order to
identify words that could be blacklisted.

Feature-centric Environment

David Rothlisberger, Orla Greevy and Adrian Lienhard

Software Composition Group

University of Berne, Switzerland

{roethlis, greevy, lienhard}@iam.unibe.ch

Figure 2.34: An excerpt of the Details-on-demand where we verify that the term Software
Composition Group is in fact mentioned on the first line of a block

For each failed paper where we identified candidates for blacklisted words, we also
checked if the problems are in fact falsely identified author blocks. We did this by
checking in the Details-on-Demand if the fake authors are listed on the first line of a
non-author block of the transformed version of the paper as shown in Figure 2.34.

2.4 Technical Details
This section describes installation instructions and usage examples for EggShell.

CHAPTER 2. EGGSHELL 27

2.4.1 Installing EggShell
1. Getting Moose. In order to run EggShell, we will need the Moose 5.1 image and

the Pharo Virtual Machine to run it. Both can be downloaded from the official
Moose[3] website3.

2. Eggshell Repository. We can load EggShell from the following SmalltalkHub 4

repository:
MCSmalltalkhubRepository

owner: 'DominikSeliner'
project: 'Eggshell'
user: ''
password: nil

3. In order to run EggShell we also need to download the precompiled binaries of the
EggShell PDF Data Extractor5. The folder tools which contains the binaries has
to be placed in the same folder as the Moose image.

2.4.2 Usage Example
To create a model of a scientific event from a set of PDF files, we need to group those
files together into a folder which we refer to as the PDF folder. EggShell provides an
example PDF Folder which can be used for this usage example. In order to get this
folder and run the usage example, the user has to open the Playground in Moose and go
through the following steps:

1. In order to download the example PDF Folder the user has to execute the following
code:
EggShell loadExamplePDFs.

This will download the folder examplePDFs into the same folder as the Moose
image.

2. To model the community, the user has to call the method modelPapersInFolder:
using: of the class EggShell with a String of the relative path to the PDF folder and
a Symbol which indicates the pipeline he wants to use as the arguments. Currently,
the user can choose between the two example pipelines we introduced in this
thesis with the symbols #ESTextPipeline and #ESXMLPipeline. We recommend
#ESXMLPipeline for a more accurate result. The user therefore has to execute the
following code:

3http://www.moosetechnology.org
4http://smalltalkhub.com
5https://github.com/selinerdominik/EggShell-PDF-Data-Extractor

http://www.moosetechnology.org
http://smalltalkhub.com
https://github.com/selinerdominik/EggShell-PDF-Data-Extractor

CHAPTER 2. EGGSHELL 28

model := EggShell modelPapersInFolder: 'examplePDFs'
using: #ESXMLPipeline.

After we have created a model, we can now assess its accuracy with the visualization
that EggShell provides. To do this, we execute the following steps:

1. We use objects of the class ESAccuracyAnalyzer to assess how accurately a model
depicts a community. First, let’s create the analyzer object:

analyzer := ESAccuracyAnalyzer new.

2. This object can be used to assess one or more pipelines. Each resulting model
from the pipelines can be added by sending the addVersion: named: message with
the model and a name as the arguments. The name helps in identifying the source
of the model within the visualization.

analyzer addVersion: model named: 'XML Pipeline'.

In order to assess the accuracy of the models, we need to compare it against a
reference model that contains the ground truth of the same data set.

3. In Eggshell we provide a reference model of a community by placing a Comma
Separated Value (CSV) file with the ground truth data into the PDF folder. The
folder examplePDFs already includes such a file. We create a model from CSV by
sending the message model with the path to the folder that contains the CSV and
PDF files:

reference_model := ESReferenceModelLoader new
model: 'examplePDFs'.

The CSV file has to be named original model.csv by default, however the user can
choose his own name by sending the message setCSVFileName to the EReference-
ModelLoader with the desired name as an argument. The header (first row) of the
CVS file must have the following names: “filename”, “title”, and one or more
fields with the name “contributor”.

4. After we have created the reference model, we can add it to the analyzer by sending
the setOriginal: message.

analyzer setOriginal: reference_model.

5. Lastly we execute the view by sending the message open to the analyzer.

analyzer open.

CHAPTER 2. EGGSHELL 29

6. All in all we executed the following code inside the Playground for the usage
example:

EggShell loadExamplePDFs.
model := EggShell modelPapersInFolder: 'examplePDFs'

using: #ESXMLPipeline.
analyzer := ESAccuracyAnalyzer new.
analyzer addVersion: model named: 'XML Pipeline'.
reference_model := ESReferenceModelLoader new

model: 'examplePDFs'.
analyzer setOriginal: reference_model.
analyzer open.

7. We can now assess the performance of pipelines through the view described in the
section 2.3.

Figure 2.35: Visualization of model

CHAPTER 2. EGGSHELL 30

Figure 2.35 shows a simple visualization of models which we have included for
demonstration purposes with the class ESEventVisualizationExample. Creating and
visualizing a model for such a scenario therefore looks as follows:

model := EggShell modelPapersInFolder: 'examplePDFs'
using: #ESXMLPipeline.

visualization := ESEventVisualizationExample new.
visualization setModel: model.
visualization open.

Recently we successfully used EggShell to produce a modeling pipeline for the
visualization of collaboration in scientific communities [2].

3
Conclusion and Future Work

The analysis of the collaborations among authors of a scientific community requires to
model it. Researchers who analyse such collaborations spend great effort to create such
a model.

When creating the model, researchers do not always have the papers’ data, such as
title and authors, available in a formatted source. In such cases they have to extract the
data directly from the published files, which are often provided in PDF. However, the
PDF format does not contain information about the semantic structure of a document.
Therefore, extracting the needed data is a laborious task. We call the collection of steps
that need to be executed to create a model a pipeline. We propose EggShell, a workbench
for defining pipelines that create models of scientific communities from the PDF files
of their publications. It offers users dedicated visualizations to assess the performance
of these pipelines and investigate the reason of a failure that helps them to improve
pipelines’ accuracy. We elaborate on an analysis example on which we stress the benefits
of EggShell creating two modelling pipelines. We collected the 300 papers published in
SOFTVIS/VISSOFT community. We split the collection into a learning set of 100 papers
that we used to tailor a modeling pipeline. We then used the remaining 200 papers of the
collection to test the accuracy of the modeling pipeline which achieved an accuracy of
70%.

For future work we see multiple opportunities for improvement in both the assessment
visualization and the example pipelines. Especially the example pipeline that first
transforms the PDF files into the XML format provides a good basis for improvement
because it is able to reconstruct a good portion of the semantic structure of the paper
which is lost in the PDF file. Additionally, it would be possible to expand the pipelines

31

CHAPTER 3. CONCLUSION AND FUTURE WORK 32

to extract additional information such as the authors’ email addresses, the country and
citations. For the assessment visualization we see two points where future work could
be done. The assessment grid theoretically allows the user to compare any number of
pipelines against each other. However, in practice it does not scale very well and becomes
clustered for more than two pipelines. Future work could therefore explore ways to
improve the scalability of the visualization.

4
Anleitung zu wissenschaftlichen Arbeiten

4.1 Creating a new pipeline for EggShell
In this tutorial, we will create a new pipeline for EggShell. The pipeline will have two
parts: One for importing information from files into Pharo, and one for creating a model
from said information. The pipeline will be very simple, and therefore not accurate. Also,
it will not contain the information that is needed to use it with the ESAccuracyAnalyzer.
It, however, is a good starting point to create a more accurate pipeline.

4.1.1 Importer
First, we create a class for importing data from PDF files into Pharo. It should extend the
class ESImporter and we will name it ESSimpleTextImporter.

ESImporter subclass: #ESSimpleTextImporter
instanceVariableNames: ''
classVariableNames: ''
category: 'EggShell'

A class that extends ESImporter needs to implement the method importFolder. This
method should extract the papers from the PDF files in a folder and return it as an
OrderedCollection.

importFolder: fileReference
| files import |
files := fileReference allChildren

33

CHAPTER 4. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 34

select: [:each | each basename endsWith: '.pdf'].
import := files

collect: [:pdfreference | self importPdf: pdfreference].
ˆimport

The method importFolder: takes a reference to the folder which contains the PDF
files. First, it creates an OrderedCollection which contains references to all PDF files
at the root of the folder. This OrderedCollection is assigned to the variable files. Next,
it imports each of the PDF files into Pharo and saves the data into the variable import
which it then returns. The method importPDF takes care of the import process. We now
need to implement this method:

importPdf: pdfreference
| string pdfData |
string := self importPdfAsText: pdfreference path.
pdfData := self extractAuthorsAndTitleFromText: string.
ˆ pdfData

In the method importPdf, we do two things: First, we create a string from a given
PDF file and assign it to the variable string. We use the method importPDFAsText, which
we need to implement, to create this string. The method extractAuthorsAndTitleFromText,
which we also need to implement, then searches string for the title and the contributor
names and returns them. We save the title and the contributor names into the variable
pdfData which we then return.

First, let us implement the method importPdfAsText:

importPdfAsText: path
| pdftotextPath string filePath cmd |
pdftotextPath := FileSystem disk

stringFromPath: FileSystem disk workingDirectoryPath
/ 'tools' / 'mac' / 'pdftotext'.
filePath := FileSystem disk stringFromPath: path.
cmd := pdftotextPath , ' -f 1 -l 1 -layout ' , filePath , ' -'.
string := (PipeableOSProcess command: cmd) output.

ˆ string

The method importPdfAsText executes the following steps:

1. The method assigns the path to an external binary to the variable pdftotextPath.

2. The method assigns the path to the PDF file to the variable filePath.

3. The method uses the variables from the preceding steps to form a command for
unix terminals and assigns it to the variable cmd. This command will use the binary
that is located at pdftotextPath to extract data from the PDF file that is located at
filePath.

CHAPTER 4. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 35

4. The method executes the command cmd, and stores the extracted data into the
variable string, which it then returns.

After the PDF file is present as a string inside Pharo, we can determine the title and
the contributor names from the paper. This is done by the method extractAuthorsAndTi-
tleFromText which we need to implement:

extractAuthorsAndTitleFromText: text
| lines newData |
newData := Dictionary new.
lines := text findTokens: String lf ,

String cr , String crlf escapedBy: nil.
newData at: 'contributors'

put: (((lines at: 3) findTokens: ',')
collect: [:name | name trim]).

newData at: 'title'
put: (lines at: 1).

ˆ newData

In the method extractAuthorsAndTitleFromText, we first create an OrderedCollection
which holds all lines from the variable text. Next, we set the first line of the variable
lines as the title of the paper. That way, can determine the title of many papers correctly,
because the title is often present at the first line of the variable lines. We then try to extract
author names from the third line of lines. We assume that the names of the contributors
are listed on the third line of lines and that multiple names are separated by a comma.
This assumption, however, will not always hold true and is, therefore, one of the reasons
why this pipeline is not accurate.

We can now create an OrderedCollection with the imported papers. The following
code first defines the location of the PDF files and then assigns an OrderedCollection
with the imported papers to the variable import:

fileReference := FileSystem disk workingDirectory / 'pdfFiles'.
import := (ESSimpleTextImporter new) importFolder: fileReference.

4.1.2 Modeler
After we have imported the PDF files into Pharo, we now want to create a model from
the imported data. To do this, we implement the class ESSimpleSienceEventModeler
which extends the class ESSienceEventModeler.

ESScienceEventModeler subclass: #ESSimpleScienceEventModeler
instanceVariableNames: ''
classVariableNames: ''
category: 'EggShell'

CHAPTER 4. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 36

This class needs to implement the method model:. In this tutorial we create a very
simple version of this method:

model: anOrderedCollection
| model |
model := Dictionary newFrom:

{'contributors'-> (OrderedCollection new).
'papers' -> (OrderedCollection new)}.

anOrderedCollection do: [:importedPaper |
| paperModel |
paperModel := Dictionary newFrom:

{'title' -> (importedPaper at: 'title').
'contributors' -> (OrderedCollection new)}.

(model at: 'papers') add: paperModel.
(importedPaper at: 'contributors') do: [:importedContributor |

| contributorModel |
contributorModel := Dictionary newFrom:

{ 'name' -> (importedContributor at: 'originalName').
'papers' -> (OrderedCollection with: paperModel) }.

(paperModel at: 'contributors') add: contributorModel .
(model at: 'contributors') add: contributorModel .
].

].
ˆmodel

This method returns a model of all papers and authors who are present in the imported
papers. Each paper is represented by a Dictionary that contains the title of the paper
and an OrderedCollection which contains all authors who contributed to it. Meanwhile,
each author is represented by a Dictionary that contains the name of the author and
anOrderedCollection with all papers that said author contributed to.

The model that the method model: returns is represented by a Dictionary with the
keys papers and contributors that hold all the modeled papers and contributors.

We can now create a model from a folder of PDF files with the following code:

fileReference := FileSystem disk workingDirectory / 'pdfFolders'.
import := (ESTextImporter new) importFolder: fileReference.
model := (ESSimpleScienceEventModeler new) model: import.

The first line needs to assign the reference to the folder that contains the PDF files.
The second line then imports the papers into Pharo. Lastly, the third line creates a model
from the imported papers.

Bibliography

[1] D.E. Knuth. The TexBook. Addison Wesley, 1986.

[2] Leonel Merino, Dominik Seliner, Mohammad Ghafari, and Oscar Nierstrasz. Com-
munityexplorer: A framework for visualizing collaboration networks. In Proceedings
of International Workshop on Smalltalk Technologies (IWST 2016), 2016.

[3] Oscar Nierstrasz and Stéphane Ducasse. Moose–a language-independent reengineer-
ing environment. European Research Consortium for Informatics and Mathematics
(ERCIM) News, 58:24–25, July 2004.

[4] Andreas Strotmann, Dangzhi Zhao, and Tania Bubela. Author name disambiguation
for collaboration network analysis and visualization. Proceedings of the American
Society for Information Science and Technology, 46(1):1–20, 2009.

[5] Dominika Tkaczyk and Łukasz Bolikowski. Extracting contextual information from
scientific literature using cermine system. In Semantic Web Evaluation Challenge,
pages 93–104. Springer, 2015.

37

	1 Introduction
	2 EggShell
	2.1 A Modeling Pipeline
	2.1.1 Data Transformation
	2.1.2 Semantic Structure Recovery
	2.1.3 Modeling the Extracted Data

	2.2 Analysis Examples
	2.2.1 Text-based Data Extraction
	2.2.2 XML-based Data Extraction
	2.2.3 Mutual Modeling Step

	2.3 Assessment Visualization
	2.3.1 The Assessment Grid
	2.3.2 Popup
	2.3.2.1 Upper Part of the Popup
	2.3.2.2 Lower Part of the Popup

	2.3.3 Details-on-Demand
	2.3.4 Analysis Example

	2.4 Technical Details
	2.4.1 Installing EggShell
	2.4.2 Usage Example

	3 Conclusion and Future Work
	4 Anleitung zu wissenschaftlichen Arbeiten
	4.1 Creating a new pipeline for EggShell
	4.1.1 Importer
	4.1.2 Modeler

