
The Moldable Editor

Bachelor Thesis

Aliaksei Syrel
from

Minsk, Belarus

Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

6. February 2018

Prof. Dr. Oscar Nierstrasz
Dr. Andrei Chiş, Dr. Tudor Girba

Software Composition Group
Institut für Informatik

University of Bern, Switzerland

Abstract

We present a scalable and moldable text editor modelled as a single
composition tree of visual elements. It allows us to mix text and graphical
components in a transparent way and treat them uniformly. As a result we are
able to augment code with views by using special adornment attributes that
are applied on text by stylers as part of the syntax highlighting process. We
validate the model by implementing a code editor capable of manipulating
large pieces of text; the Transcript, a logging tool being able to display
non-textual messages; the Connector, an example dependencies browser and
the Documenter, an interactive and live editor of Pillar markup documents.

i

Contents

1 Introduction 1

2 Related Work 3

3 The Moldable Editor 5
3.1 Overview . 5
3.2 Text Model . 7
3.3 Text data structures . 7

3.3.1 Pharo . 8
3.3.2 Atom . 9
3.3.3 Emacs . 10
3.3.4 Rope . 10

3.4 Text style . 14
3.5 Segments and Rendering . 16

4 The Validation 19
4.1 Overview . 19
4.2 Transcript . 21
4.3 Connector . 25
4.4 Documenter . 26

5 Conclusion and Future Work 29

6 Anleitung zu wissenschaftlichen Arbeiten 31
6.1 Prerequisites . 31
6.2 Setup . 32
6.3 Usage . 33

ii

1
Introduction

Almost all programming languages are purely textual and developers spend most of
their time reading and writing code. It makes text editors an important tool in software
development. They also happen to be a central IDE tool used by programmers to edit
code.

Source code is usually a plain text without any additional formatting, compared to
word processor documents or documents written using markup languages. However,
modern code editors facilitate syntax highlighting to improve code readability without
changing the text meaning. Nevertheless, in most cases, syntax highlighting does
not take domain or live objects into account thus still leaving developers with textual
representation. This issue can be addressed through code editors allowing developers to
seamlessly augment textual code with additional visual information or graphical views
for run-time objects. In order for developers to benefit the most, such editors have to be
flexible, hence, moldable [5] and should allow users to augment code with any graphical
components easily going beyond the predefined ones. By any graphical component we
mean the whole spectrum of widgets, scalable visualisations or even recursive integration
of text editors in themselves.

The goal of this work is to show how a text editor can be represented in the
same composition tree as the rest of the widgets, so that every tiny graphical
bit would be an object — a visual element, hence removing a conceptual
gap between text and widgets within the editor.

1

CHAPTER 1. INTRODUCTION 2

We already know that when it comes to a general user interface and widgets in
particular, it is possible to have a single composition tree of visual elements. Because of
that, developers are able to implement a wide variety of flexible graphical components.
Nevertheless, nowadays most text editors happen to be a leaf in that composition hierar-
chy, thus playing a role of an end point. Those text editors do not allow developers to
easily integrate arbitrary visual components within a text therefore forcing programmers
to treat text, and visual elements differently.

During development, it is not unusual to have to manipulate large text files, such
as for configurations or logs. To this end, an important requirement for a practical text
editor is to be scalable.

In the first part, we explain in more detail how the editor is implemented and describe
a rope data structure [2] behind a text model. Additionally, we introduce a way of storing
text attributes and their underlying text sequence in the same data structure.

In the second part, we discuss a few applications of such an editor to show how a
single composition tree makes that editor flexible, and what it could mean to have it in a
live programming environment.

In conclusion we present a few directions in which the editor could evolve. We also
discuss possible use cases and more applications of the editor in the context of a live
programming environment such as a debugger, an inspector or live code snippets.

2
Related Work

Since one of the first formal descriptions of a text editor was proposed in the early
1980s [17] there exists a plethora of work on text editors.

An ability to embed pictures or other graphical components is not new and can be
found in text editors incorporating visual aspects [1, 3, 4, 10, 12–15, 18], in various
fields. Highly relevant for this work are approaches combining code and graphical views,
common in the area of projectional editors (Figure 2.1 (a)).

(a) (b)

Figure 2.1: Examples of the editors combining code and graphical views: a) Jetbrains
MPS; b) Envision.

3

CHAPTER 2. RELATED WORK 4

Figure 2.2: Jupyter Notebook

An interesting example is the Jupyter Notebook1 which combines live code, visuali-
sations and explanatory text to create documents (Figure 2.2).

For example, MPS2 takes one step forward by displaying domain entities using
graphical views (e.g., editing a matrix using a table view, editing a state machine using a
graph view); views are selected based structural aspects of the code. Envision3, proposed
a highly scalable visual editor (Figure 2.1 (b)).

Playgrounds, like Swift4, Scala5 or Eve6, give live and continuous feedback of a
computation by adding graphical views next to the code. Many IDEs, when in the
debugger, link the code editor with run-time objects (e.g., Eclipse, IntelliJ, VisualStudio),
and display views in pop-ups. IDEs like Pharo7 or Squeak8, embed the code editor
into the object inspector. Another category of systems provide complete graphical
editors. This includes, for example, modelling frameworks, like EMF9 or VPL10, or
visual languages [6].

1http://jupyter.org/
2https://www.jetbrains.com/mps/
3http://dimitar-asenov.github.io/Envision/
4https://developer.apple.com/swift/playgrounds
5https://github.com/scala-ide/scala-worksheet/wiki/Getting-Started
6http://witheve.com
7http://pharo.org
8http://squeak.org
9https://eclipse.org/modeling/emf/

10https://msdn.microsoft.com/en-us/library/bb483088.aspx

http://jupyter.org/
https://www.jetbrains.com/mps/
http://dimitar-asenov.github.io/Envision/
https://developer.apple.com/swift/playgrounds
https://github.com/scala-ide/scala-worksheet/wiki/Getting-Started
http://witheve.com
http://pharo.org
http://squeak.org
https://eclipse.org/modeling/emf/
https://msdn.microsoft.com/en-us/library/bb483088.aspx

3
The Moldable Editor

3.1 Overview
The Moldable Editor is a flexible and scalable editor designed as a single composition
tree of visual elements.

One of the requirements for that type of the editor is an ability to embed visual
components inside of text so that they are neither deletable nor selectable. We call such
elements adornments. To unify how text and adornments are treated, the editor also
represents pieces of text as visual elements, thus bridging a gap between embedded
graphical components and text which is what allows us to have a single composition tree.

The basis and foundation of the editor is a text model. An interesting aspect of that
text model is the fact that it is data structure independent. It allows us to implement
different text types, for example SubText , which is a subset of existing text within an
interval, or SpanText , which represents a uniform piece of text where all characters
have identical attributes. From the text editor’s perspective there is no difference between
those types of text, so the interaction happens through a clear Text API. More about text
model can be found in Section 3.2.

When talking about the text model we should not forget about the text style, which is
defined by a set of text attributes. Those attributes can be applied to the text manually
with the help of corresponding text model API or created automatically by text stylers.
Text stylers play an important role in syntax highlighting as part of the code editor.
Even more important is the role they play in the Moldable Editor as they are used to
add adornment attributes and hence provide a nice way to plug in custom behaviour

5

CHAPTER 3. THE MOLDABLE EDITOR 6

Figure 3.1: The Moldable Editor

in the editor. Text stylers take context into account which is essential for the creation
of context-aware development tools. In order for the editor to be fast and responsive,
long and time consuming operations such as text parsing and styling should happen
in a parallel background thread. It is in fact a non-trivial task, since users are able to
perform text modification operations while a styler applies attributes on a text that is
being modified. In Section 3.4 we talk more about problems and difficulties related to
text styling and introduce a solution that is currently implemented in and used by the
moldable text editor.

In order for the moldable editor to be scalable, it should split text into logical segments
and render only those that are currently visible. A segment can be a page, a paragraph or
a line. In the current implementation, the text editor creates line segments with the help
of a line segment builder. The process of splitting text into segments is trivial, however
keeping segments in sync with the text model after modification such as insertions
and deletions is difficult and very error-prone. Once segments are built they should be
rendered as visual elements and displayed within the editor. The way it happens is similar
to how modern scrolling lists work, for example FastTable in Pharo, RecyclerView1 in
Android or UITableView2 in iOS. Segments are held by a data source object which knows
how segments should be represented. It is also responsible for binding a segment model

1https://developer.android.com/reference/android/support/v7/widget/
RecyclerView.html

2https://developer.apple.com/documentation/uikit/uitableview

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.apple.com/documentation/uikit/uitableview

CHAPTER 3. THE MOLDABLE EDITOR 7

at: anIndex
size
insertString: aString at: anIndex
insertText: aBrText at: anIndex
delete: aStart to: anEnd
iterator: anStartIndex to: anEndIndex

BrText

+ rope : Rope

BrRopedText

+ text : BrText
+ start : Integer
+ end : Integer

BrSubText

+ text : BrText
+ attributes : Set

BrSpan

Figure 3.2: The UML class diagram of Text Model

to its visual representation. In most cases a logical segment consists of multiple segment
pieces, for example a line segment consists of words — text pieces separated by a white
space. White space itself is also a piece within a line segment. A structure of the segment
and its visual part is explained in more detail in Section 3.5.

3.2 Text Model
To display and edit text, an editor requires a text model that provides text modification
and enumeration API. In the context of a text editor, by Text we understand an object that
consists of a collection of characters with a set of attributes applied on those characters
and a number of API methods to support text modifications such as insert : or delete: .
Additionally, text should play a role of sequenceable and indexable collection, allowing
users to iterate over all characters in a natural ordered way. Being indexable is an essential
property of a text model, since text stylers require text to have characters accessible by
index. Code parsers create an AST which consists of nodes bound to original text with
the help of integer intervals in a form of a [from, to] tuple. Those intervals are later used
by a text styler to apply attributes on a piece of text within those intervals.

3.3 Text data structures
To be considered scalable the moldable editor should be able to manipulate large pieces
of text that consist of millions of characters and sometimes even more. It means that

CHAPTER 3. THE MOLDABLE EDITOR 8

choosing an appropriate data structure for storing text is crucial. After searching for
a data structure to be used by a text model we realised that there is no “silver bullet”
data structure that is memory efficient, has the fastest random access and modification
operations. Instead, it turned out that depending on the context and the way a text editor
will be used it may be important to be able to select one or another data structure based
on its properties. That is why the text model of the moldable editor is data structure
independent and only defines a public API. In order for it to be used by a text editor
developers should create concrete implementations of that API backed up by the data
structure of choice. In the following sub-sections we look at different data structures
being used by other text editors and compare them.

3.3.1 Pharo
In Pharo there already exist two text models based on different data structures: one is
Text which is used by both Morphic and Rubric text editors, and TxModel used by

TxText editor.

Rubric

Insert

Original text Modified text

Allocate new array

Inserted text

Figure 3.3: The array method

Text is the default Pharo text model. It stores a collection of characters and a set of
attributes separately. Characters are represented with the help of ByteString which is
nothing other than an immutable array of characters. It means that every text modification
such as insertion or deletion requires a text model to allocate and copy the whole array
while replacing a subsequence of characters with a requested one as shown in Figure 3.3
The algorithm of text modifications is in this case linear time and requires massive
memory copy operations, which becomes unacceptably slow when text size growths over
hundreds of thousands of characters. In fact, array is the worst data structure for text
sequences [7].

CHAPTER 3. THE MOLDABLE EDITOR 9

TxText

Insert

Original text

Insert a new span(link)

Head Tail
Spans (of character arrays)

Modified text

Head Tail

Inserted text

Figure 3.4: The linked list method

TxModel is a central class representing a text in the TxText editor. Internally it stores
character sequences as a double-linked list of spans that consist of an actual text content.
A linked list is considered to be an extreme choice as opposed to an array for storing text.
While insertions and deletions in a linked list are fast and easy, it is only indexable in
a linear time which makes styling one of the slowest choices among all other text data
structures [7].

3.3.2 Atom
The Atom3 text editor uses a memory-efficient data structure similar to a Piece Table [9].
A piece table is a data structure based on two buffers, one of which represents original
read-only text while the second one stores all modifications to that text. All essential
operations are performed with an adequate performance and some of them can be
efficiently improved by using cache. A piece table is considered to be the data structure
of choice for a text editor [7].

3https://atom.io/

https://atom.io/

CHAPTER 3. THE MOLDABLE EDITOR 10

3.3.3 Emacs
Emacs4 is based on a Gap Buffer, a data structure a little more complex as array but
much more efficient [7]. The idea behind the gap buffer is simple, the whole text is
stored in a large buffer that contains a gap at a cursor location or at a place where editing
operations happen. Of course, this means that the gap must first be moved to the locus
of the insertion or deletion. When the gap is correctly positioned editing operations are
very efficient since the size of a buffer is small. However, the first editing command in
one part of a large buffer, after previously editing in another far-away part, sometimes
involves a noticeable delay [8]. A delay happens because to move a gap the whole buffer
that stores the text has to be reallocated and memory to be moved.

Insert

Original text Modified text

Fill in the gap Inserted text

Figure 3.5: The gap buffer method

Figure 3.5 shows the workflow of an insertion operation with assumption that a gap
buffer (white block) is already moved to the cursor location.

3.3.4 Rope
An alternative to array or buffer-based data structures is a rope [2]. A rope is a tree of
concatenation nodes representing character strings. In addition to concatenation nodes,
depending on implementation, a rope may include subset nodes, reverse nodes or other
custom types of nodes. A rope allows text editors to manipulate large pieces of text
and makes text operations such as random access, insertion and deletion very efficient.
However, to maintain high efficiency a rope must be re-balanced otherwise it may lose
its binary search tree properties and operations become inefficient.

If all operations are implemented in a non-destructive way, a rope becomes a persistent
data structure. To enforce that, any modification should return a new node instance with
applied changes. A root node of the returned rope, in this case, does not necessarily have
the same type as the one that was modified. From a text editor perspective, persistence
makes it easier to implement undo/redo commands and helps to prevent multithreading
issues when it comes to text styling.

4https://www.gnu.org/software/emacs/

https://www.gnu.org/software/emacs/

CHAPTER 3. THE MOLDABLE EDITOR 11

One of the main disadvantages of a rope is its implementation complexity and high
possibility of bugs as a consequence. Compared to other common text data structures,
a rope requires more memory space to store its tree structure. In languages without
garbage collection, maintaining node references may be a tedious task and may lead to
memory leaks.

Due to its disadvantages, ropes didn’t become a traditional and commonly used data
structure to be used in text editors. For that reason it was not possible to see ropes in
action, in a contrast to gap buffers or piece tables that are nowadays used by modern
and popular text editors. Its rare and complex nature, tree structure and possible object
oriented implementation as also the existence of a garbage collector in Pharo made ropes
a data structure of choice for the Moldable Editor.

Collection node

One of the main building blocks of ropes is a collection node (Figure 3.6). It is nothing
other than a fixed buffer of characters of a limited length.

“Lorem ipsum dolot sit amet” “Lorem ipsum dolot sit amet”

Figure 3.6: Collection node

If a total length of two collection nodes that are being merged exceeds a predefined
limit, a result would be a concatenation node consisting of those collection nodes.

Concatenation node

A concatenation node has a central role in the structure of a rope. Similar to the binary
search tree it knows its left and right child nodes.

concatenation

concatenation

“Lorem ipsum” “dolor sit”

“amet” “Lorem ipsum dolor sit amet”

Figure 3.7: Concatenation node

If a total length of two ropes being concatenated is lower then a predefined limit, then
instead of creating a concatenation node, they can be merged into a single collection node
which allows a rope to be more memory-efficient and reduce amount of intermediate
nodes.

CHAPTER 3. THE MOLDABLE EDITOR 12

Subset node

An ability to get a substring defined by an index interval plays an important role for the
text editor, for example in case of copy or cut commands. It can be implemented by
introducing a subset node that is a wrapper around another rope node with additional
start and end attributes.

subset (7, 11)

“Lorem ipsum dolot sit amet”

“ipsum”

Figure 3.8: Subset node

Attribute node

As mentioned in Section 3.2 Text is not only a collection of characters but a set of
associated attributes such as font size, text foreground or text style. Traditionally,
attributes are stored in a separate data structure along a text sequence. For example
Rubric text model allocates a dedicated RunArray of the same length as text itself, where
every item is an array of attributes that corresponds to the character with identical index
as shown in Figure 3.9. However, according to RunArray’s class comment in Pharo its
internal implementation is space-efficient:

My (note: RunArray) instances provide space-efficient storage of data which
tends to be constant over long runs of the possible indices. Essentially
repeated values are stored singly and then associated with a ”run” length
that denotes the number of consecutive occurrences of the value.

L o r e m i p s u m

… …

Array of TextAttrbutes

TextColor (color: blue)
TextEmphasis (emphasis: italic)

Array of TextAttrbutes

empty

…

Figure 3.9: Text attributes structure of the Rubric text model

CHAPTER 3. THE MOLDABLE EDITOR 13

Instead of creating a separate data structure for text attributes, it is possible to
incorporate it directly inside of the rope hierarchy by introducing a new attribute node.
An attribute node is a wrapper around any rope node and it additionally stores a set
of attributes that should be applied to that node as shown in Figure 3.10. It makes it
possible to apply attributes to the whole rope by only wrapping it in a single object.
Interestingly, since an attribute node does not operate with text intervals, as opposed to
RunArray, there is no need to update those intervals when new text is inserted, as they
get automatically expanded and applied to a new character sequence.

attribute
{color: blue; style: italic}

“Lorem ipsum dolot sit amet”

“Lorem ipsum dolot sit amet”

Figure 3.10: Attribute node

Additionally, attribute node makes it easier and more efficient to iterate over text
spans, pieces of text where all characters have the same attributes. This iteration is
necessary during the rendering or text measurement process, where every span has to be
rendered or measured separately, since underlying 2D graphics libraries are only capable
of rendering text sequences of the same pre-set style [11, 16].

Implementation

Figure 3.11 shows the class hierarchy of the rope nodes as it is implemented in the
Moldable Editor.

at: anIndex
size
insert: aRope at: anIndex
delete: aStart to: anEnd
from: aStart to: anEnd
attributes: aSet from: aStart to: anEnd
iterator: anStartIndex to: anEndIndex

BrRope

+ collection : Array

BrCollectionRope

+ rope : BrRope
+ attributes : Set

BrAttributeRope

+ left : BrRope
+ right : BrRope
+ length : Integer

BrConcatenationRope

+ rope : BrRope
+ offset : Integer
+ length : Integer

BrSubRope

Figure 3.11: UML class diagram of the Rope hierarchy

CHAPTER 3. THE MOLDABLE EDITOR 14

3.4 Text style
Text styling and syntax highlighting play an important role in the editor and should be
scalable and responsive. That is why performing styling or syntax highlighting operations
in a parallel thread is the only viable option. Unfortunately, it brings its own problems
and difficulties such as thread safety and text synchronisation. One of the main problems
is the fact that original text can be changed during the styling process. Assume the code
from the Listing 3.1 and imagine we would like to style the false keyword with a style
corresponding to Smalltalk pseudo-variables.

odd
” Answer whether the rece i ve r i s an odd number . ”

↑ s e l f even == f a l s e

Listing 3.1: Implementation of the #odd testing method from the Number class

An object responsible for styling of a source code is called syntax highlighter. It
can be implemented as a visitor of the abstract syntax tree (AST) of that source code.
Leaf AST nodes know their start and sometimes stop positions (Figure 3.12) within
original source code. They can be used by a syntax highlighter to apply text attributes on
a text within Interval of that node. In our example that node interval equals (70 to : 74) .
The problem can occur if code gets changed after computation of its AST but right before
attributes are applied on the text. For example if a user would delete any character from a
source code, an interval (70 to : 74) would be no more valid, because an overall length
of that source code is 73 which leads to SubscriptOutOfBounds exception.

Figure 3.12: AST node of the false keyword and its interval in original source code

CHAPTER 3. THE MOLDABLE EDITOR 15

One possible solution would be to implement a locking mechanism and only allow
one thread to modify and access text at a time. However, it would make the overall
implementation more complex and affect performance in a negative way. Another
solution is to create a copy of a text in the UI thread and let the styler operate on that
copy. This way the text editor and styler threads do not share a text instance and can
operate independently. The downside of that method is a need to create a copy of a text
while blocking a UI thread during the copying process. Once styling is complete an
original text should be replaced with a styled one deferred on the UI thread. However,
if an original text was modified during syntax highlighting we cannot replace it with a
styled copy and must discard it.

Figure 3.13 gives a high level overview of how the synchronisation problem is solved
in the Moldable Editor:

UI Thread Styler Thread

Editor StylerText

nextGeneration()

style()

delay()

style()
TextStyledEvent

isPreviousGenerationOf(styledText)

[isNotPreviousGeneration]
doNothing()

[isPreviousGeneration]
become(styledText)

invalidate()

Figure 3.13: UML Sequence diagram of the styling process

CHAPTER 3. THE MOLDABLE EDITOR 16

As a first step the original text is asked to create a copy of itself and to mark it as a
next generation: nextGeneration() . In this case a special immutable identifier object is
used to check later whether the current editor’s text is still a previous generation of the
one that was styled. Since a rope is a persistent data structure it can be directly used as
a generation identifier. Moreover, its immutability allows us to create new text copies
without any additional overhead, because a copy simply refers to the same rope instance
as a text that was copied. As soon as the editor receives a next generation back from
the text it asks a styler object to perform necessary operations on that copy. On the
other side, a styler responds to the style message by terminating any existing styling
process (in Pharo a green thread is called a Process) and creating a new one that starts
with a delay() as its first operation. Delay allows styler to save computation resources
by waiting until a user stops typing. It improves an overall editor responsiveness as
perceived by the user. Exact delay time is configurable and may vary.

As soon as text is styled a styler announces TextStyledEvent , which indicates the
fact that the process is finished. That announcement is deferred on the UI thread which
allows the editor to handle the event in a synchronous way and perform all necessary
invalidation operations without breaking the editor’s integrity. Then the editor checks
whether the original text was changed since the beginning of a styling process by making
sure that a styled text is a next generation. If it is the case, the editor asks the current
text model to replace its content with the content of the styled one, otherwise the styled
version is discarded. As a final step editor performs invalidation to update the on screen
rendering to correspond a new text state.

3.5 Segments and Rendering
In order for the editor to be scalable it should be implemented in such a way that the
overall performance is independent of the text size. A common technique to achieve
this is to only process the part of the scene that is currently visible to the user. It means
that we should not render and lay out text if it is outside of the current viewport of
the editor. Similar behaviour can be found in various graphical frameworks. A set of
widgets that work only with visible elements includes for example FastTable in Pharo,
RecyclerView in Android and others. Bloc5, a graphical framework that is used as an
underlying layer for the Moldable Editor contains such a widget, called InfiniteElement,
where infinite stands for practically infinite as it allows developers to create scrolling
lists that are able to display large datasets. Figure 3.14 shows a high level overview of
the InfiniteElement’s scrolling behaviour. At any time only visible graphical elements
are added to the composition tree. It allows the text editor to render its content almost
instantly and makes it possible to have smooth scrolling animation. When a viewport of

5https://github.com/pharo-graphics/Bloc

https://github.com/pharo-graphics/Bloc

CHAPTER 3. THE MOLDABLE EDITOR 17

the text editor is resized only a fraction of the overall text has to be remeasured and laid
out.

Item 1

Item 2

Item 3

Item 4

Item 5

Item 6

Item 1

Item 2

Item 3

Item 4

Item 5

Item 6

Item 7

Item 1

Item 2

Item 3

Item 4

Item 5

Item 6

Item 7

Item 8

Swipe up

Create a new item
as it appears inside of the viewport

Items 1 goes outside
of the viewport

recycle

Reuse Item 1 UI element
and rebind it to a new model

Swipe up

Figure 3.14: Scrolling items in and out of viewport using InfiniteElement

However, the described approach has its own limitation. In order for the InfiniteEle-
ment to create or reuse visual elements on demand, an underlying data source has to
be indexable and discrete. It means that the whole text has to be split into so called
Segments. In its current implementation, a Segment represents a line of text, however,
it can be a whole page or a collection of paragraphs. Nevertheless, if a text file is large
(Gigabytes of data), reading it and splitting it into segments becomes slow and inefficient.
To solve this problem the editor pre-loads only a portion of the text and splits it into
segments. Figure 3.15 shows how text segments are mapped to a pre-loaded portion of
text and how that portion is related to the original text.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Cupidatat ut exercitation ut qui eiusmod ut tempor cillum in ex dolore veniam sed amet.
Consectetur in ex cupidatat enim consequat in cupidatat veniam laborum cupidatat dolore
qui irure ipsum ea eiusmod sit. Cillum consectetur labore sint anim et qui adipiscing qui elit
cupidatat incididunt duis nulla. Adipiscing exercitation ullamco enim exercitation consequat
labore in consequat. Mollit laborum consectetur aliqua eiusmod cupidatat aliqua cillum ad
dolor minim eiusmod velit ex. Id et ipsum eiusmod eu reprehenderit eiusmod voluptate anim
labore lorem anim anim eu in adipiscing velit cillum non. Sed sed amet dolor do minim
ullamco et laborum cillum adipiscing sit aute. Est fugiat lorem cillum ex deserunt aute. Eu
sed elit do.

Cillum laborum adipiscing laborum anim veniam dolore cillum. Officia nostrud quis enim
pariatur ipsum. Velit dolore. Ea et. Minim ullamco esse reprehenderit officia ullamco laboris
veniam reprehenderit ea commodo laborum in cupidatat excepteur laboris id ad ex
adipiscing. Laboris magna elit anim amet ullamco in veniam lorem veniam. Cupidatat tempor
et officia eu ut nisi commodo tempor enim excepteur excepteur tempor enim cillum ea. Ex
consectetur veniam veniam ad non proident minim tempor ex excepteur anim consectetur
aliqua eu labore aliquip. Id ullamco non nisi velit nulla commodo laborum reprehenderit non
dolore. Et aute exercitation sunt dolor sit ut et laboris eiusmod consectetur reprehenderit.
Cupidatat et do ut eiusmod deserunt ipsum eu.

Esse eu dolor dolor aliquip elit ut culpa minim cillum ad aliqua qui. Dolore adipiscing dolor
esse elit proident dolor sunt lorem et consequat. Ullamco minim enim sit esse consectetur in
ut. Enim ut labore veniam pariatur dolore occaecat qui in cillum esse sed. Dolor veniam
proident aliquip veniam voluptate laborum cupidatat voluptate exercitation laborum nisi.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Cillum sunt minim adipiscing id commodo esse ea esse dolore ipsum minim eu. Pariatur
excepteur ullamco sint. Sunt ea quis quis lorem culpa minim minim mollit dolore aute. Nisi
laboris eu eu nisi fugiat. Fugiat exercitation culpa irure adipiscing ut.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Esse veniam.

Consequat pariatur est exercitation voluptate ex ullamco non lorem proident in duis occaecat
excepteur ex ad amet adipiscing voluptate. Reprehenderit ex magna id lorem labore proident
dolore consectetur.

Est lorem minim anim enim quis culpa occaecat elit ad sed. Ut sunt irure duis elit dolore ut
elit aliquip sed fugiat. Officia quis consectetur enim dolor eiusmod ea.

In qui reprehenderit proident consequat anim. Ad lorem laboris eiusmod anim eu officia
laboris est ex mollit culpa do nulla ex enim reprehenderit magna qui in commodo. Aliquip sint
enim eiusmod in ut est do dolore labore reprehenderit fugiat id amet adipiscing velit duis
ipsum ea. Qui adipiscing sunt enim ea esse laborum ipsum fugiat eiusmod esse. Enim amet
magna. Eu minim dolor aliquip in et sint. Est aute voluptate laborum commodo quis esse
fugiat amet nostrud irure ullamco aliqua non nostrud do ex veniam sit. Fugiat cillum mollit
aliqua mollit quis reprehenderit pariatur ea nulla eiusmod nostrud aute est.

Sed commodo fugiat dolor nisi. Enim lorem labore cupidatat laboris minim dolore occaecat
ullamco sunt ut ut consequat officia ut. Aliqua qui anim excepteur non ut adipiscing aute
esse officia. Cupidatat sunt occaecat. Voluptate exercitation ipsum aliquip dolore magna.
Incididunt quis ut fugiat ut ullamco esse aliqua esse adipiscing labore tempor. Minim dolor
commodo elit ut. Fugiat eiusmod quis laborum est veniam anim esse exercitation excepteur
duis quis aute culpa aliqua ex. Et mollit ipsum eiusmod dolore deserunt in labore sit id
adipiscing ad reprehenderit cillum id deserunt in. In enim dolore elit duis nostrud cupidatat
minim amet velit quis in ea occaecat velit eu culpa amet eu. Reprehenderit magna quis
veniam amet sint dolore quis nisi nostrud ex ullamco exercitation non amet elit do id
exercitation ut. Cillum cupidatat ut excepteur culpa in eu non et nostrud occaecat sunt
laborum ut enim voluptate aute eu esse. Qui tempor aliquip ut cupidatat consectetur nisi non
magna ipsum ea in sunt ad. Commodo qui consectetur esse cillum sunt cupidatat eiusmod
qui laboris eiusmod labore qui incididunt in aute dolore lorem.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Dolor veniam amet consequat sed sed consequat adipiscing lorem. Do id eiusmod nisi
magna do est labore qui deserunt sit eu nisi ut officia tempor dolor. Laboris ea consectetur
ipsum sed consequat. Elit reprehenderit culpa et dolore aliqua ut aute. Esse sed dolore.
Dolore non sunt qui sint nisi mollit elit nisi labore do labore irure velit dolor. Amet aliquip
incididunt elit quis excepteur in irure esse eiusmod occaecat pariatur et exercitation fugiat
dolore consequat nostrud. Deserunt consectetur non sint laborum dolore officia excepteur
eiusmod sint ad irure tempor minim. Duis amet amet esse sint consequat laboris dolore
aliquip in et lorem non. Est excepteur laborum occaecat amet enim cupidatat dolor dolore
quis. Occaecat occaecat officia tempor nostrud cillum esse nisi veniam ex ad veniam aute ad
consectetur laboris sed nulla anim fugiat. Duis fugiat in.

Quis tempor. Do commodo ex consequat labore sit occaecat ipsum consequat nostrud
aliqua. Aliquip ea adipiscing esse consequat aute laborum adipiscing dolore aute amet ea
labore amet nisi lorem nisi id.

Tempor veniam eu aute veniam adipiscing voluptate minim enim nulla occaecat anim dolor in
dolor dolor sit dolor culpa consectetur anim. Velit lorem ea dolore dolor excepteur duis
magna magna dolor consequat. Reprehenderit et qui eu esse excepteur in ut officia anim
anim laborum sunt culpa ut deserunt laborum. Tempor et nisi. Dolore sed commodo fugiat ut
non. Excepteur magna aute in consectetur dolore quis ad nostrud reprehenderit id ad lorem
quis adipiscing consequat nisi id. Pariatur est aliqua velit laboris culpa. Consequat quis in in.
Lorem et sit dolor esse proident officia do. Dolore lorem adipiscing minim amet laborum ut ut
proident sit.

Ad quis eu occaecat sit labore aliqua ut elit labore fugiat ut sed sed adipiscing lorem nulla in.
Occaecat occaecat sint dolore qui eu qui veniam quis deserunt sint in est sed dolor sit culpa.

Lorem in ullamco exercitation mollit ad ut in voluptate laboris pariatur minim est in incididunt.
Ut non nostrud incididunt ex adipiscing aliquip elit in aute lorem. Aute deserunt ut do
incididunt eiusmod. Id enim mollit consequat elit aliquip consequat ex laboris ad laboris sint.
Elit anim dolor magna pariatur incididunt ipsum excepteur ipsum id lorem quis do
exercitation. Eiusmod sint dolor in esse cupidatat sit irure qui ipsum esse. Ad ullamco nulla
deserunt est aute est ad anim ut deserunt in. Nisi eu nisi dolore ea ut consectetur ut ea est
anim ut laborum in eu ad amet quis do deserunt adipiscing. Ut eiusmod ipsum ea fugiat
occaecat esse pariatur ad magna ipsum commodo veniam occaecat incididunt mollit ut est
ea nostrud. Excepteur sed pariatur culpa. Consequat officia cillum irure consectetur aliqua
minim quis deserunt culpa excepteur in est. Incididunt commodo sunt sint occaecat
cupidatat consequat id aliquip non do do dolore ullamco do nostrud. Commodo aliquip culpa
id eiusmod aliqua exercitation. Magna consectetur occaecat adipiscing pariatur ut id.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Velit labore duis non in occaecat nulla labore aliqua eu nisi consectetur consectetur sunt
nostrud. Aliquip minim ea sunt ut deserunt nostrud eu commodo ea minim non sit sed velit
laborum do. Sit ut aliquip velit aute excepteur dolor dolore mollit ullamco sed dolore. Dolor
ipsum nisi culpa. Nulla do ipsum dolore tempor sunt anim ipsum tempor do velit labore. Anim
sunt in commodo duis ullamco nulla minim ut in ipsum dolore esse sit. Eiusmod in commodo
enim consectetur nisi veniam sed eiusmod eiusmod c.

Loaded
in memory

Cillum laborum adipiscing laborum anim veniam dolore cillum. Officia nostrud quis
enim pariatur ipsum. Velit dolore. Ea et. Minim ullamco esse reprehenderit officia
ullamco laboris veniam reprehenderit ea commodo laborum in cupidatat excepteur
laboris id ad ex adipiscing. Laboris magna elit anim amet ullamco in veniam lorem
veniam. Cupidatat tempor et officia eu ut nisi commodo tempor enim excepteur
excepteur tempor enim cillum ea. Ex consectetur veniam veniam ad non proident
minim tempor ex excepteur anim consectetur aliqua eu labore aliquip. Id ullamco non
nisi velit nulla commodo laborum reprehenderit non dolore. Et aute exercitation sunt
dolor sit ut et laboris eiusmod consectetur reprehenderit. Cupidatat et do ut eiusmod
deserunt ipsum eu.

Esse eu dolor dolor aliquip elit ut culpa minim cillum ad aliqua qui. Dolore adipiscing
dolor esse elit proident dolor sunt lorem et consequat. Ullamco minim enim sit esse
consectetur in ut. Enim ut labore veniam pariatur dolore occaecat qui in cillum esse
sed. Dolor veniam proident aliquip veniam voluptate laborum cupidatat voluptate
exercitation laborum nisi.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

Cillum sunt minim adipiscing id commodo esse ea esse dolore ipsum minim eu.
Pariatur excepteur ullamco sint. Sunt ea quis quis lorem culpa minim minim mollit
dolore aute. Nisi laboris eu eu nisi fugiat. Fugiat exercitation culpa irure adipiscing ut.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

Esse veniam.

Consequat pariatur est exercitation voluptate ex ullamco non lorem proident in duis
occaecat excepteur ex ad amet adipiscing voluptate. Reprehenderit ex magna id
lorem labore proident dolore consectetur.

Est lorem minim anim enim quis culpa occaecat elit ad sed. Ut sunt irure duis elit
dolore ut elit aliquip sed fugiat. Officia quis consectetur enim dolor eiusmod ea.

In qui reprehenderit proident consequat anim. Ad lorem laboris eiusmod anim eu
officia laboris est ex mollit culpa do nulla ex enim reprehenderit magna qui in
commodo. Aliquip sint enim eiusmod in ut est do dolore labore reprehenderit fugiat
id amet adipiscing velit duis ipsum ea. Qui adipiscing sunt enim ea esse laborum
ipsum fugiat eiusmod esse. Enim amet magna. Eu minim dolor aliquip in et sint. Est
aute voluptate laborum commodo quis esse fugiat amet nostrud irure ullamco aliqua
non nostrud do ex veniam sit. Fugiat cillum mollit aliqua mollit quis reprehenderit
pariatur ea nulla eiusmod nostrud aute est.

Sed commodo fugiat dolor nisi. Enim lorem labore cupidatat laboris minim dolore
occaecat ullamco sunt ut ut consequat officia ut. Aliqua qui anim excepteur non ut
adipiscing aute esse officia. Cupidatat sunt occaecat. Voluptate exercitation ipsum
aliquip dolore magna. Incididunt quis ut fugiat ut ullamco esse aliqua esse adipiscing
labore tempor. Minim dolor commodo elit ut. Fugiat eiusmod quis laborum est
veniam anim esse exercitation excepteur duis quis aute culpa aliqua ex. Et mollit
ipsum eiusmod dolore deserunt in labore sit id adipiscing ad reprehenderit cillum id
deserunt in. In enim dolore elit duis nostrud cupidatat minim amet velit quis in ea
occaecat velit eu culpa amet eu. Reprehenderit magna quis veniam amet sint dolore
quis nisi nostrud ex ullamco exercitation non amet elit do id exercitation ut. Cillum
cupidatat ut excepteur culpa in eu non et nostrud occaecat sunt laborum ut enim
voluptate aute eu esse. Qui tempor aliquip ut cupidatat consectetur nisi non magna
ipsum ea in sunt ad. Commodo qui consectetur esse cillum sunt cupidatat eiusmod
qui laboris eiusmod labore qui incididunt in aute dolore lorem.

Moldable Editor0 0 0

Cillum laborum adipiscing laborum anim veniam dolore cillum. Officia nostrud quis
enim pariatur ipsum. Velit dolore. Ea et. Minim ullamco esse reprehenderit officia
ullamco laboris veniam reprehenderit ea commodo laborum in cupidatat excepteur
laboris id ad ex adipiscing. Laboris magna elit anim amet ullamco in veniam lorem
veniam. Cupidatat tempor et officia eu ut nisi commodo tempor enim excepteur
excepteur tempor enim cillum ea. Ex consectetur veniam veniam ad non proident
minim tempor ex excepteur anim consectetur aliqua eu labore aliquip. Id ullamco
non nisi velit nulla commodo laborum reprehenderit non dolore. Et aute exercitation
sunt dolor sit ut et laboris eiusmod consectetur reprehenderit. Cupidatat et do ut
eiusmod deserunt ipsum eu.

Esse eu dolor dolor aliquip elit ut culpa minim cillum ad aliqua qui. Dolore adipiscing
dolor esse elit proident dolor sunt lorem et consequat. Ullamco minim enim sit esse
consectetur in ut. Enim ut labore veniam pariatur dolore occaecat qui in cillum esse
sed. Dolor veniam proident aliquip veniam voluptate laborum cupidatat voluptate
exercitation laborum nisi.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.

Cillum sunt minim adipiscing id commodo esse ea esse dolore ipsum minim eu.
Pariatur excepteur ullamco sint. Sunt ea quis quis lorem culpa minim minim mollit
dolore aute. Nisi laboris eu eu nisi fugiat. Fugiat exercitation culpa irure adipiscing
ut.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.

Esse veniam.

Consequat pariatur est exercitation voluptate ex ullamco non lorem proident in duis
occaecat excepteur ex ad amet adipiscing voluptate. Reprehenderit ex magna id
lorem labore proident dolore consectetur.

Est lorem minim anim enim quis culpa occaecat elit ad sed. Ut sunt irure duis elit
dolore ut elit aliquip sed fugiat. Officia quis consectetur enim dolor eiusmod ea.

In qui reprehenderit proident consequat anim. Ad lorem laboris eiusmod anim eu
officia laboris est ex mollit culpa do nulla ex enim reprehenderit magna qui in
commodo. Aliquip sint enim eiusmod in ut est do dolore labore reprehenderit fugiat
id amet adipiscing velit duis ipsum ea. Qui adipiscing sunt enim ea esse laborum
ipsum fugiat eiusmod esse. Enim amet magna. Eu minim dolor aliquip in et sint. Est
aute voluptate laborum commodo quis esse fugiat amet nostrud irure ullamco aliqua
non nostrud do ex veniam sit. Fugiat cillum mollit aliqua mollit quis reprehenderit
pariatur ea nulla eiusmod nostrud aute est.

Sed commodo fugiat dolor nisi. Enim lorem labore cupidatat laboris minim dolore
occaecat ullamco sunt ut ut consequat officia ut. Aliqua qui anim excepteur non ut
adipiscing aute esse officia. Cupidatat sunt occaecat. Voluptate exercitation ipsum
aliquip dolore magna. Incididunt quis ut fugiat ut ullamco esse aliqua esse
adipiscing labore tempor. Minim dolor commodo elit ut. Fugiat eiusmod quis
laborum est veniam anim esse exercitation excepteur duis quis aute culpa aliqua ex.
Et mollit ipsum eiusmod dolore deserunt in labore sit id adipiscing ad reprehenderit
cillum id deserunt in. In enim dolore elit duis nostrud cupidatat minim amet velit quis
in ea occaecat velit eu culpa amet eu. Reprehenderit magna quis veniam amet sint
dolore quis nisi nostrud ex ullamco exercitation non amet elit do id exercitation ut.
Cillum cupidatat ut excepteur culpa in eu non et nostrud occaecat sunt laborum ut
enim voluptate aute eu esse. Qui tempor aliquip ut cupidatat consectetur nisi non
magna ipsum ea in sunt ad. Commodo qui consectetur esse cillum sunt cupidatat
eiusmod qui laboris eiusmod labore qui incididunt in aute dolore lorem.

Segment N-2

Segment N

Segment N+1

Segment N+2

…

Segment N+7

Segment N-1

…

…

Figure 3.15: The mapping of the segments to the original text

CHAPTER 3. THE MOLDABLE EDITOR 18

Figure 3.16: A structure of the graphical composition tree

Once segments are constructed, the editor creates visual elements to represent those
segments. Figure 3.16 shows how an editor element, opened on a two-line text, is com-
posed. Every line is encapsulated into a segment and is rendered as TextEditorSegment.
Each segment is then split into pieces, in our case words. Finally, every word is rendered
as RenderingElementsMapping. A cursor is also a visual element and is contained by a
word element that happens to have a focus.

4
The Validation

4.1 Overview

Scalability
The moldable editor is both flexible and scalable. For example, the following piece is
a sizeable 100MB of text, and yet it opens smoothly (Figure 4.1). It only takes around
100ms to open an editor window displaying previously mentioned text piece on MacBook
Pro 2017.

Figure 4.1: The Moldable Editor opened on a 100MB text

19

CHAPTER 4. THE VALIDATION 20

Syntax highlighting and adornments
An obvious application for the text editor is a code editor with syntax highlighting. Like
in any other text editor that supports syntax highlighting, the syntax highlighter works
in a separate process and changes the existing text. Typically, the syntax highlighting
affects text attributes such as color or font weight. However, the moldable editor brings
this concept further and allows us to add arbitrary visual elements to a text scene.

For example, in the snippet below (Figure 4.2), we see the code associated with the
example that produces the editor element with syntax highlighting. In addition to the
typical Pharo syntax highlighting, we can also notice small triangles inserted in the code.
These triangles denote a dependency to another example method, and clicking on one
expands the code in place showing another editor (Figure 4.3).

Figure 4.2: The editor with syntax highlighting

This functionality is obtained through a dedicated syntax highlighter that extends
the default Pharo highlighting with an extra logic that adds the triangles as adornments.
Clicking on such an adornment adds another adornment with another editor element.
Interestingly, this all happens live, which means that if you change the code from the
root editor element to no longer refer to an example, the corresponding triangle and
embedded editor elements will disappear.

CHAPTER 4. THE VALIDATION 21

Figure 4.3: The editor with an expanded example

The example above also reveals the way to initialise an editor element.

4.2 Transcript
Due to its rich abilities, the moldable editor has the potential of changing all tools that
rely on textual representations. One such a tool is the Transcript.

In the context of Pharo the Transcript is a tool that allows users to log stream
messages. Additionally, Pharo provides a user interface to show those messages. It
means that when it comes to logging tools we should distinguish an API used to output
to a stream and a user interface, which is one of the multiple ways to display the output.
The existing Transcript in Pharo has an ability to display logged messages in a simple
text editor or to write them to a file.

Many languages have support for message logging and their IDEs provide dedicated
tools allowing users to browse and read that log. For example in JavaScript, the Console
is an object with an API that can be used to log runtime artefacts such as strings, arrays,
functions or object. By default, most modern web browsers are shipped with developer
tools and one of them is an interactive console. For example Mozilla Firefox provides

CHAPTER 4. THE VALIDATION 22

(a) (b) (c)

Figure 4.4: Examples of a transcript or console tools: a) the standard Pharo Transcript;
b) Chrome Console; c) Firefox WebConsole

Web Console1 which is different from Google Chrome’s Console2 while providing very
similar functionality.

The goal of GT Transcript is to offer a rich and interactive interface for displaying
live information coming from a system.

The API
The API is backward compatible with the existing transcript. To enable the new features,
we introduced a builder. For example, transcript nextPutAll : ’ something’ becomes
transcript next putAll : ’ something’ . Between next and putAll:, we can add multiple

attributes to the text output.

1https://developer.mozilla.org/en-US/docs/Tools/Web_Console
2https://developers.google.com/web/tools/chrome-devtools/console/

https://developer.mozilla.org/en-US/docs/Tools/Web_Console
https://developers.google.com/web/tools/chrome-devtools/console/

CHAPTER 4. THE VALIDATION 23

Figure 4.5: Visual output of Listing 4.1

The following example shows the complete API:

| transcript |
transcript := GtTranscript new .
transcript

nextPutAll : ’ This i s an example o f ’ ;
space ;
nextPutAll : ’ the new GT T r a n s c r i p t ’ ;
nextPut : ’ . ’ ;
cr .

transcript next
putAll : ’ Beside t y p i c a l t ex t , i t can a lso handle : ’ ;
cr .

transcript next
tab ;
color : Color blue ;
putAll : ’ Coloured t e x t ’ ;
cr .

transcript tab .
transcript next

fontSize : 20;
putAll : ’ Varying s ize t e x t ’ ;
cr .

transcript next
tab ;
expanding : [BlElement new background : Color gray] ;
putAll : ’ Embel l ished wi th ex t ra expansion ’ ;
cr .

[1/0] on : Error do : [: err |
transcript next

tab ;
putAll : ’ Except ion : ’ ;
showException : err ;
cr] .

transcript next
tab ;
italic ;
streamAll : [transcript next putAll : ’And others . . . ’] .

Listing 4.1: The complete API of the GT-Transcript

CHAPTER 4. THE VALIDATION 24

Logging an animation
When working with animations it is important to be able to debug them. Developers
may find themselves in a situation where a debugger is not helpful since it stops an
animation process and only lets programmers to browse a frozen state. A different
approach would be to observe how an animation progresses over time. Traditionally,
developers would insert logging statements and output changing parameters. However,
textual representation may be a limited source of information. Instead, we propose to use
GT Transcript, for visual logging of animations providing insight far superior to plain
text.

To get an idea of how this tool can be useful, take a look at the following example on
the Figure 4.6:

Figure 4.6: Visual logging of the animation with GT Transcript

There we have a rectangle element with a white circle as its direct child. Once an
element is constructed we apply a composite Bloc animation that consists of a scale
transformation and a color transition. Additionally, we apply a translation animation
on the circle to make it move along a parabolic path. During the animation multiple
parameters get changed which makes textual logging a tedious task. However, instead
of text users could directly log visual elements, which appear as image snapshots in the
Transcript.

To implement GT Transcript there were no changes made to the underlying editor
model and all additional functionality was easily integrated which indicates the editor’s
flexibility. In the following sections we continue to validate the Moldable Editor by
putting it in more different contexts.

CHAPTER 4. THE VALIDATION 25

4.3 Connector
In Section 4.1, we saw how example dependencies can be expanded in place by using
the syntax highlighter. A Connector brings this a step further and proposes a new kind
of interface that allows users to expand a new editor on an example method and to
automatically connect editor elements with one another. The interface is somewhat
similar to the one proposed by Code Bubbles3 [4].

Figure 4.7: GT Connector opened on an example method

However, it has two key differences:

• lines can connect an element inside the text editor to the outside world. This is
possible because the text is represented as elements that are rendered in the main
rendering tree provided by the underlying Bloc framework.

• lines are added automatically to reveal dependencies that are otherwise more
difficult to spot.

3http://cs.brown.edu/˜spr/codebubbles/

http://cs.brown.edu/~spr/codebubbles/

CHAPTER 4. THE VALIDATION 26

4.4 Documenter
Documentation plays an important role during development process. Developers spend
a sizeable amount of time on writing it, maintaining and evolving it over time. Nowa-
days there exist techniques and automatisation processes that allow developers to create
technical documentation outside of existing source code. Examples of such tools include
Javadoc4, Doxygen5, Visual Expert6, to name a few. They help programmers to keep
documentation up-to-date with almost no effort (Figure 4.8). However, such documenta-
tion is too technical and may not satisfy all the needs of the users. Instead of browsing
auto-generated documentation users of a library or a framework could benefit more from
user documentation such as tutorials, blog posts, thematics, guides or cheatsheets. One
of the key points of user documentation is an ability to mix plain text explanations with
code snippets and some sort of a preview of the result of those code snippets, sometimes
in the form of screenshots. That is where a problem of user documentation comes from;
tutorials must be updated due to API changes or UI improvements that may lead to
visible differences between screenshots and the actual output of the code snippets if they
would be executed in a real environment. Additionally, tutorials are not meant to be
testable in any automatic way, for example on CI servers. As a result it increases the cost
of maintaining user documentation and may even have a negative impact if new users
face issues or discrepancies in their expectations based on tutorial and real results.

(a) (b)

Figure 4.8: Two sides of Javadoc: a) source code; b) generated documentation

4https://docs.oracle.com/javase/9/javadoc/javadoc.htm
5http://doxygen.org/
6http://www.visual-expert.com/

https://docs.oracle.com/javase/9/javadoc/javadoc.htm
http://doxygen.org/
http://www.visual-expert.com/

CHAPTER 4. THE VALIDATION 27

The goal of the Documenter is to reduce the cost of maintaining user documentation
and make it easier for developers to write it.

As a way to achieve it, the Documenter offers live rendering of Pillar7 documents.
For example, as shown in Figure 4.9 Documenter can embed pictures right in place.

Figure 4.9: Documenter opened on a Mondrian8documentation file

7https://ci.inria.fr/pharo-contribution/job/EnterprisePharoBook/
lastSuccessfulBuild/artifact/book-result/PillarChap/Pillar.html

8https://github.com/feenkcom/gtoolkit-visualizer

https://ci.inria.fr/pharo-contribution/job/EnterprisePharoBook/lastSuccessfulBuild/artifact/book-result/PillarChap/Pillar.html
https://ci.inria.fr/pharo-contribution/job/EnterprisePharoBook/lastSuccessfulBuild/artifact/book-result/PillarChap/Pillar.html
https://github.com/feenkcom/gtoolkit-visualizer

CHAPTER 4. THE VALIDATION 28

And it can even embed live code that can be previewed in place:

Figure 4.10: Live preview of the example result within the Documenter

As shown in Figure 4.10 the Documenter facilitates an ability of the editor to mix
visual components with text, in this case by recursively composing editors with each
other in order to expand the example’s dependencies. It only becomes possible if we
remove any constraints and enforce the editor to treat all contained graphical components
uniformly.

5
Conclusion and Future Work

In the introduction we discuss why the text editor is an important and central tool. Being
able to mix text and visual elements can enable new sorts of interfaces. For that to
be possible a text editor has to be moldable, hence flexible. This thesis shows that
to achieve moldability an editor should be represented as a single composition tree of
visual elements. However, to be usable and practical it also has to be scalable and
performant. In Section 3 we show how a rope data structure can be used to allow an
editor to manipulate large pieces of text and describe how only visible segments of text
are created and rendered.

To validate the model we implemented the code editor with an ability to expand
methods right in place, within the Transcript, the Connector and the Documenter. These
tools are built on top of the same editor infrastructure around the concept of adornments
and a single composition tree of graphical elements. In Chapter 6 we provide a step-by-
step tutorial of how to build an editor for a source code, how to create a live editor for
Pillar documents and take a look at a low level use of the adornments.

Nonetheless, this work only scratches the surface of what can be done with the
Moldable Editor. We already saw that it allows us to implement features and provide new
experiences that are simply not possible in other editors. Nevertheless, while the basic
infrastructure and underlying model is in place the editor in its current state misses some
important features for usability that are normally used during day-to-day activities such
as copy-paste, keyboard shortcuts, multiple text selection and smart cursor navigation.
The Moldable Editor does not yet provide an auto-completion mechanism or common
decorators which include line numbers, clickable links or code critique adornments.

29

CHAPTER 5. CONCLUSION AND FUTURE WORK 30

Nevertheless, we proved that it is indeed possible to implement a text editor that
can be represented in a single composition tree of visual elements. More importantly, it
showed that such an editor not only can exist on paper or as a prototype but can actually
be performant enough to be usable. It scales well and is capable of opening large pieces
of text. The choice of the underlying Rope data structure turned out to be a good idea.
Its persistence property helped us to deal with text synchronisation problems in case of
multithreaded use and background text styling.

One more application for this text editor is code snippets1 which we consider to
be future work. The idea is to create an interface that allows users to split a single
playground script into multiple independent snippets that can be executed and managed
independently.

Another application of the Moldable Editor would be a code editor for an inspector
and a debugger. There, live objects are already bound to variables. Hence, instead of
exploring interesting objects in standalone object inspectors or pop-up views, developers
could embed directly in the editor relevant views of those objects (Figure 5.1).

(a) (b) (c)

Figure 5.1: Three different ways to display the code of a method: a) the standard textual
representation; b) replacing the data parameter using two distinct views; c) replacing the
results of several intermediary computations.

1http://scg.unibe.ch/wiki/projects/Snippets-GTPlayground

http://scg.unibe.ch/wiki/projects/Snippets-GTPlayground

6
Anleitung zu wissenschaftlichen Arbeiten

In this chapter we go through the installation process of the Moldable Editor and its
applications.

6.1 Prerequisites
As of February 2018, the Moldable Editor requires the stable Pharo 6.11 that can be
downloaded from the official Pharo webpage. Users should choose a Pharo package
depending on their operating system as shown in Figure 6.1:

Figure 6.1: Pharo download page with prepared packages for different operating systems

Once downloaded, users can proceed to the installation and setup procedure as
described in Section 6.2.

1https://pharo.org/download

31

https://pharo.org/download

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 32

6.2 Setup
To install GToolkit users should execute the following script in Listing 6.1:

Metacello new
baseline : ’ GToo lk i t ’ ;
repository : ’ g i thub : / / feenkcom / g t o o l k i t / s rc ’ ;
load .

Listing 6.1: GToolkit installation script

It can be done from the Playground (Figure 6.2), which can be opened from the
World Menu. To open the World Menu users should click anywhere on the background
within the Pharo window. The installation script can be executed by clicking on the green
play button in the top right corner of the Playground.

Figure 6.2: World menu and Playground with GToolkit installation script

As soon as the script is executed an installation process should start as shown in
Figure 6.3. An image may become unresponsive during the installation.

Figure 6.3: Installation process of GToolkit

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 33

6.3 Usage
This section shows how to create an instance of the editor for the source code, aGT
Example and Pillar document. We also explain how adornments can be used manually.

Source code
In this part we build an editor for the #fullDrawOn: method implemented in the Morph
class.

As a first step we create a text model with a Rope as a backend data structure. To
do that we send the #asRopedText message to the source code of the chosen compiled
method:

text := (Morph>>#fullDrawOn :) sourceCode asRopedText .

Since we build an editor for a Smalltalk code we should use an appropriate code styler,
in this case BrRBTextStyler . To perform a correct syntax highlighting the styler needs
to know the text context, in this case it is the Morph class in which the #fullDrawOn:
method is implemented:

styler := BrRBTextStyler new .
styler classOrMetaClass : Morph .

Once we have a text and a styler we can proceed to the instance creation of the editor
model. We configure that model with the styler and the text that we instantiated during
previous steps (note, the configuration order does not matter):

editor := BrTextEditor new .
editor text : text .
editor styler : styler .

After finishing with the model we can move to the UI part and create an editor
element. We configure the layout constraints of the editor element to match a parent in
both the horizontal and the vertical directions. It means that the editor will try to fill all
available space of its parent element:

element := BrEditorElement new .
element constraintsDo : [: layoutConstraints |

layoutConstraints horizontal matchParent .
layoutConstraints vertical matchParent] .

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 34

However, sometimes users may want the editor to be large enough to fit all the text.
To achieve this behaviour we should ask the layout constraints of the editor to fit its
content:

element := BrEditorElement new .
element constraintsDo : [: layoutConstraints |

layoutConstraints horizontal fitContent .
layoutConstraints vertical fitContent] .

Another option would be to create an editor of the exact size, for example 500pt
width and 300pt height:

element := BrEditorElement new .
element constraintsDo : [: layoutConstraints |

layoutConstraints horizontal exact : 500.
layoutConstraints vertical exact : 300] .

Layout constraints can be configured independently, for example it is possible to
match a parent horizontally and fit content vertically, or the other way around.

Last but not least, we should attach our editor model to the editor element:

element editor : editor .

When we put all snippets together and inspect the result in the Playground we should
get an editor with syntax highlighting as shown in Figure 6.4.

Figure 6.4: The Moldable Editor (on the right) opened on the source code of the
fullDrawOn: method

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 35

GT-Example
Let’s create an editor for a GT-Example method with an ability to expand its dependencies.

Most of the code will be the same, except for the text and the styler. Since we want
to build an editor for a GT example, we should first create a text model from the source
code of that example. We also choose to have a monospace font, therefore apply a font
family attribute of generic monospace type and make it not overwritable by the styler:

text := (BrTextEditorExamples>>#elementOnMethodWithSyntaxHighlighting) sourceCode asRopedText .
text attributes : { BrFontGenericFamilyAttribute monospace beNotOverwritableByStyler } .

To make the editor know and understand dependencies of the example method we
use a slightly modified syntax highlighter built for GT-Examples:

styler := GtExamplesStyler new .
styler classOrMetaClass : BrTextEditorExamples .

When composed and executed, users should get an editor capable of expanding
dependencies of GT-Examples. Compared to the editor for source code, there are
additional grey triangles along the text. They are visual elements with attached click event
handlers that expand the source code of the dependent method as shown in Figure 6.5:

Figure 6.5: The Moldable Editor (on the right) opened on the source code of the GT-
Example method with expanded dependencies

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 36

Pillar
In this section we build a live editor for Pillar documents.

Similar to the editor for GT-Examples we only make changes to the text and styler.
Imagine we have a pillar file named connector. pillar in the same folder as a Pharo
image. When inspected it appears to be a plain text file as shown in Figure 6.6. One can
notice a reference to the example on the last line. In a default text editor that reference is
displayed as a plain text. The goal is to build an editor that would render a result of the
execution of the method referenced by our Pillar file right in-place.

Figure 6.6: The content of a Pillar file opened in a traditional text editor

First of all we should create a file reference to our Pillar file:

pillar := ’ connector . p i l l a r ’ asFileReference .

Next, we should read its content and create a roped text:

text := pillar contents asRopedText .

Finally, we have to instantiate a special styler that knows how to parse a Pillar file.
We pass a reference to the original pillar file to help styler resolve possible image file
references relative to the folder in which the Pillar file is located:

styler := GtPillarStyler new .
styler fileReference : pillar .

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 37

The rest of the code is exactly the same as in the Source code section. Figure 6.7
shows the resulting editor opened on the connector. pillar :

Figure 6.7: The content of a Pillar file opened in the Moldable Editor

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 38

Adornments
In this section we take a look at how adornment text attributes can be used to replace text
with visual elements. The same attributes can also be used to append visual elements to
a piece of text leaving it untouched.

BrTextAdornmentDynamicAttribute can be used to mix visual elements in the text.
The following snippet creates an instance of a dynamic adornment that replaces a piece
of text on which it is applied with a grey circle:

BrTextAdornmentDynamicAttribute new
beReplace ;
elementBlock : [(BlEllipse radius : 20) asElement]

When applied on a Hello world piece of text of font size 30 on a character at index
8 (character o) we get a text as shown in Figure 6.8:

Figure 6.8: An example of adornment that replaces a piece of text with an ellipse element

The same attribute can be used to append a circle after a character at index 8 by
sending beAppend instead of beReplace to the attribute. The difference can be clearly
seen on the Figure 6.9:

Figure 6.9: An example of adornment that appends an ellipse element after a character

Bibliography

[1] Dimitar Asenov and Peter Müller. Envision: A fast and flexible visual code editor
with fluid interactions (overview). In IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC 2014, Melbourne, VIC, Australia, July 28 -
August 1, 2014, pages 9–12, 2014.

[2] Hans-J Boehm, Russ Atkinson, and Michael Plass. Ropes: an alternative to strings.
Software: Practice and Experience, 25(12):1315–1330, 1995.

[3] Marat Boshernitsan and Michael Downes. Visual programming languages: A
survey. Technical Report Report No. UCB/CSD-04-1368, University of California,
Berkeley, December 1997.

[4] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola, Jr. Code bubbles: a working set-based interface for code understanding
and maintenance. In CHI ’10: Proceedings of the 28th international conference
on Human factors in computing systems, pages 2503–2512, New York, NY, USA,
2010. ACM.

[5] Andrei Chiş. Moldable Tools. PhD thesis, University of Bern, September 2016.

[6] Wayne Citrin, Michael Doherty, and Benjamin Zorn. Visual object-oriented pro-
gramming. pages 67–93. Manning Publications Co., Greenwich, CT, USA, 1995.

[7] Charles Crowley. Data structures for text sequences. Computer Science Department,
University of New Mexico, Date, pages 1–29, 1998.

[8] Inc. Free Software Foundation. The Buffer Gap — GNU Emacs Lisp Reference
Manual. https://www.gnu.org/software/emacs/manual/html_
node/elisp/Buffer-Gap.html#Buffer-Gap, April 2017.

[9] GitHub Inc. The state of Atom’s performance. http://blog.atom.io/
2018/01/10/the-state-of-atoms-performance.html, January
2018.

39

https://www.gnu.org/software/emacs/manual/html_node/elisp/Buffer-Gap.html#Buffer-Gap
https://www.gnu.org/software/emacs/manual/html_node/elisp/Buffer-Gap.html#Buffer-Gap
http://blog.atom.io/2018/01/10/the-state-of-atoms-performance.html
http://blog.atom.io/2018/01/10/the-state-of-atoms-performance.html

BIBLIOGRAPHY 40

[10] Dan Ingalls. Fabrik: A visual programming environment. In Proceedings OOPSLA
’88, ACM SIGPLAN Notices, volume 23, pages 176–190, November 1988.

[11] Behdad Esfahbod Keith Packard, Carl Worth. Cairo Documentation — showG-
lyphs. https://cairographics.org/manual/cairo-text.html#
cairo-show-glyphs.

[12] Andrew J. Ko and Brad A. Myers. Barista: An implementation framework for
enabling new tools, interaction techniques and views in code editors. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’06,
pages 387–396, New York, NY, USA, 2006. ACM.

[13] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. The Scratch programming language and environment. Trans. Comput. Educ.,
10(4):16:1–16:15, November 2010.

[14] Sean McDirmid. Usable live programming. In Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming & Software, Onward! 2013, pages 53–62, New York, NY, USA, 2013.
ACM.

[15] F. Perez and B. E. Granger. IPython: A System for Interactive Scientific Computing.
Computing in Science Engineering, 9(3):21–29, May 2007.

[16] Google Skia Inc. Skia Documentation — drawText. https://skia.org/
user/api/SkCanvas_Reference#SkCanvas_drawText.

[17] Bernard Sufrin. Formal specification of a display-oriented text editor. Science of
Computer Programming, 1(3):157 – 202, 1982.

[18] Markus Voelter, Tamás Szabó, Sascha Lisson, Bernd Kolb, Sebastian Erdweg,
and Thorsten Berger. Efficient development of consistent projectional editors
using grammar cells. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering, SLE 2016, pages 28–40, New
York, NY, USA, 2016. ACM.

https://cairographics.org/manual/cairo-text.html#cairo-show-glyphs
https://cairographics.org/manual/cairo-text.html#cairo-show-glyphs
https://skia.org/user/api/SkCanvas_Reference#SkCanvas_drawText
https://skia.org/user/api/SkCanvas_Reference#SkCanvas_drawText

	1 Introduction
	2 Related Work
	3 The Moldable Editor
	3.1 Overview
	3.2 Text Model
	3.3 Text data structures
	3.3.1 Pharo
	3.3.2 Atom
	3.3.3 Emacs
	3.3.4 Rope

	3.4 Text style
	3.5 Segments and Rendering

	4 The Validation
	4.1 Overview
	4.2 Transcript
	4.3 Connector
	4.4 Documenter

	5 Conclusion and Future Work
	6 Anleitung zu wissenschaftlichen Arbeiten
	6.1 Prerequisites
	6.2 Setup
	6.3 Usage

