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Abstract

For processing data, it is necessary for the computer to parse it into a read-
able format. The building of a parser requires a model of the grammar of
the input. For many new programming language dialects and log files, these
models are sometimes not available. For creating a model, the structure
and grammar information must be inferred from the source code, which is a
time consuming process. The goal of this project is to automatically provide
an overview of different structures of the source code language. We intro-
duce in this thesis a clustering approach with k-means. Through different
representations – numerical vectors inferred from the textual information
of segments of the input – structural information should be exploited and
assigned to different clusters according to their similarity.

For splitting the input into representation vectors, the smallest instance
that can hold structure is found. These are then clustered using the k-means
algorithm. This should help developers get a better overview of the data and
in a perfect case, make them able to create parser rules for each cluster based
on its nearest assigned statements.

The used approach has some promising results, assigning different pat-
terns into different clusters. For measuring the performance of our represen-
tation methods, we calculate v-measure scores ranging from 0 to 1, with 1
being a complete match. Out of 24 possible combination of representation,
four representations achieved good results, having a v-measure score equal
or higher than 0.66 for Java and another 4 with satisfying results, having
equal or better scores than 0.4. The representation methods which do well
on Java, also do a good job, clustering C#, XML and ABACUS log files, but
perform poorly on Brainfuck, with v-measure scores around 0.

Having the concept of clustering languages, the resulting clusters were
used to calculate a precision value for classifying the degree of relation
between two languages. The precision value is calculated measuring the
overlap of the clusters of a first language with the vector representations
of a second language. Unfortunately, our approach did not perform well,
as it classified every language with the exception of XML, as very closely
related.
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1
Introduction

1.1 Motivation
Writing software means reading software code [11]. For developers it is crucial to
understand the state of the system in order to carry out development and software
evolution tasks. As a consequence, developers often use as much time reading and
understanding the written code as actually writing new code. Analysis tools for integrated
development environments can help developers understand code and reduce time for
assessing software code [13]. For such tools to be created, a software model of the
language the tool is built for, must exist in the form of a parser. For many dialects of
programming language these models do not exists. Aside from programming languages,
log files are a very important part of software applications. Many software applications
do produce auxiliary text files as output. These log files are used in various ways, for
example in debugging and profiling purposes. While generating log files is a very simple
and straightforward process, the understanding of log files can be quite hard, as these
can be very large files with complex structure [17]. If a model of the grammar and the
underlying structure does not exist, it is necessary to infer these properties from the source
code. The inferring of a software model and the building of a custom parser is a complex
task that can take several people several months to accomplish. In this bachelors project,
we try to build a tool that can distinguish different pattern and structures automatically
from software code or log files [7].
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1.2 Goal and Focus
The goal of this thesis is to develop a software tool that can atomically find structure
in (unknown) software code or log files and generate different sets consisting of related
pattern, so that a parser rule can be inferred. The process of creating the software tool is
divided into three different sub-problems that had to be addressed:

1. Statement creation. Structure manifests itself in an ordered sequence of different
tokens. For finding different patterns, the smallest statement had to be found which
is able to hold structural information. In this thesis, we assume that carriage returns
indicate the beginning of a new pattern. A statement is then split into tokens.
Multiple tokens are either separated by blank spaces or by special characters and
contain one or more character. Special characters are single character tokens.

2. Representation and differentiation. For algorithmically deciding and quanti-
fying the difference between statements, a mathematical representation of the
statements needs to be introduced. The approaches used in these methods, differ
from creating a vector out of defining features, but instead focuses on the type of
symbols used in a token.

3. Clustering. A programming language consists of a finite number of different
patterns that are used for describing software. These patterns are therefore used
multiple times, only differing in the used variables and parameters. Patterns that
are similar or differ only in the variables they contain must be filtered. Filtering is
achieved through k-means clustering. Patterns should be clustered according to
their similarity.

To achieve a solution to these sub-problems, certain assumptions about the common-
alities of languages and log files had to be made. We try to keep these assumptions as
minimal as possible, so that a wide variety of programming languages and log files could
be analysed:

• A language consists of a finite number of patterns that differ only in used variables
and parameters.

• Software code contains indents and carriage returns, as it is best practice for many
programming languages amongst most developers, to make them more human
readable.

1.3 Outline
The rest of the thesis is structured as follows:
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Chapter 2 introduces the components of StructureFinder and explains how the used
methods work.

Chapter 3 describes the design of the StructureFinder and how the methods intro-
duced in chapter 2 are integrated.

Chapter 4 uses experiments to gather information about the performance of our
implemented approach and discusses those findings.

Chapter 5 concludes the work and discusses topics for future expanding Structure-
Finder.



2
Related Work

Recognizing Patterns is an easy task for humans, as we learn at a very young age to
recognize patterns such as digits whether they are handwritten, machine printed, bold,
italic or even rotated. Decision making relies on correctly interpreting the patterns of
your surroundings [9]. The same statements are also true for computers. For this reason,
there is extensive research in supervised and unsupervised classification algorithms. This
thesis applies techniques that are also used in many other fields such as Data Mining,
Document Classification and even bioinformatics [9].

Most of the work done in the field of automatic recognition of languages is related to
natural language processing (NLP). There are different papers regarding unsupervised
parsing of natural languages, using part-of-speech (POS) tags or data oriented parsing
(DOP) [4] [14] [5] [6]. In regards to automatic recognition of structure in software
languages there are not many research articles to be found. Joel Guggisberg [8] used
static code analysis to create heuristics for finding keywords of programming languages
from source code, but had to make assumptions on the placement of keywords in software
code. Our approach in learning about the source code language differs in limiting the
assumptions made on the input, allowing to also analyse log files, and making it not a
static but a statistical problem. To the best of our knowledge this is the first attempt to
use unsupervised clustering algorithm to cluster structure according to similarities.
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3
Methods

In this chapter we describe in detail the used methods for creating and tokenizing the input
data and put forward the different representations used in the created tool (subsequently
also referred to as StructureFinder). In our context, a method is defined as a process,
which transforms the input data and if replaced, would result in a different output of
StructureFinder.

3.1 Statements and Tokens
To be able to cluster our input data, which are lines of codes, it first needs to be processed
into smaller instances that are comparable to each other. As mentioned in the introduction,
we use in this project two instances of segmentation: Statements and tokens, where a
statement is consisting of one or more tokens. A statement can be created in different
ways. Because the main effort of this thesis lies in the structural clustering using the
k-means algorithm, the creation of statements is simplified.

A statement is a line of code. Carriage returns and line feeds are a very important
way to make software code readable, creating a structure the human eye can perceive
more easily. The way of using carriage returns and line feeds for defining a statement,
tries to exploit the way we make software code and log files more readable for humans.

For visualising our methods, we introduce a simplified Java example. In this example
code, each new line becomes a statement, creating three different statements from this
code snippet:

5
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if (x > 1) {return 0;}
if (x <= 0) {return 1;}
else {return v1;}

Listing 1: Statements in Java example

A token is a single word, numeral or punctuation. A statement is further processed
into tokens, which are words, numerals, or punctuations.

• A Word is a sequence of at least one letter and can contain numerals but cannot
contain punctuation.

• A Numeral is a sequence of at least one digit. A numeral cannot contain letters or
punctuation.

• A Punctuation is one special character which cannot be a letter nor a digit.

In our example tokens would be made as follows:

if (x > 1) {return 0;}
if (x <= 0) {return 1;}
else {return v1;}

Listing 2: Tokens in statements

In this example, the words are marked in orange, numerals are in red and punctuations
are coloured blue. Tokens are divided by spaces. Punctuation that is not encapsulated by
spaces will still be tokenized as an separate special characters. This means, as seen in the
previous example that "<=" will be tokenized into two tokens: "<" and "=". Variables
such as "v1" are tokenized as a word.

3.2 Representers
As mentioned in the introduction, vector representation is needed for clustering state-
ments. A representer calculates a vector representation out a statement or modifies
already existing representations. There are three different categories of representers:
Type representers, distance representers and weight representers.

1. Type Representer creates vector representations according to the characteristics
of the tokens of the statement and assigns numbers to the vector accordingly.
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2. Distance Representer calculates distance information from the given representa-
tion of a Type Representer.

3. Weight Representer functions as a noise cancelling or filtering mechanism and
can assign weight to specific parts of a representation.

Representers can be concatenated in the order shown above. A Type Representer is
always needed, but can optionally be followed by a Distance Representer or a Weight
Representer or both.

3.2.1 Type Structure Representer
The first Type Representer to be looked at, is the Type Structure Representer. It assigns a
strict value according to the type of the token.

Example: In our implementation we assigned the values 0 for words, 1 for numerals and
2 for Punctuation. For our previously used Java snippet in Listing 1

if (x > 1) {return 0;}
if (x <= 0) {return 1;}
else {return v1;}

Listing 3: Simplified Java snippet

Type Structure Representer gives us the vector representations:

(0 2 0 2 1 2 2 0 1 2 2)
(0 2 0 2 2 1 2 2 0 1 2 2)
(0 2 0 0 2 2)

Listing 4: Type Structure Representation example as vectors

3.2.2 Type Specific Representer
The Type Specific Representer uses the same structural information for calculating the
vector representation as the Type Structure Representer. But instead of assigning a single
value per type, the Type Specific Representer assigns a value per encountered unique
token, with the exception of bracket symbols, for which opening and closing brackets
are treated as one unique token.

To maintain the structural information of the statement, the assigned value per unique
token is then normed into intervals, corresponding to the defined type values in subsection
3.2.1. An element of the vector representation is then calculated as follows:

vector_element =
1

assigned_token_value
+ type_value



CHAPTER 3. METHODS 8

with vector_element being the vector element of the representation at the position
of the encountered token, assigned_token_value the value of the encountered token
and type_value a predefined value for each different token type.

Example: As in the Type Structure Representer we assign the values 0 for words,
1 for numerals and 2 for Punctuation. A punctuation token therefore is always in the
interval (2, 3].

For our previously used Java snippet in Listing 1,

if (x > 1) {return 0;}
if (x <= 0) {return 1;}
else {return v1;}

Listing 5: Type Specific Representation example

this gives us the vector representations:

(1
1
+ 0 1

2
+ 2 1

3
+ 0 1

4
+ 2 1

5
+ 1 1

2
+ 2 1

6
+ 2 1

7
+ 0 1

8
+ 1 1

9
+ 2 1

6
+ 2)

(1
1
+ 0 1

2
+ 2 1

3
+ 0 1

4
+ 2 1

10
+ 2 1

8
+ 1 1

2
+ 2 1

6
+ 2 1

7
+ 0 1

8
+ 2 1

9
+ 2 1

6
+ 2)

( 1
11

+ 0 1
6
+ 2 1

7
+ 0 1

12
+ 0 1

9
+ 2 1

6
+ 2)

Listing 6: Type Specific Representation as vectors example

3.2.3 Distance Zero Representer
The Distance Zero Representer tries to exploit distance information of statement tokens.
It measures the distances between the occurrences of the same values given by the used
Type Representer. Measurement starts with zero as a new type value is first encountered.
If the same type value is encountered after that, the new vector element will be the
distance between the first encounter and the current position of the vector element.
Example: For simplifying the example, Type Structure Representer is used for assigning
type values.

(0 2 0 2 1 2 2 0 1 2 2)
(0 2 0 2 2 1 2 2 0 1 2 2)
(0 2 0 0 2 2)

Listing 7: Type Representation as calculated in Listing 4

Applying Distance Zero Representation to the above Java snippet gives:

(0 0 2 2 0 4 5 7 4 8 9)
(0 0 2 2 3 0 5 6 8 4 9 10)
(0 0 2 3 3 4)

Listing 8: Distance Zero Representation of Type Structure Representation
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3.2.4 Distance All Representer
The Distance All Representer calculates the maximal distance between the same type
values. Type values are given by a Type Representer. It then sets the maximum distance
as the new value for replacing the type value.

Example: Type Structure Representer is used for assigning type values:

(0 2 0 2 1 2 2 0 1 2 2)
(0 2 0 2 2 1 2 2 0 1 2 2)
(0 2 0 0 2 2)

Listing 9: Type Representation as calculated in Listing 4

Applying Distance All Representer gives the following representations:

(5 3 5 3 4 3 3 5 4 3 3)
(6 3 6 3 3 4 3 3 6 4 3 3)
(2 3 2 2 3 3)

Listing 10: Distance All Representation vector representation example

3.2.5 Weight Summary Representer
The Weight Summary Representer is used for reducing noise in the statements. Multiple
subsequent occurrences of the same type values are summarized into one vector element
of this type value. Example: In the following example benefit of this technique can be
seen in reducing the difference between statement 1 and statement 2:

(0 2 0 2 1 2 2 0 1 2 2)
(0 2 0 2 2 1 2 2 0 1 2 2)
(0 2 0 0 2 2)

Listing 11: Type Representation as calculated in Listing 4

Applying WeightSummaryRepresenter gives the following representations:

(0 2 0 2 1 2 0 1 2)
(0 2 0 2 1 2 0 1 2)
(0 2 0 2)

Listing 12: Weight Summary Representation vector representation example
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3.2.6 Weight Sum First Representer
In code, important information such as keywords can often be found in the beginning
of a line of code. Weight Sum First Representer adds all type values or distance values,
following the current position, giving the vector elements in the beginning a higher
weight.
Example: For our previously used Java snippet in Listing 4, applying Weight Sum First
Representer gives the following representations.

(14 14 12 12 10 9 7 5 5 4 2)
(16 16 14 14 12 10 9 7 5 5 4 2)
(6 6 4 4 2 2)

Listing 13: Weight Sum Representation vector representation example

3.2.7 Weight Inverse Representer
The Weight Inverse Representer inverses every vector element. This reduces the variance
of the data and inverses the weight of the statement representation. Example: The
representation of the Type Structure Representer as shown in Listing 4 is inverted. A
Zero value, as possible in Type Structure Representation, is ignored in the calculation:

(0 1
2

0 1
2

1
1

1
2

1
2

0 1
1

1
2

1
2
)

(0 1
2

0 1
2

1
2

1
1

1
2

1
2

1
1

1
1

1
2

1
2
)

(0 1
2

0 0 1
2

1
2
)

Listing 14: Type Specific Representation as vectors example

3.3 K-Means
K-means is an unsupervised clustering algorithm. It clusters the given data in k different
clusters, with k being a known parameter, according to the vector representation of
the data. For clustering the data, k different centroids are randomly initialized and the
algorithm labels the data according to the nearest centroid. At the end of the algorithm,
the centroids will have minimal distance to its assigned data points. This is achieved
by moving the centroids to the euclidean mean of all the assigned data points. The
mathematical expression, given the trainings set {x(1), ..., x(m)} and x(i) ∈ R of the
k-means algorithm is as follows:
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Figure 3.1: Mathematical expression of k-means [12].

A practical example of the k-means algorithm:

Figure 3.2: Example of k-means iteration [12].

The red and blue crosses visualize the centroids. They are initialized randomly at the
start of the algorithm. The centroids will then in every iteration gradually move nearer to
the mean of the final clusters, minimizing the cost of the distortion function:

J(c, µ) =
m∑
i=1

||x(i) − µc(i) ||2.

J measures the sum of the squared distances between each training example x(i) and the
centroid of the cluster µc(i) to which it has been assigned.
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3.4 The Elbow Method
One problem of the k-means algorithm is that the parameter k must be known, which in
our case is not known. K is dependent on the given input on which we want to limit our
assumptions. Therefore, a way to algorithmically calculate k is needed. The idea behind
the Elbow Method, is to find the number of centroids, so that if you add one centroid,
the fit of the centroids to the data – measured by the cost function J – does not improve
significantly any more. In the case of k equals one, the position of the centroid would be
the mean of all data points and in the case of k equals the number of all data points, the
centroids would be the points themselves. As a consequence, k equals one results in the
worst fit and while k equals the number of all data points gives perfect fit [10]. This can
be illustrated by the following example where we normed J by k:

0 2 4 6 8 10 12 14 16 18 20

0

100

200

300

400

500

600

700

800

900

k

J(c,µ)
k

Figure 3.3: Average Fit per centroid per k, calculated with StructureFinder using Java
file input and TypeStructureRepresenter.
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As seen in the figure above, the improvement in the data modelling decreases as

k becomes larger. By calculating the partial derivative
ci−1 − ci+1

ki−1 − ki+1

, the decrease can

be measured. The partial derivative is maximized until it reaches a threshold α, with
α ∈ R− . This value defines our guess for k.

3.5 Language Differentiation
Based on the representation based k-means clustering, this thesis also provides a method
to calculate a precision value of how closely related two languages are. For this, one
language is clustered with the k-means algorithm. For each cluster the radius is calcu-
lated ranging from the coordinate of the centroid to the assigned data point which is the
furthest away from the centroid. For comparing a second language to the first, it suffices,
to only calculate the vector representation of the data as discussed in section 3.2. For
each represented data point of the second language, it is then checked, if it is inside any
circle spanned from the previously calculated radii. The precision value describing the
relation is calculated as follows:

language_relation =
number_of_data_points_in_radius

number_of_data_points

This means, that for any given two languages, the result 1 indicates that the two
languages are related closely and 0 indicates that the languages are completely different.
The two dimensional visualisation can be found in Figure 3.4. The red and blue crosses
represent the data points of the clusters of the clustered language, with the centroid as
the centre and the green crosses being the data points of the second language.

In this example, only one of two green crosses, the data point of the second language,
inside one of the two circles spanned from the radii of the previously calculated k-means

clusterings blue and red. This would result in a precision value of
1

2
= 0.5.
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Figure 3.4: Two dimensional example of Language Differentiation



4
Implementation

This chapter gives an overview of the implementation of the k-means clustering tool
StructureFinder. First, we look at used resources. Second, we look at the k-means and
Language Differentiator pipeline and how the data is processed.

4.1 Technology
StructureFinder is developed in Pharo 4.0 [1]. Statements and tokens are separated with
Petit Parser [3], which is also used for recognizing the types of the tokens.

4.2 K-Means Pipeline
The first implementation to verify our ideas of clustering statements of software code
was a simple k-means clustering algorithm with a single static k as a parameter.

Known k. The implementation of the k-means clustering for calculating a single cluster
is quite straightforward. A code file is loaded by a File Handler object. With the help
of Petit Parser the loaded code file is then split into statements and tokens by the New
Line Statementmaker. A Representer Runner is responsible for handling the different
representation methods and calls to the loaded Representers. The Representers then
successively create the vector representation. These representations are clustered by
the implemented k-means algorithm. The processed clusters are then sent back to the

15
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File Handler, which saves each cluster in a separate file, meaning it saves per centroid
their assigned statements. The centroids are initialised in a range of values determined
by the Representors used, so that no initialised value can be higher than any value of
the calculated representations. This is done, to minimize the risk of getting centroids,
without any data assigned to them, so called empty centroids. The data flow can be seen
in the following figure:

Figure 4.1: Simplified data flow chart of the single k k-means pipeline.

As discussed before, assumptions on the structure of the input should be minimal.
Therefore we do not want to make assumptions about k, but want to have an algorithm to
calculate the optimal number of clusters.

Interval. If the optimal number of clusters is not known, it is needed to calculate
different clusterings with different numbers of clusters and compare them. For this, we
implemented a way to create different clusters for a given interval. For each natural
number in this interval, a set of clusters is calculated and then compared according to
the elbow method discussed in section 3.4. Each calculated set of clusters is given to
the File Handler and output is created for each set of clusters in the same way as in the
implementation shown above. All results from the distortion function, as well as the used
representation and the optimal value of k is saved in a log file. The expansion results in
this updated data flow:
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Figure 4.2: Simplified data flow chart of the expanded k-means pipeline, with highlighted
differences to 4.1 in yellow.

The Square Sum Analyser calculates the distortion function for the elbow method for
guessing k for the different k-means clusterings.

For the updated implementation of StructureFinder, there is also a very important
addition to the output: the nearest statements of the centroids of the best clustering.
These statements are also saved to the log file. The bigger our input files are, the bigger
the output files get. This makes it harder to get an overview of found structures based
on lists of all the statements. The nearest statements of the centroids serve as perfect
example and should incorporate the pattern featured in the corresponding centroid.

4.3 Language Differentiation Pipeline
As discussed in section 3.5, it is possible to use the implementation of the k-means
clustering to calculate a precision value, measuring how closely related different lan-
guages are. The implementation is expanded by adding a control object for the language
differentiation. The data flow of the Language Differentiation looks accordingly:
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Figure 4.3: Simplified data flow chart of the Language Differentiator pipeline.
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4.4 Execution Time
The execution time of StructureFinder is dependent on different parameters of the input
and configuration. The parameters the tool depends on, are the number of iterations,
the size of the training data, the number of clusters, as well as the number of attributes,
meaning the length of the vector representations.

While running the algorithm, we experienced significant slow downs for calculating
the clusterings, using the Type Structure Representer or with calculation using the Weight
Inverse Representer. These two representations are the only ones using float calculation,
instead of integer calculations. Because there is a lot of vector calculation involved, it
leads to the conclusion that floating point calculation is the cause of the slowdowns.

4.5 Testing
Testing is done in SUnit, which is integrated in Pharo 4.0. A test suite was implemented
testing vector calculations and the correct functioning of the creation of the representation.



5
Evaluation

In this chapter, we evaluate how well the ideas we implement in this thesis work. For
this, we first need to introduce a way to measure the performance of k-means clusterings
and take a look how the elbow method should be configured. Second, we try to answer
the question of which representation introduced in section 3.2 performs the best. Third,
we run StructureFinder on different languages to see if it can handle different structural
concepts and last, we look at how the clusters created from StructureFinder look like
and what we can learn about the structure of input data out of its clustering. After the
evaluation of StructureFinder, we look shortly at the performance of our expansion for
classifying the degree of relation between two languages.

5.1 Evaluation Setup
Evaluating an unsupervised learning algorithm does have the problem that there is no
labelled data to test against. But since we know what the goal of the algorithm is supposed
to be, we are able to manually cluster files into a reference clustering, making the cluster
assignment ourselves to test our methods against. In a first phase, we can then introduce
v-measures for calculating a score based on a reference clustering. For calculating
clusters we need to have a elbow threshold parameter α (introduced in section 3.4) for
guessing k, as we do not want to define k. So in a second phase we experimentally look
for a desirable value of α for further computations.

20
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5.1.1 V-Measures
Given the knowledge of the ground truth class assignments of the samples, which we
manually created, it is possible to define a metric, using conditional entropy analysis.
In particular Rosenberg and Hirschberg [16] define the following two desirable objectives
for any cluster assignment:

• homogeneity: each cluster contains only members of a single class.

• completeness: all members of a given class are assigned to the same cluster.

Homogeneity and completeness scores are formally given by:

h = 1− H(C|K)

H(C)

c = 1− H(K|C)
H(K)

with the conditional entropy of the classes, given the cluster assignments H(C|K)
being defined as:

H(C|K) = −
|C|∑
c=1

|K|∑
k=1

nc,k
n
log
(nc,k
nk

)
and the conditional entropy of the classes is given by:

H(C) = −
|C|∑
c=1

nc
n
log
(nc
n

)
where nk is the number of samples in cluster k and nc,k is the number of samples

from class c assigned to cluster k.
The conditional entropy of clusters given class H(K|C) and the entropy of clusters
H(K) are defined in a symmetric manner.

The V-Measure is defined as the harmonic mean of homogeneity and completeness:

v = 2
h ∗ c
h+ c

This gives us values for h, c and v ranging from [0, 1]. These values can be used as a
score to compare how well our representations performed, with 1 being a perfect score
and 0 being the lowest score [16].
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5.1.2 The Elbow Method
The elbow method, as seen in Section 3.4, is a heuristic for finding a good value for
the parameter k. In our manually clustered Java data, we were able to cluster it into 13
different clusters, making this our desired output of the elbow method. For the Type
Structure and the Type Specific Representer we run the elbow methods with different
threshold parameter α on Java the previously mentioned Java code file:
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Figure 5.1: Plot of elbow method. Heuristic value of k, given α.

The smaller α, the smaller is k. These two plots show, that a value of −3 is needed
to get near the desired value for k. Therefore −3 will be used for further calculations.
It is important to notice that the calculated k differs for the same value of α for the two
different used representation methods. Also we have to address the problem of statistical
outliers, as can be seen in this graph at around α = −0.5. Given that the underlying
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k-means algorithm is statistical, outliers are to be expected. Problems related to the
k-means implementation are discussed in section 5.2.

5.2 Evaluating the Representations
Representations are an important part of StructureFinder, because they change the
behaviour of the k-means algorithm. For further evaluation we want to know, which
Representers perform well and should therefore be used if a new language is clustered.

5.2.1 V-Measure scores for Java
Using the v-measure scores, we can calculate two tables containing all the possible
representations introduced in this thesis. Table 5.1 is clustered using the Type Structure
representation, while table 5.2 is calculated using Type Specific representation. The two
tables are hierarchically structured. All the calculations in the two tables were made
with clusterings for k ∈ [10, 25] and with the elbow threshold parameter α = −3. Aside
from the calculations of the scores for homogeneity, completeness and v-measures, the
tables also feature the elbowed value for k as "perfect k". Using k-means clustering, it is
possible for centroids to not be assigned to any data points. Because of this, the number
of empty centroids encountered in the clustering is featured as well. While computing
the v-measure scores, there was a problem with the range of the values computed. Under
the condition of empty centroids present, there was a possibility for the scores to be
below zero. Fortunately this was only the case if there were many centroids without
assigned data points. For simplicity, these values were rounded to zero.
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Table 5.1: Java v-measures of all possible representations with Type Structure Representer

Representor homogeneity completeness v-measure perfect k empty centroids

Type Structure 0,61 0,9 0,73 13 0
Dist Zero 0,47 0,35 0,4 14 4

Weight Summary 0,22 0,42 0,29 16 5
Weight Sum First 0,14 0,11 0,12 12 7
Weight Inverse 0,72 0 0 11 9

Dist All 0,89 0,53 0,66 13 4
Weight Summary 0,08 0,29 0,13 13 6
Weight Sum First 0,1 0 0 20 13
Weight Inverse 0,57 0 0 11 5

Weight Summary 0,25 0,23 0,24 14 8
Weight Sum First 0,21 0,27 0,24 11 5
Weight Inverse 0,77 0,56 0,65 11 0

Table 5.2: Java v-measures of all possible representations with Type Specific Representer

Representor homogeneity completeness v-measure perfect k empty centroids

Type Specific 0,68 0,91 0,77 11 0
Dist Zero 0,56 0 0 13 6

Weight Summary 0,45 0 0 15 8
Weight Sum First 0,12 0 0 20 10
Weight Inverse 0,65 0,65 0,62 11 6

Dist All 0,36 0 0 14 9
Weight Summary 0,6 0 0 13 8
Weight Sum First 0,1 0 0 20 9
Weight Inverse 0,87 0 0 11 9

Weight Summary 0,62 0,95 0,75 14 0
Weight Sum First 0,27 0 0 15 9
Weight Inverse 0,47 0,73 0,58 20 6

The best results were achieved by using only the two Type Representers. They
scored extremely well in completeness with values up to 0.91, if used without any other
representation. The best scores however were achieved by adding the Weight Summary
Representer, which as discussed in section 3.2, reduces noise in the type representation.
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With the addition of Weight Summary representation, the algorithm scores up to 0.95 in
completeness and works extremely well if used with the Type Specific representation,
but not as good with the Type Structure representation. If we look at the highest scores,
Type Structure Representation is the better choice having both the highest score with
the representation that uses only Type Representation and the highest score overall with
the use of Type Specific Representation and the Weight Summary Representer. We will
for further evaluation concentrate on the Type Representors and the Weight Summary
Representor and will take a look on how they can cluster different languages.

The heuristic guess for k does extremely well. As mentioned before, α = −3 was
used for the calculations of the elbow method. Of interest are all the combinations of
Representers that do not result in empty centroids. For those representations, the guessed
k varies maximally by 2 from the manually created example. For the best combination,
being composed of the Type Specific and the Weight Summary, it only differs by one
additional cluster.

5.2.2 Discussion
While there are pretty good results from StructureFinder, most of them have only low
scores. This section tries to find an explanation as to why.

Assumptions. The main goal of this thesis was to find structural patterns in software
code files or log files, while keeping the assumptions about the structure of the input
files as minimal as possible. One of the problems of using a clustering algorithm is,
that said algorithm does make assumptions about the data it clusters. For k-means, this
assumption lies in the goal of the algorithm to minimize the squared sum of the distances
from the data points to the centroids. This might mean that it always tries to find clusters
that are circular in shape. This might not be the case for the representations we create
in this thesis, as the representations were created as seen fit for representing certain
characteristics of structures in a statement.

Variance. If we look at the scores in tables 5.1 and 5.2 , it is striking that methods
do poorly which allow for high variance in the representations. This is the case for all
the Distance Representers, as well as for representations such as Weight Sum First. It is
interesting to see, that the Distance Representers do better, if we lower the variance of
the data, which is the case if we additionally use the Weight Inverse Representer. This
could be the case, again, because the k-means algorithm tries to minimize the squared
sum distances from data points to centroids. With a big variance in the data, this can
cause the k-means algorithm to give more weight to clusters that are more dense and thus
neglecting smaller clusters with lower density [15].

Empty Centroid. In the results, we needed to feature a column for empty centroids,
as this is a big problem that needs to be addressed. Centroids are randomly initialized
with uniform distribution over all dimensions of the vector, scaled to the highest vector
element found in the data. In contrast to featurization, representations allow for vectors
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of different sizes. For vector calculations this means that smaller vectors need to be
padded with zeros to compare them. Therefore, more relevant data lies in the lower
dimensions of a vector. If the centroids are uniformly initialised in every dimension,
initialized centroids can be further away from the data points as any other centroid. We
can see this in Weight Sum First, were we have high values at the beginning and low
values at the end. So Weight Sum First increases this phenomena, but every method that
allows for hight variance in the representation is therefore more prone to have empty
centroids.

Convergence. Scores rely on the convergence of the k-means algorithm. For the
algorithm to be guaranteed to converge to the optimal result, certain assumptions of the
data must be met. If these assumptions are not met, it is possible that the algorithm
converges to a local instead of a global optimum. In our thesis, it is unfortunately the
case that these assumptions are not always met. This can result in different results, as in
the tables above. This does not necessarily mean that our calculated data is not valid. If
the Representers are run multiple times, the algorithm that did well in the scores were
actually the most robust ones, having the lowest variance in the scores and the distortion
function. This can be traced back to the robustness in relation to the empty centroids,
meaning that if a representation is more likely to have empty centroids, it is also to be
expected to have higher variance of the v-measures and in the distortion function.

Summary. The best representations in our evaluation were clearly the Type Structure
and the Type Specific. It seems that they best fit in the assumptions made by the k-
means algorithm and that their limited variance prevents them from suffering from empty
centroids. For clustering new languages one of these two representation is likely to
achieve satisfying results. For creating new representation methods the discussed topics
above should be taken into account.

5.2.3 Type Structure vs. Type Specific
The two Type Representers are performing reasonably well. In this section we want to
find out which of the two is expected to perform better. For this we use data calculated
for the evaluation of the applicability for other languages in section 5.3.
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For Java it was clear that only the Type Representers worked well. Weight Summary
could improve the results, but was not guaranteed to. For evaluating which of the
two Type Representers performs better, we calculated v-measure scores for both Type
Representers on 6 additional Languages. It is hard to see which one of the two Type
Representers does overall perform better, as their performance relies heavily on the input.
This also stands out if we calculate the averages of all the scores of the Type Structure and
Type Specific representation. The average of all scores of the Type Structure Representer
is 0.57, while the average of all the Type Specific representation lies by 0.58. But if
we look at the average of the best performed representations per language, we get a
score of 0.64, and if we ignore Brainfuck, which we were not good in clustering at
all, we get a score of 0.71. This makes it hard to tell which of the two Representers is
overall expected to perform better, as scores depend more on input language as on the
Representer. Predictions based on the languages are very hard. As we saw in this chapter,
even closely related languages can behave very differently in the clustering process.

5.3 Applicability for other languages
The main evaluation of the k-means algorithm was done for Java. As a result of section
5.2.1, we can now discard certain representations as not suitable. We will now take a
look at the performance of the representations for other languages than Java, including
an Abacus [2] log file, for evaluating how our tool varies for different languages. It is
desirable that it performs well on other languages, because we want StructureFinder to
be able to cluster unknown languages reasonably. All the input files used for clustering
contain source code randomly selected from Github. Each file contains roughly about
300 lines of code or more from different source files.
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5.3.1 C#

Table 5.3: C Sharp v-measures

Representor homogeneity completeness v-measure perfect k empty centroid

Type Structure 0,86 0,75 0,8 13 2
WeightSummary 0,23 0,61 0,34 12 5
Type Specific 0,61 1 0,75 15 2
WeightSummary 0,9 0,15 0,26 11 4

If we look at the taxonomy of programming languages, we see that C# is very close
to Java. Therefore, it is to be expected that many structural elements are the same for
both languages. It is not a surprise that the results of our methods are not that different
to those calculated for Java. The heuristic for k is not as good as for Java. While we
manually classified C# into 17 clusters, even the best guess missed two clusters. This
makes α = −3 not the best choice for C#. Nevertheless, the scores for the single use of
the Type Representers are satisfying with the best v-measure around 0.8. But it stands
out that the Weight Summary Representer – our noise reduction – does not perform as
well as in Java. This is surprising, given the close relation between Java and C#. While it
resulted in good scores for Java, giving the best score with Type Specific representation,
the scores for C# are remarkably low. Differences can lie in the composition of the used
data. For this thesis around 300 lines of code for each language are used in the clustering
of the language. A big challenge in clustering is the correct assignment of comments. If
a code contains lots of comments that are formatted in different ways or even software
code that is commented out, this will be clustered differently from intended. The C#
code used for clustering shows indeed lots of different comments, that were not clustered
as intended.

It is also surprising, that we have way more empty centroids than in Java. The
clustering of Java resulted in neither of the used representations used for C# in empty
centroids. It is not clear as to why this happens. One thing that seems to be standing out,
is that the use of the noise reduction, in general either improves the result, or causes it to
have more empty centroids. This can be the case because reducing noise also means that
information is removed, lowering the dimension of the vectors. If too much information
is removed, the clustering cannot work properly, as variance of the data may become too
low, so that data points cannot be distinguished well enough.
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5.3.2 C++

Table 5.4: C++ v-measures

Representor homogeneity completeness v-measure perfect k empty centroid

Type Structure 0,35 0,84 0,5 16 0
WeightSummary 0,67 0,27 0,39 12 3
Type Specific 0,4 0,65 0,5 16 4
WeightSummary 0,15 0,41 0,22 17 7

C++, like C#, is very closely related to Java. So similar results are to be expected. With
Type Structure and Type Specific representation, this is the case, even though they score
lower. It is suspected that there are the same problems in clustering as in C#. C++ does
also contain different ways for commenting that are difficult to handle. The scores of
C++ are more similar to C# than to those calculated for Java.

Like C#, the manual clustered example contained 17 clusters. The number of clus-
ters was guessed better than for C#, with Type Structure and Type Specific only missing
one cluster and Type Specific with applied Weight Summary guessing the correct k.

5.3.3 Python

Table 5.5: Python v-measures

Representor homogeneity completeness v-measure perfect k empty centroid

Type Structure 0,47 0,76 0,58 13 0
WeightSummary 0,66 0,41 0,5 13 3
Type Specific 0,51 0,8 0,62 16 2
WeightSummary 0,27 0,53 0,37 18 1

Python does have similar constructs to Java, but is not as closely related to it compared
to C++ or C#. The evaluation of Python shows reasonable clusterings for Type Structure
and Type Specific, but does also not well, if Weight Summary representation is applied.
If we include the guessed value for k and the number of centroids, Type Structure does
better than Type Specific representation, even though the Type Specific alone does have
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a higher score. Unfortunately, k is not guessed as well for Type Structure as for Type
Specific. The number of clusters in our manually created clustering is 12. Elbowing does
achieve a good value for the Type Structure Representer, with or without the application
of Weight Summary Representer, creating only one extra cluster. For Type Specific,
k is guessed too big, having 4, respectively 6 additional clusters than the manually
created clustering. If we take a look at the used code, we see lots of different statements
beginning with "print" and should be assigned to the same cluster. Having just one word
at the beginning of the statement characterising the whole statement works the same way
as comments do. This makes it hard for the clustering algorithm to assign them properly.

5.3.4 XML

Table 5.6: XML v-measures

Representor homogeneity completeness v-measure perfect k empty centroid

Type Structure 0,7 0,86 0,77 11 0
WeightSummary 0,6 0,45 0,51 11 5
Type Specific 0,58 0,38 0,46 13 5
WeightSummary 0,83 0,51 0,63 11 2

All the previously evaluated programming languages have similar constructs. This cannot
be said about XML, as it is a hierarchical mark-up language. The best results were scored
with the Type Structure Representer, scoring high in homogeneity and completeness.
The other results are not conclusive, because it cannot be determined, if noise reduction
does help or not.

The manually clustered example contains 15 clusters. This means, that for XML, the
elbowing parameter α = −3 does not seem to be the best choice, as the guess for k is
too low over all the evaluated representations.
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5.3.5 ABACUS log file

Table 5.7: ABACUS log v-measures

Representor homogeneity completeness v-measure perfect k empty centroid

Type Structure 0,84 0,48 0,61 14 6
WeightSummary 0,37 0,33 0,35 14 7
Type Specific 0,77 0,41 0,54 12 3
WeightSummary 0,89 0,65 0,75 11 7

The ABACUS log file does achieve good scores, even though there are many empty
centroids in the final clusterings. Only one representation method has a score lower
than 0.5. In the scores gathered, it stands out that Weight Summary representation
only improves the score, if used with Type Specific representation. For Type Structure
Representer this does not apply. The number of clusters would have been guessed pretty
well by the elbow method. But if we subtract the empty centroids from it, we get too few
clusters.

It is not certain why the clustering of the ABACUS log files results in this many
empty centroids, but it could mean that there are a lot of the same types in the same
part of the statements, causing problems with the initialization of the centroids, as was
discussed before. The problem with this explanation is that Type Structure with Weight
Summary does no perform better, which should be expected in that case.

5.3.6 Brainfuck

Table 5.8: Brainfuck v-measures

Representor homogeneity completeness v-measure perfect k empty centroid

Type Structure 0,5 0 0 12 5
WeightSummary 0,2 0,04 0,07 11 8
Type Specific 0,62 0,01 0,21 13 5
WeightSummary 0,28 0 0 11 6

Brainfuck differs from any other programming language evaluated in this thesis. Brain-
fuck uses only eight different special characters as instructions, with everything else
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being treated as comments. This makes clustering the statements very hard, as there is
very little difference between statements. Even though we remarked in the evaluation
of Java that lower variance can result in better scores, it is clear that too low variance
cannot be clustered correctly, as all statement representation vectors gather around the
same points. Because we initialize centroids uniformly over all dimensions, this results
in many empty centroids for Brainfuck. Also, it is important to see, that noise reduc-
tion goes awry as well. Noise reduction reduces the dimension of the representations
remarkably, because Brainfuck only uses one type of token for all instructions. Reducing
dimensions, does also mean that we lose information. This may work well for Java, as it
really reduces noise, but in Brainfuck, it loses too much information to still be clustered
correctly.

5.3.7 Discussion
We can see that StructureFinder can cluster different languages reasonably. For this
we picked languages that are not all closely related. This can help us anticipate if
StructureFinder is able to cluster languages we do not have a lot of information about.
And as discussed for each language clustered the results are satisfying. Nevertheless
there are some problems that need to be addressed which can affect the clustering.

Comments. Comments are hard to find. In programming languages there is often
more than one way a comment can be defined, as well as the possibilities for using
single-line or multi-line commenting. A comment is most of the time defined by the first
few tokens in a statement, with the rest of the statement containing arbitrary structural
information and sometimes even out-commented software code. This makes them very
hard to cluster correctly.

Formatting. Our approach for creating statements (taking every new line as a
statement, see section 3.1) is depended on the correct formatting of the software code.
Not correctly formatted code can cause structure to be split into statements incorrectly.

Statements. In StructureFinder, carriage return is the used delimiter for creating
statements. This is a very simple approach and does not need to map the structure of
loop based programming languages adequately.

Dimensionality. There are different dimensions in the data that need to be looked at:
vector dimension, number of clusters expected and the number of lines in the input. If
one of those mentioned dimensions is too low, it can result in not proper clustering by
the k-means algorithm, because it does not have enough difference in the data to assign
them to different clusters. More dimensions can contain more information. Low vector
dimensions could be causing the problems in clustering Brainfuck, as it contains almost
only punctuation tokens.

Summary. Different Languages behave differently in our clustering approach. But
with the exception of Brainfuck the v-measure scores for the clusterings are satisfying. It
is unfortunately not possible at the moment to make predictions of how the composition
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of the language affects the outcome of the clustering algorithm, because related languages
behave differently. This difference in behaviour could also be caused by the limited size
of the input. It is important to note that the size of the input used for the evaluation was
only around 300 lines of code each. Even though they were gathered from different
source files, the results calculated in this thesis are purely experimental and do not allow
for statistical conclusions on what to do or not to do in regards to the contents of the
input.

5.4 Evaluating the Output
If we take a look at the tables 5.1 and 5.2, we can see that our calculated scores indicate
that the clusterings made from StructureFinder to some extent matches our manually
created clusterings. In this section we look now at the output of the tool -as described in
section 4.2- to find out, what we can learn from the nearest statements of the centroids
and if these statements can help to gain an overview of the structure the languages used
in our input files and thus help a developer in creating parser rules. For this we look at
the nearest statements for Java input files, created using first, Type Structure Representer
and second Type Specific Representer with elbow parameter α = −3.

Figure 5.2: Nearest statements per centroids, created witch Type Structure Representer

Each line of figure 5.2 represents a centroid and with this the perfect example of the
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pattern a centroid should be composed of. Therefore it would be desired that these state-
ments differ in their pattern. As we can see different statements with different constructs
in figure 5.2, there are multiple occurrences of similar statements. The first thing that
stands out is the occurrence of two different lines which are related to commenting. It is
clear that comments are problematic in our clustering approach, because the beginning
of the statements and not the representation of the whole information defines the cluster
it should be assigned to. Also, there are two almost identical statements on line 1 and
line 4 with the difference of one token. This means, that the length of the representation
does play a big part in the assignments of the statements to clusters. It is to be noted here
that this would be the same statement if Weight Summary Representer would have been
used with the Type Structure Representer. Also we have two centroids declaring imports
and two method declarations. Also interesting is to note what is missing. There are no
conditionals (if) and no while or for loops in our generated figure 5.2. In our manual
clustering we assigned all if statements to one centroid.

Figure 5.3: Nearest statements per centroids, created witch Type Specific Representer

Type Structure Representer does a better job, assigning the comments to the same
clusters. We still have the problem here that we have two nearly identical patterns,
starting with the import token. It would be desired to have them assigned to the same
cluster. The only difference of those two statements lies in the lengths of the statement
and furthermore only in a series of a repeating pattern. It should clear that these two
should be assigned to the same cluster. This is a huge drawback of our implemented
approaches. Also we have the same problem as in figure 5.2 above, here in line 3 and 4
in figure 5.3, with statements that only differ in one word.
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5.4.1 Discussion
It is possible to learn about key-constructs of the language clustered with StructureFinder.
A problem is that there are different centroids with the same patterns as their nearest
data point. This means that even though we have a good matching to our manually
clustered example – as can be seen in the v-measure scores in section 5.2.1 – the centres
of our clusters are not necessarily at the desired position. This limits the number of
different constructs we can learn from our nearest statements. Also, since we limit our
assumption on the language, we cannot say how much structural constructs are missing
from the created list and so we never have a complete overview of the language using the
nearest statements of the centroids. Alternatively, we could look at the complete feed
of statements per centroid which is also saved. But it is not efficient to sort through the
same number of lines of the input.

5.5 Evaluating Language Differentiation
After evaluation the k-means algorithm, we now take a look at the performance of our
expansion for calculating a precision value for how close languages are related. For this
we calculate a matrix containing all the precision values between pairs of languages. But
this does not make it possible to infer parser rules from the nearest statements of the
clusters.

Table 5.9: Cross Language Differentiation
languages Brainfuck C# C++ Java Abacus log Python Xml

Brainfuck 0,998 1 0,998 1 0,996 1 1
C# 1 1 1 1 0,997 1 1
C++ 0,995 1 0,894 1 0,997 1 1
Java 0,65 0,972 0,81 0,998 0,843 0.94 0.87
Abacus log 0,998 1 1 1 0,999 1 1
Phyton 0,88 1 0,947 1 0,925 1 0.97
Xml 0,52 0,957 0,495 0,89 0,62 0.89 0.88

The results of the Language Differentiator are unfortunately not as expected. It was
expected that languages like Java and C# would be similar, because they both are a C
type language, as are C++ and Python. But it was not expected that nearly all values
calculated, resulted near or are one. This applies also to the ABACUS log file, which is
not even a language. It would not suffice just to reference the problems mentioned in
section 5.2.2. There must be a general flaw in the idea.
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The underlying idea of the Language Differentiator was that if we can cluster state-
ments in a satisfying way, clusters of different statements in a single language would
need to be further apart from statements of other clusters than from statements of the same
cluster. The conclusion from this is that different languages should result in different
clusterings, with different centroids.

Overlap. While it is not possible in k-means that clusters overlap. But it is possible
for clusters of two languages to overlap, because they are created independently. If the
variance of the data is small, then all data points of the statement representation of the
two different languages are located in the same space. Therefore, if this is the case, our
way of calculating language differentiation would not be able to find differences between
the languages, because they would count as positive findings in our calculations.

This can be visualized in a two dimensional example.

Figure 5.4: Overlap of clusters in Language Differentiator

The orange, blue and red crosses visualize the vector points of the representation of
the first language and the black circles are spanned from the radii from the centroids to
the point of the cluster with longest distance. The green crosses visualize the same for
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the second language. It is clear that these languages are not a close match, because the
green crosses are divided to all three clusters created from the first language. But because
the variance of the clusters is low, it is possible that all the green crosses lie in the radii
of the clusters of the first language. This gives us for this example a precision value
of 1, even though if we would span a circle around the green crosses it would intersect
with all three circles spanned from the first language. A better approach for language
differentiation with k-means could be to calculate a precision value not based on the
vector data points, but on the centroids of the clustering of the second language.



6
Conclusions and Future Work

Finding structural patterns in code or log files can help infer grammar rules, as an
important part of building a parser. In this thesis we introduce pattern recognition, using
the unsupervised learning algorithm k-means and presented ways for representing the
data for the used algorithm. Our goal was to minimize assumptions on the input, therefore
allowing StructureFinder to work on any given code or log files. We evaluated these
methods to see if they perform as expected.

Representations were calculated using different representations, which can be chained
together using one Representer of each category, categorized in Type Representers,
Distance Representers and Weight Representers.

The evaluation of the representations indicate, that using Type representations without
any other representation performs best for almost all. Using Weight Summary represen-
tation for noise reduction can further improve the results on some languages, but is not
guaranteed to perform better. If we take a better look at the Type Representers, Type
Specific does perform slightly better for any tested language.

Apart from the results given by the Type Representers and/or Weight Summary
representation, the other representations did not do well in the evaluation, having low
scores and were not robust regarding their computations, having high variance in multiple
runs and resulting in empty centroids.

If we look at the centroids and the nearest statements located to those centroids, we
have an overview of different structures of the clustered language. Unfortunately, despite
good v-measure scores it is possible to have statements, which we manually assigned to
the same clusters, featured as nearest statements of two different centroids. Nevertheless,
key features of the language can be identified, but it is not possible to know what patterns
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are not featured in this list of statements. This gives us no complete overview of the
language and makes it hard to infer parser rules from the nearest statements.

In this thesis it stands out that k-means for clustering structural patterns in code
clearly has limitations, as k-means itself does make assumptions on the data while
clustering, as it always tries to find circular shaped clusters.

Our introduced approach for calculating how closely related languages are did not
perform well. It resulted almost in every case in a precision value of one, meaning that
both languages should be the same.

6.1 Future Work
Regarding the problems of k-means, different unsupervised learning algorithms, using
single linkage or hierarchical clustering work better for certain languages, as they make
different assumptions regarding their input.

The execution of the k-means implementation is quite expensive for big data sets
and in particular, if the vectors contain floating point numbers. Better implementation of
vector computations could certainly improve the run time of our tool.

In this thesis, the main focus lies on the different representations and the implementa-
tion of the k-means pipeline. The statements were created as single lines, as we wanted to
limit our assumptions. Most programming languages have block structures, allowing for
encapsulating their statements. The new line approach does not allow for encapsulation.
Improvement on the creation of statements could improve the quality of the output of
StructureFinder.

With the knowledge about the assumption made by the k-means algorithm, we could
also try to make more representations, which could exploit those assumptions better.

It would also be interesting to see how the results could be improved, if we add
heuristics for finding keywords. Keywords are a very important construct of programming
languages, that cannot be found with our representation approach. Comments or print
statements can add different structure after a keyword, but should be assigned to the same
cluster. Adding information about keywords, for example as a fourth type for tokens,
could improve the clusterings.

For language differentiation the approach could be changed to calculate the precision
value based on the centroid of a cluster and not on the statements representation vector
points of a language. This could reduce the problem of the general overlap of data with
low variance.
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7
Anleitung zu wissenschaftlichen Arbeiten

This chapter contains additional documentation for the StructureFinder tool, implemented
in Pharo 4.0 and also consists of a users guide to get the data used in this thesis.

7.1 Introduction
The main effort in this bachelor thesis lies in the implementation of the clustering and
representation mechanics. There are three different parts in our finished StructureFinder
tool:

• StructureFinder. Clusters the given input.

• StructureAnalyzer. Analysing mode of StructureFinder, clusters the input and
returns additional information about how well it performed.

• LanguageDifferentiator. Expansion of StructureFinder, calculates a precision
value for two input languages or can additional be used for cross comparison of
different languages.

7.2 Getting Started
For replicating the results of this thesis or to play around with the clustering mechanism
Pharo 4.0 and the Pharo 4.0 Image File containing the StructureFinder source code is
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needed.

Pharo 4.0 with a standard Pharo 4.0 Image can be downloaded from:

https://github.com/countschokula/BA_StructurFinder

The Image containing the source code of this thesis is stored on a git repository and can
be cloned using the git command:

$ git clone https://github.com/countschokula/BA_StructurFinder

7.3 Structure Finder
The StructureFinder is the implemented k-means clustering tool. For the execution, a
folder structure needs to be created, containing the input files and folders for the output
files. For proper functioning, the folder structure needs to look exactly like this. This
needs to be manually created. If a new language is added, folders must be created in the
folders files and result. "testFiles" is the root folder. In an input Folder there can be more
than one file present. If that is the case, StructureFinder will concatenate them to one file
in the clustering process.

Figure 7.1: Folder structure for setting up the StructureFinder tool, testFiles is the root
folder
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In the uploaded Image there should be preconfigured playgrounds. If there is no
playground open, one needs to be opened.

The preconfigured playground for the StructureFinder contains all necessary param-
eters for running the clustering algorithm:

Figure 7.2: Pharo 4.0 playground for configuring and running StructureFinder

For better understanding, the preconfigured playground contains information on
the parameters that can be set. We now take a closer look at the parameters of the
StructureFinder.

• path. This parameter is necessary for correct loading and storing of the input
respectively the output files. The path should point to the root of the folder structure
as defined above.

• mode It is possible to run two different modes of StructureFinder. Parameter "1"
creates a single run of the clustering for input k, while parameter "2" runs the
clustering for every natural number between k2 and k.

• inputFolder. It is possible to have different folders, containing different languages
in your project root folder. The message "inputFolder:" makes the tool use the input
of the folder. The folder is given as a string. Output is saved in the corresponding
folder under results.

• k. Number of clusters for single clustering. If interval mode is activated, k is the
higher limit of the interval.
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• kmin. If interval mode is activated, kmin is the lower limit of the interval.

• iterations Gives the kMeansRunner the number of iterations it should run the k-
means algorithm, 25 is a low, fast and reasonably guess for the number of iteration.
If no iteration value is set, the default value is 50.

• α. Defines the threshold for the elbow method, the heuristic for guessing k. This
parameter is only used, if the tool is run on an interval.

• typeRep. A Type Representer must be set. Representers are given to the Struc-
tureFinder as Instances. There are two Type Representers available. TypeStructure
and TypeSpecific.

• distRep. A Distance Representer is optional. It can be set by giving the Structure-
Finder an Instance of the Distance Representer you want to use. Currently there are
two Distance Representers available. DistanceZero- and DistanceAllRepresenter.

• weightRep. Adding a Weight Representer is optional. Currently there are tree
different Weight Representers available. WeightSummary-, WeightSum- First and
WeightInverseRepresenter.

Output. The statements of a cluster are saved to .txt files. A file per centroid is created
and the files are enumerated. They are saved under results in the corresponding folder the
input file is located and are put in a folder named with the timestamp of the execution of
the algorithm. For interval execution, for each created clustering the result will be saved:
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Figure 7.3: Output Folders and Files under Windows

As seen in Figure 7.3 a file named configuration_used will be created. It contains the
parameters used in calculating the clusters, as well as the value of the distortion functions
averaged over k, for all sets of clusters. Also, the nearest statements to the centroids are
listed.
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Figure 7.4: Example of "configuration_used.txt" log file.

7.4 Structure Analyzer
Structure Analyzer allows for calculating the v-measure scores. V-measure is explained
in detail in section 5.1.1.

For calculating v-measures, it is necessary to have a manually created clustering of
your input data to test against. The input file needs to be split into the clusterings wanted
to be achieved and saved into different text files. The assigned statements must be only
featured once in the manually created clusters. Also, the cluster set must be stored in the
correct folder. For this a folder named "perfect" needs to be created in the root folder of
your project path. In the folder "perfect" a folder with the same name as the input folder
has to be created and this is were the manually assigned clusters need to be stored. The
input of the files has to be on the same location used for the StructureFinder.
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Figure 7.5: Set up of perfect example for analysing

The configuration is exactly the same as in section 7.3 for the StructureFinder.

The preconfigured playground for the StructureAnalyzer looks like this:

Figure 7.6: Preconfigured StructureAnalyzer Playground

Output The StructureAnalyzer has the same output as the StructureFinder in section
7.3. The exception is, that the additional information about the performance of the
clusterings are added to the log file.
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Figure 7.7: Log file "configuration_used", added performance information from analysa-
tion.

7.5 Language Differentiator
There are two different ways for calculating the Language Differentiator values. The first,
calculates the precision value of how close two languages are related, using two normal
input files from the files directory, as described in section 7.3. The second approach,
which was used for calculating the results in this thesis, as can be found in section 7.3,
uses a different test and trainings set per language, allowing to test the relation of two
different input sets for the same language.

We now take a look at the first approach and the preconfigured Pharo playground.



CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 53

Figure 7.8: Language Differentiator Playground

The initialization of the LanguageDifferentiator works nearly the same as for the
StructureFinder and the StructureAnalyzer. The exception is, that the kMeansRunner
Object is not wrapped in the LanguageDifferentiator and must be initialised separately.

Output. For the playground to show the results, press Ctrl+A and Crtl+P. The clusters
are saved in the normal result folder.

The second approach needs a separate folder structure:
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Figure 7.9: Language Differentiator compare folder structure

There is also a preconfigured playground for the "crossLanguageComparison:"
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Figure 7.10: Language Differentiator cross comparison

The KMeansRunner is configured in the same way as above. All the folders that we
want to compare with each other can be added in string form to the types collection with
the message "add:".

Output. Output is generated using the playground command Ctrl+P. Results of the
clusterings are saved to the results folder in compare>training>result.
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