
A Shape Grammar Interpreter Using
Local Coordinates For Subshape

Detection

Bachelor Thesis

Lars Wüthrich

Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

February 2018

Leiter der Arbeit:
Prof. Dr. Oscar Nierstrasz

Manuel Leuenberger

Software Composition Group
Institut für Informatik

University of Bern, Switzerland

Abstract

Shape Grammars allow us to create complex and intricate recursive images
by applying geometric transformations. Instead of rewriting strings as in
text based grammars, the production rules directly operate on the geometry
of a shape. However, there can be several possibilities where a given rule
could be applied to a shape. The existing implementations and theoretical
approaches assume that the decision where to apply a rule has to be made
manually by the designer. In this work, various heuristics are considered to
let the shape grammar interpreter run by itself with minimal user input at
the beginning. In addition, a new method of subshape detection is presented
based on point comparison in local coordinates, which is needed for the
shape grammar interpreter to find subshapes to apply the rules to. This novel
detection algorithm and several of the heuristics are implemented in a proof
of concept interpreter and editor. They are used to create various images that
would have been tedious to do in this detail by manual interaction with the
interpreter.

i

Contents

1 Introduction 1

2 Related Work 5

3 Subshape Detection 7
3.1 Homogeneous Coordinates . 7
3.2 Grammar, Rule and Shape Representation 9

3.2.1 Example grammars . 11
3.3 Subshape Detection By Point Comparison In Local Coordinates 13

3.3.1 Coordinate Transformation . 13
3.3.2 Transformation Matrix Example 13
3.3.3 General Idea Behind The Algorithm 16
3.3.4 Maximal Lines . 19
3.3.5 Algorithms . 21
3.3.6 Computational Complexity . 23

4 Match Filtering And Selection 25
4.1 Filtering . 25

4.1.1 Filter Intersections . 25
4.1.2 Filter Based On Transformation Properties 26
4.1.3 Filter Based On Bounding Box 27
4.1.4 Filter Based On Pixel Size . 27

4.2 Match Selection Problem . 28
4.2.1 Probability Based Heuristics 28

4.2.1.1 Random Choice . 28
4.2.1.2 Balanced Random 31

4.2.2 Age Based Heuristics . 34
4.2.3 Shape Geometry Heuristics . 37

4.3 Coloring And Additional Data Tags 37

5 Editor and Interpreter 39

ii

CONTENTS iii

6 Evaluation 42

7 Conclusion 43

8 Anleitung zu wissenschaftlichen Arbeiten 44
8.1 Interpreter . 44

8.1.1 Class structure . 44
8.1.2 Shape Transformation . 48

8.2 Domain Specific Language . 50
8.2.1 Shape Creation . 50
8.2.2 Rule Creation . 52
8.2.3 Grammars and Configurations 54
8.2.4 Parameter Specification . 54
8.2.5 Image Generation . 55
8.2.6 Image Creation Infrastructure In Pharo 58

8.3 Editor . 61
8.3.1 Basic usage . 61
8.3.2 Implementation in Bloc . 63
8.3.3 Reflection . 63

List of Figures

1.1 A rule with a left hand side α and a right hand side β. 1
1.2 A starting shape that is transformed several times by the rule from

Figure 1.1. 2
1.3 Recursive Square 170 rule steps . 4

3.1 Example of valid shapes . 9
3.2 Recursive Square Grammar . 11
3.3 Triangle Inlay Grammar . 12
3.4 Hexagon Tiling Grammar . 12
3.5 Transforming γ into a local coordinate system. The red and blue arrows

denote the new x- and y-axis respectively. 14
3.6 Transforming α into a local coordinate system. The red and blue arrows

denote the new x- and y-axis respectively. 16
3.7 Recover the transformation from α to γ. 17
3.8 Six different coordinate system choices lead to the same triangle in local

coordinates ignoring their labels. The red and blue arrows denote the
new x and y axes respectively. 18

3.9 Any parallelogram and square are subshapes of each other 19
3.10 Example in which maximal lines would be needed. (b) would not match

inside (a) even though both have the same general outline 20

4.1 Applying the triangle inlay rule seen in Figure 3.3 a few times leads to
self intersection of lines. 26

4.2 Triangle Grammar applied randomly on a single triangle 29
4.3 Triangle inlay grammar applied with labelled triangle subshapes 30
4.4 Example how to group triangles with SGBalancedRandom heuristic . . 32
4.5 Triangle Grammar applied with balanced random heuristic on a single

triangle . 33
4.6 Example how to select hexagons based on when they were created . . . 35
4.7 Hexagon tiling grammar created with age selection, preferring subshapes

with a higher age. 36

iv

4.8 Shape grammar rules can work on any colored starting shape. The color
transformations are defined relative to the input color. 38

5.1 The editor with different areas to define rules and shapes. Rules can be
applied to the γ shape on the right by pressing the apply rule button. . . 39

5.2 Set the filtering parameters and apply the previously defined rule. 41

8.1 The SGShape, SGVector, and SGLine classes. They define a shape
with points and lines. 45

8.2 The SGRule class. It has an α and a β SGShape. The transformation
from α to β is stored in the SGShapeDelta class. 46

8.3 A SGMatchFilter filters a list of subshape matches. The subshape
matches are modeled with the SGShapeMatch class that stores addi-
tional data about a subshape match. 46

8.4 A few match selectors that extend the SGMatchSelector class. Custom
selectors can be implemented by extending this base class. 47

8.5 The interpreter . 49
8.6 The triangle that is created by the SGShapeBuilder above. 51
8.7 The rule defined by the listings above. 53
8.8 A few images that were created by the SGImagebuilder. 57
8.9 Run any message to create an image directly from the system browser. . 59
8.10 Debug the shapes from the system browser. 60
8.11 View of the selected shape. 60
8.12 Set the filtering parameters and apply the previously defined rule. 62

List of Algorithms

1 Subshape Detection findSubshapes(α, γ) 21
2 Find Coordinate Points findCoordinatePointsIn(P) 22
3 Create a transformation matrix createMatrix(p1, p2, p3) 22

v

Listings

1 Create a triangle shape . 40
2 Use the SGImageBuilder to run the interpreter and produce image output 40
3 Create a shape with manually specified labels. 50
4 Create a shape by specifying points inside the line declarations. 50
5 Create a shape where ids are assigned automatically. 50
6 Create a shape with mixed id declarations. 50
7 Create a shape by specifying points and lines each by a separate message

sent to the shape builder. 51
8 Create a rule . 52
9 Create a rule where points with the same coordinates are automatically

mapped. 52
10 Creating a SGGrammar . 54
11 Creating a SGConfiguration . 54
12 Filtering options . 54
13 Use of the SGBalancedSelector 55
14 Use of the SGRandomSelector . 55
15 Use of the SGDegreeSelector . 55
16 Use of the SGShapeElement, which extends BlElement. 55
17 Use of the SGImageBuilder . 56
18 A message to create a series of images with the pragma 〈script:〉 58

vi

1
Introduction

Shape Grammars allow us to create complex and intricate recursive images by using
geometric transformations. An implementation of a shape grammar interpreter can take
specifications for rules and applies the rules to the starting shape, which can be rendered
to produce images. Instead of rewriting strings as in text based grammars, the production
rules of the form α → β work directly on a shape, where α and β are also shapes
themselves. Figure 1.1 shows such a rule where the transformation adds new points
and lines to an existing square. This rewriting of geometry can be used to create more
complex shapes by applying it repeatedly.

(a) α shape, the left
hand side of the rule.

(b) β shape, the right
hand side of the rule.

Figure 1.1: A rule with a left hand side α and a right hand side β.

1

CHAPTER 1. INTRODUCTION 2

(a) We start with a shape
called γ, the starting shape.
It consists of two squares, the
smaller one rotated.

(b) The subshape match is in-
dicated in red. The rule will
be applied at this position.

(c) Apply the rule once.

(d) Find a new subshape
match. This time inside the
big square.

(e) Apply the rule a second
time.

(f) γ after applying the rule
a few times more.

Figure 1.2: A starting shape that is transformed several times by the rule from Figure 1.1.

CHAPTER 1. INTRODUCTION 3

A shape grammar example is given in Figure 1.2, which shows how the rule from
Figure 1.1 is applied. First, we try to find the left hand side shape called α of the rule in
Figure 1.1 somewhere inside the starting shape called γ from Figure 1.2(a). We can see
that there are two squares in γ and we arbitrarily choose the smaller square first indicated
in Figure 1.2(b). The red area marks the subshape match we found by transforming α
with a rotation, scaling, and translation. We call this transformation τ . The small square
is therefore the shape τ(α), which means the points in α are transformed to end up as the
points from the marked subshape match. Then we apply the rule once to create the image
in Figure 1.2(c). This is done by removing the red shape τ(α) and adding the shape
τ(β) from the rule in Figure 1.1. It is important to note that we have to apply the same
transformation τ to β if we add it to the target shape γ. Otherwise β does not end up at
the same position, with the correct scaling, and rotation as the red subshape τ(α). After
the shape is transformed by the rule, we find a new subshape and apply the rule again.
This time we select the bigger square in Figure 1.2(d). Applying the rule now yields the
image in Figure 1.2(e) and several more applications produces the image in Figure 1.2(f).
The process of applying a rule to a shape γ can be written as [γ− τ(α)]+ τ(β) according
to Stiny [8]. We remove the left hand side and add the right hand side both with respect
to a transformation τ .
In existing shape grammar implementations, the generation of designs is assumed to
be an interactive process between the interpreter and the user. When a rule and a target
shape are supplied, the interpreter presents all subshapes to which the rule can be applied.
However, the selection of the subshape, to which to apply the rule, has to be done
manually.
In this work, it is assumed that the user supplies parameters which are encoded in the
grammar and lets the configured interpreter run by itself to create images without further
user input. In order to do this, any unwanted transformations on a shape have to be
filtered out. In addition, various scoring strategies are presented in Section 4.2, which
help the interpreter decide by itself where to apply a rule if several possibilities exist. For
example, in Figure 1.2(a) we have two squares the interpreter can choose from.
A self-running shape grammar interpreter can therefore be divided into the following
distinct stages:

1. Rule and starting shape definition
Define the rules and the starting shape either directly in code, using the domain
specific language or by drawing them in the editor.

2. Declaration of filtering and selecting parameters
From all possible subshapes some are not needed and can be filtered out, which is
configured by these parameters. After the filtering, one match from the remaining
ones has to be selected, which is configured by the selection parameters.

3. Subshape Detection (Chapter 3)

CHAPTER 1. INTRODUCTION 4

The interpreter has to find a transformation τ from a given left hand side α and a
target shape γ.

4. Match Filtering (Section 4.1)
If there are more than one subshape matches, unwanted ones have to be filtered
out.

5. Scoring and selection of found matches (Section 4.2)
From the remaining subshapes the best one is selected by scoring them with certain
heuristics.

6. Rule application
Apply the rule to γ with the given subshape.

The subshape detection problem in stage 3 is treated with a novel solution explained in
Section 3.3. With the aim to test the applicability of the subshape detection algorithm 1,
a shape grammar interpreter and a proof of concept editor is built in Pharo (Smalltalk). A
small domain specific language helps us to quickly define shapes used in the editor and
interpreter. Several of the filtering mechanisms presented in Section 4.1 and the match
selection strategies in Section 4.2 are implemented. The code resides in a repository [12]
and Chapter 8, describes the inner workings of the interpreter and editor.

Figure 1.3: Recursive Square 170 rule steps

https://pharo.org/

2
Related Work

Shape grammars were first defined by Stiny et al. [9] and further formalized by Stiny [8].
At that time any images created by these grammars were hand drawn and no computer
implementation of such a shape grammar interpreter had yet existed. Although the
work on shape grammars had a more theoretical nature then, many important concepts
and notations were defined. The biggest technical difficulty in implementing a shape
grammar interpreter poses the subshape detection problem. The left hand side α of the
rule has to be found as a subshape inside a target shape γ in order to apply the rule.
Krishnamurti [4] introduces a sophisticated algorithm to solve the subshape detection
problem, which allows us to build such a shape grammar interpreter. It is based on finding
a transformation τ from three points in the subshape to three others in the target shape.
This algorithm finds the linear transformation from three points in α to any three points
in γ by creating equations and solving them for the coefficients of the transformation.
Therefore the method from Krishnamurti [4] can be used effectively to calculate this
transformation τ .
A new algorithm is proposed here to solve the same problem but with a different method.
It is based on point comparison in local coordinate systems. Both the potential subshape
α and the target shape γ are transformed by matrix multiplication into a local coordinate
system. If they match in the local system, α is a subshape of γ. The transformation
matrix is recovered by going from the original system in α to the local system and then
back to the system in γ. Because we have to transform both shapes to a local coordinate
system instead of transforming α once to the coordinate system in γ it is slightly less
efficient than the standard algorithm but has an intuitive idea behind it and is simple to
implement.

5

CHAPTER 2. RELATED WORK 6

Although shape grammars did not have many practical applications in the last years, they
are getting more attractive for certain computer graphic applications, such as by Zhang
et al. [13], to guide a grammar with vector fields over an object in order to create surface
patterns. Santoni and Pellacini [7] use a shape grammar inspired concept called group
grammars in order to subdivide and decorate already present geometry with tangle pat-
terns.
Shape grammars were primarily used to design objects that could be manufactured, for
example Agarwal and Cagan [1] or Brown et al. [2] show the means to create designs of
real world objects. Apart from that, shape grammars could also be used in architecture to
design buildings. In these problem domains a designer is needed who chooses where to
apply a rule. Shape grammars were more seen as a tool for the designer and it was not
necessary to create a self-running shape interpreter. Therefore, this aspect was apparently
not well developed since the definition of shape grammars and this work explores certain
characteristics needed in order to reduce user input. Let us assume we want to create
several hundred images procedurally that should look similar but also show variations
between them. Each of these images will have intricate patterns and require maybe a
few hundred rule transformations from a given starting shape. If we want to do this by
hand, it will be tedious and require a lot of time because every rule transformation needs
several manual interactions by the designer. It would be much more convenient to specify
parameters at the beginning, then let the interpreter select appropriate locations to apply
a rule and let it run for a few hundred iterations. In order to create variations between the
images, parameters are changed slightly and the interpreter is run again. This process
requires much less user interaction and produces many different images that can also
be hand selected afterwards. Match filtering and selection strategies are added to the
interpreter in order to accomplish this. They help the interpreter to choose a suitable
position to apply the rule from a number of possibilities.
Apart from the generation of the geometry itself, coloring is also an interesting aspect
to improve the visuals of images. Stiny [8] presents a usable method for coloring a
restricted set of grammars, as well as Knight [3] who defines a new type of grammar to
create already coloured shapes. The editor implemented in this work uses a different
method to color shapes. A function is defined per rule that transforms the right hand sides
color relative to the color of the left hand side of the rule. This allows the interpreter to
transform shapes with arbitrary colors instead of fixed hard-coded ones.
Finally the standard subshape detection algorithm from Krishnamurti [4] and the alter-
native Algorithm 1 proposed could also find utilization in problem areas different than
shape grammars where only subshape matching is required.

3
Subshape Detection

In order to apply a rule to a target shape γ we first have to find the rule’s left hand side α
inside the target shape γ. The problem of finding a shape inside another shape regarding
some transformation is called subshape detection, which means finding a transformation
τ that leads to τ(α) being a part of the target shape.
At a first glance, either distances or angles of connected points could be compared
between the potential subshape and the target shape. However, such a simple comparison
is not possible due to the fact that any linear transformation or finite composition like
translation, rotation, and scaling may be applied to the subshape so that it is part of
another shape. This makes it impossible to compare point distances because any non-
uniform scaling or shearing would remove any distance similarities. Similarly, any
angles may be changed by rotation, non-uniform scaling and/or reflections. This section
addresses this problem by using a new algorithm based on point comparison in local
coordinates. Instead of comparing points and lines directly we first transform both shapes
into a coordinate system where we can easily detect if they are similar enough to count
as subshapes.

3.1 Homogeneous Coordinates
In order to work with translation, scaling and rotation in a uniform way, points in a
2D coordinate system are represented by homogeneous coordinates (refer for example
to Mortenson [6, p. 69–71]) in the form:

7

CHAPTER 3. SUBSHAPE DETECTION 8

p =

xy
1

 and v =

xy
0


where p is a point (its z component is 1) and v is a vector (its z component is 0).

Transformation matrices are extended from 2× 2 to 3× 3.

M =

m11 m12 x
m21 m22 y
0 0 1


where x, y encode translation and m11, m12, m21, m22 encode scaling and rotation.

An advantage of homogeneous coordinates is that we can represent both 2D vectors and
points uniformly with a three coordinate vector by setting the z part either to zero (a
vector or point at infinity) or to one (a point). In effect, homogeneous coordinates allow
us to apply rotation, translation, and scaling uniformly to points and vectors by use of
matrix multiplication.
We can define rotation, scaling, and translation as follows:

Rotation by θcos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 ·
xy
1

 =

cos(θ) · x− sin(θ) · ysin(θ) · x+ cos(θ) · y
1


Scaling with the vector

(
a
b

)
a 0 0
0 b 0
0 0 1

 ·
xy
1

 =

a · xb · y
1


Translation of a point by the vector

(
a
b

)
1 0 a
0 1 b
0 0 1

 ·
xy
1

 =

x+ a
y + b
1



CHAPTER 3. SUBSHAPE DETECTION 9

Translation of a vector does nothing as expected1 0 a
0 1 b
0 0 1

 ·
xy
0

 =

xy
0


3.2 Grammar, Rule and Shape Representation
Our definitions try to adhere to the standard terms for example defined by Stiny [8].

Shape
A shape S = {P,L} consists of a set of points P = {p1, p2, . . . , pn}, where each

2D point pi ∈ P is represented with homogeneous coordinates.
Additionally, L = {l1, l2, . . . , lm} is a set of lines where li = {ps, pt} references a
starting and an endpoint in P .
Each point and line can also have a label. Stiny [8] calls it labelled shape due to the
shape having labelled points. Furthermore, more labels and supplemental data can
be attached to any point or line, for example point or line colour or properties like
thickness and point radius. Also, points can exist on their own and do not need to
be endpoints of a line. Not all lines have to be interconnected. Figure 3.1(a) shows
an interconnected shape and Figure 3.1(b) shows a shape that has an unconnected
line and a single point. This definition of a shape differs in regard to lines from the
one used by Stiny [8] or by Krishnamurti [4] who use maximal line representation.
Maximal lines group together all lines which are collinear, which does not need to
be the case for line segments chosen in the implementation of the interpreter.

(a) (b)

Figure 3.1: Example of valid shapes

CHAPTER 3. SUBSHAPE DETECTION 10

Starting Shape γ
γ is the shape we start with before any transformations. Rules are then applied
to this shape in sequence to transform it. After several rule iterations on γ a final
image is produced. A starting shape is similar to the initial symbol in formal
grammars.

Subshape
A shape s is a subshape of another shape s′ if all points and lines of s are contained
in the shape s′. We try to find the left hand side α as a subshape in γ in order to
apply the rule with regard to this subshape.

Rule
A rule R = {α, β} = α→ β is defined by two shapes, α and β. Both have some
common coordinate system, which is important to distinguish if, for example, β is
scaled relative to α.
If the left hand side is found as some subshape τ(α) in a target shape γ, τ(α) will
be replaced with τ(β). Some rule examples are given in Section 3.2.1. In the work
from Stiny [8] a rule application is written as:
γ′ = [γ − τ(α)] + τ(β), where +,− represent the shape union and subtraction,
meaning adding points and lines or respectively removing them. Apart from the
subshape detection, our interpreter follows the same definition with respect to the
transformation from γ to γ′. The left hand side α is removed as a subshape from γ
whereas the right hand side β is added with respect to where α was found in γ.

Transformation τ
An euclidean transformation τ encoded in matrix form is used to transform points
from α to γ. Transformations also transform points from α and γ into a local
coordinate system and back which is heavily used in Algorithm 1.

Grammar
A grammar can be formalized according to Stiny [8] by a set of shapes, symbols,
rules, and a starting shape. A grammar G = {r1, r2, . . . , rk} modeled in the
interpreter simply has a specified number of rules which can be chosen to transform
the target shape γ. Such a transformation can be subdivided into several steps:

1. Select a rule r := α→ β

2. Select a target γ

3. Find a transformation τ in order that τ(α) is a subshape inside γ
If no such transformation is found stop the interpreter

4. Apply the rule r on γ
Remove τ(α) from γ

CHAPTER 3. SUBSHAPE DETECTION 11

Add τ(β) to γ
Go back to 3

5. Color the geometry and display it

3.2.1 Example grammars
This section shows a few sample grammars each having only one rule. Note that these
shapes do not depict graphs but points and lines in two dimensions. The coordinate
system is omitted because the rule is already evident from the relationship between α
and β. However, each rule would have its own coordinate system to which α and β are
relative. For a self-running interpreter two types of rules are interesting to consider. A
rule can create recursive patterns like Figure 3.2. Every time the rule is applied a smaller
square is slightly rotated and inlaid into the existing ones. Another example is Figure 3.3
where a triangle is split into three smaller ones for each rule step. Another interesting
rule category is the generation of tiling patterns with symmetric figures. Both of these
types of rules can usually be applied indefinitely to a shape. Figure 3.4 shows a rule that
produces a hexagonal tiling.

(a) α (b) β

Figure 3.2: Recursive Square Grammar

CHAPTER 3. SUBSHAPE DETECTION 12

(a) α shape (b) β shape

Figure 3.3: Triangle Inlay Grammar

(a) α shape (b) β shape

Figure 3.4: Hexagon Tiling Grammar

CHAPTER 3. SUBSHAPE DETECTION 13

3.3 Subshape Detection By Point Comparison In Local
Coordinates

3.3.1 Coordinate Transformation
Coordinate transformations in 2D are the basis of the proposed subshape detection
method. Transformations will work on 2D points represented with homogeneous coordi-
nates.
For any three points p0, p1, p2 we can create a new coordinate system by choosing o = p0
as the new origin and defining the two vectors v1 = p1 − p0 and v2 = p2 − p0 as the axes
for a new coordinate system.
A matrix used to transform all points into this new local coordinate system would look
like this:

Mworld→local =M−1
local→world =

v1 v2 o

−1 =
xv1 xv2 xo
yv1 yv2 yo
0 0 1

−1 (3.1)

M−1 denotes the inverse of a matrix M . Mworld→local is the matrix that transforms
from the original coordinate system (the world system) into local coordinates defined by
the new origin and axes. Mlocal→world does the inverse, going from the local coordinate
system back to the original one. However, to invert a matrix M , the three vectors v1, v2,
o have to be linearly independent.
To create a suitable transformation matrix, the three points need to form a valid coordinate
system. If all three points are on the same line, v1 and v2 will be linearly dependent
and the matrix will not be invertible. In Krishnamurti [4] those three points are called
distinguishable. Even though the algorithm presented there is not using coordinate
systems, the same restriction applies that the three points cannot be on the same line
but need to form a triangle with a non-zero area. In our current implementation of the
interpreter, the first three points are chosen as a coordinate system by default. If they
do not form a coordinate system all subsequent points are considered. In case no such
system can be found, an exception is thrown.

3.3.2 Transformation Matrix Example
This is a short example that shows how to transform the shape in Figure 3.5(a) into the
shape in Figure 3.5(b). We choose the red arrow from point b to c as the new x-axis and
the blue arrow from point b to f as the new y-axis.

The point b itself will be the new coordinate system’s origin. To create a matrix that

CHAPTER 3. SUBSHAPE DETECTION 14

x

y

−1 0 1 2 3 4 5 6 7

−1

0

1

2

3

4

5

6

7

a

b

c d

e

f

(a) γ in original coordinate system

x

y

−2 −1 0 1 2

−2

−1

0

1

2

a

b c

d

ef

(b) γ in new local coordinate system

Figure 3.5: Transforming γ into a local coordinate system. The red and blue arrows
denote the new x- and y-axis respectively.

transforms the shape γ in Figure 3.5(a) we will use Equation 3.1:

Mworld→local =M−1
local→world =

v1 v2 o

−1 =
xv1 xv2 xo
yv1 yv2 yo
0 0 1

−1
The new origin o is the point b(2, 2).

o =

2
2
1


Note that the third entry of the vector is a 1, which means in homogeneous coordi-
nates it is a point.
The new x axis v1 is the vector from b to c.

v1 = c− b =

4
0
1

−
2
2
1

 =

 2
−2
0


In this case the z coordinate is 0 because v1 is a vector and not a point.
In the same fashion we can calculate the new y-axis v2:

CHAPTER 3. SUBSHAPE DETECTION 15

v2 = f − b =

4
4
1

−
2
2
1

 =

2
2
0


Insert this into Equation 3.1:

Mworld→local =M−1
local→world =

v1 v2 o

−1 =
 2 2 2
−2 2 2
0 0 1

−1 =


1
4
−1

4
0

1
4

1
4
−1

0 0 1


If we use this matrix Mworld→local to transform every point in Figure 3.5(a) we should
end up with the corresponding point in Figure 3.5(b) in local coordinates of the new
coordinate system.
In order to show this, a few sample points are transformed.
The point b should end up as the new origin (0, 0):

b′ =Mworld→local · b =


1
4
−1

4
0

1
4

1
4
−1

0 0 1

 ·
2
2
1

 =

 1
2
− 1

2
1
2
+ 1

2
− 1

1

 =

0
0
1


The points c and f can each be met by one step from the origin with one of the axes.
Therefore they should have coordinates (1, 0) and (0, 1) respectively:

c′ =Mworld→local · c =


1
4
−1

4
0

1
4

1
4
−1

0 0 1

 ·
4
0
1

 =

 1
4
· 4

1
4
· 4− 1
1

 =

1
0
1



f ′ =Mworld→local · f =


1
4
−1

4
0

1
4

1
4
−1

0 0 1

 ·
4
4
1

 =

 4
4
− 4

4
4
4
+ 4

4
− 1

1

 =

0
1
1


and as a last example point d:

d′ =Mworld→local · d =


1
4
−1

4
0

1
4

1
4
−1

0 0 1

 ·
6
0
1

 =

 1
4
· 6

1
4
· 6− 1
1

 =

1.5
0.5
1


With the matrix Mworld→ local we can transform every point into the local coor-
dinates of the new system.

CHAPTER 3. SUBSHAPE DETECTION 16

3.3.3 General Idea Behind The Algorithm
In order to find α such as in Figure 3.6(a) as a subshape inside the target shape γ for
instance Figure 3.5(a), we first transform every point in α into a local coordinate system
depicted in Figure 3.6(b). This is done by choosing any three points in α which form a
coordinate system and creating a matrix out of thesese as outlined in Section 3.3.1.

x

y

−1 0 1 2 3 4 5

−1

0

1

2

3

4

5

a b

c d

(a) α shape in original coordinate system, yet un-
transformed

x

y

−1 0 1 2

−1

0

1

2

a b

c d

(b) α shape in local coordinates, scaled by
1/4 in x and y direction.

Figure 3.6: Transforming α into a local coordinate system. The red and blue arrows
denote the new x- and y-axis respectively.

CHAPTER 3. SUBSHAPE DETECTION 17

x

y

−1 0 1 2 3 4 5−1
0
1
2
3
4
5

a b

c d

x

y

−1 0 1 2

−1

0

1

2

a b

c d

x

y

−10 1 2 3 4 5 6 7−1
0
1
2
3
4
5
6
7

a

b

c d

e

fMα→local Mγ→local

Mα→γ =Mα→local ·M−1
γ→local

α a local coordinate system γ

Figure 3.7: Recover the transformation from α to γ.

Similarly, γ is also transformed into a local coordinate system. If the points from α
in the local system match up with points from γ and the same lines connect the same
matched points in both, we have found a subshape match. The transformation matrix
Mα→γ which transforms points from α directly onto the matched points in γ can be
reconstructed by going from α → local system → γ shown in Figure 3.7. Each of
these coordinate changes are already explicitly present as transformation matrices.

CHAPTER 3. SUBSHAPE DETECTION 18

x

y

0 1 2 3 4
0

1

2

3

4

a

b

c

(a)

x

y

0 1 2 3 4
0

1

2

3

4

a

b

c

(b)

x

y

0 1 2 3 4
0

1

2

3

4

a

b

c

(c)

x

y

0 1 2 3 4
0

1

2

3

4

a

b

c

(d)

x

y

0 1 2 3 4
0

1

2

3

4

a

b

c

(e)

x

y

0 1 2 3 4
0

1

2

3

4

a

b

c

(f)

x

y

0 1
0

1

1 2

3

(g) Common local coordinate system
of all six triangles, where nodes 1, 2,
and 3 are permutations of a, b, c.

Figure 3.8: Six different coordinate system choices lead to the same triangle in local
coordinates ignoring their labels. The red and blue arrows denote the new x and y axes
respectively.

CHAPTER 3. SUBSHAPE DETECTION 19

Note that several choices of three points in Figure 3.8 lead to the same triangle apart
from ordering of its points. Every one of these triangles in local coordinates would
be matched with the triangle in Figure 3.3 for example. This leads to the interesting
question what should be considered a subshape and what not. A parallelogram for

x

y

−1 0 1 2 3 4 5 6
−1

0

1

2

3

4

5

6

a b

c d

(a) An untransformed parallelogram

x

y

−1 0 1 2

−1

0

1

2

a b

c d

(b) The same parallelogram now a
square in local coordinates

Figure 3.9: Any parallelogram and square are subshapes of each other

instance would also be a subshape of a square and vice versa as in Figure 3.9. This might
be counter intuitive to what might be considered as a subshape and could be configured,
see Section 4.1.2.

3.3.4 Maximal Lines
In the beginning of writing the interpreter it was not clear whether maximal lines de-
scribed by Stiny [8] and by Krishnamurti [4] were by all means necessary. Only when
progressing further with the editor an example was found that requires maximal lines
instead of line segments. Lines are grouped into one common maximal line, if they
share endpoints and are collinear or if the collinear lines overlap. In this case, they
form visually a bigger line with endpoints spanning over the whole collection of these
overlapping lines. Figure 3.10 is a good example for the problem. Even though the
squares in Figure 3.10(a) and Figure 3.10(b) look inherently the same, the second square
would not match inside the first if we compare their line segments.

If we compare line segments directly, we see that point a is not connected to point
b in Figure 3.10(a) because a and b are connected to the point e. Therefore the line seg-
ments in Figure 3.10(a) do not match with the line segments in the other Figure 3.10(b).

CHAPTER 3. SUBSHAPE DETECTION 20

In this case, neither the left shape is a subshape of the right nor the right shape a subshape
of the left one.

If we compare using maximal lines the following happens. The segments a − e and
e− b are grouped together to a maximal line a− b because points of both segments are
collinear and they share one endpoint e. The maximal line in the right Figure 3.10(b)
is also the line a − b, which is contained in the maximal line a − b of the left shape.
Therefore, the right shape is a subshape of the left and vice versa. The subshape detection

x

y

−1 0 1 2 3 4 5 6
−1

0

1

2

3

4

5

6

a b

c d

e

(a) A square with an additional point

x

y

−1 0 1 2 3 4 5 6
−1

0

1

2

3

4

5

6

a b

c d

(b) A simple square

Figure 3.10: Example in which maximal lines would be needed. (b) would not match
inside (a) even though both have the same general outline

algorithm explained in the following section can still find valid subshapes even though
maximal lines are not implemented in the interpreter. The point comparison in local
coordinates does not suffer from this and generates all valid transformations τ if all
points match. However, to find all possible subshapes the doLinesMatch call in the
algorithm needs to address maximal lines in the actual implementation.

CHAPTER 3. SUBSHAPE DETECTION 21

3.3.5 Algorithms

Algorithm 1: Subshape Detection findSubshapes(α, γ)
Input:
α := a shape consisting of points (α.points) and lines (α.lines)
γ := the target shape which is checked for subshapes
Output:
matches := {m1,m2,m3, . . . ,mn} a list of all found matches
mi = {Mα→γ, pointMap, lineMap}
where
Mα→γ: is the transformation matrix from the coordinates in α to γ
pointMap: maps matched points in α to their corresponding points in γ
lineMap: maps matched lines in α to lines in γ

1 matches := {}
2 p1, p2, p3 := findCoordinatePointsIn(α.points)
3 Mlocal→α := createMatrix(p1, p2, p3)
4 Mα→local := (Mlocal→α)

−1

5 // α′ contains points in local coordinates
6 α′ :=Mα→local.transform(α)
7 for p1, p2, p3 ∈ γ, pi 6= pj, i 6= j do
8 Mlocal→γ := createMatrix(p1, p2, p3)
9 if Mlocal→γ.determinant() = 0 then

10 continue
11 Mγ→local := (Mlocal→γ)

−1

12 // γ′ contains points in local coordinates
13 γ′ :=Mγ→local.transform(γ)
14 pointsMatch := doPointsMatch(α′.points, γ′.points, pointMap)
15 if pointsMatch then
16 linesMatch := doLinesMatch(α.lines, γ.lines, pointMap)
17 if linesMatch then
18 lineMap := storeLineMatches(α, γ)
19 match :=Match.new
20 Malpha→γ := Mα→local ·Mlocal→γ
21 match.transformation :=Malpha→γ
22 match.pointMap := pointMap
23 match.lineMap := lineMap
24 matches.add(match)

25 return matches

CHAPTER 3. SUBSHAPE DETECTION 22

Algorithm 2: Find Coordinate Points findCoordinatePointsIn(P)
Input:
P := {p1, p2, . . . , pn} a set of points with n elements

Output:
{p1, p2, p3} a triple of points which form a coordinate system

1 p1 := P.at(1)
2 p2 := P.at(2)
3 for i := 3 to P.size do
4 pi := P.at(i)
5 M := createMatrix(p1, p2, pi)
6 if M.determinant() 6= 0 then
7 return {p1, p2, pi}

8 return Error: No Coordinate System Found

Algorithm 3: Create a transformation matrix createMatrix(p1, p2, p3)

Input:
p1, p2, p3 three points defining a valid coordinate system

Output:
Mlocal→world a matrix transforming points from the local coordinate system
specified by p1, p2, p3 back to the original ”world” coordinate system
where p1 is the origin
v1 := p2 − p1 is the first axis
v2 := p3 − p1 is the second axis

1 origin := p1
2 v1 := p2 − p1
3 v2 := p3 − p1
4 Mlocal→world :=Matrix.new
5 Mlocal→world.setColumn(1, v1)
6 Mlocal→world.setColumn(2, v2)
7 Mlocal→world.setColumn(3, origin)
8 return Mlocal→world

CHAPTER 3. SUBSHAPE DETECTION 23

3.3.6 Computational Complexity
In this section we show that the subshape detection algorithm runs in polynomial time.
The algorithm is briefly compared with the standard method from Krishnamurti [4].
Algorithm 1 denotes the complete subshape detection to find all subshape matches
from a shape α in another shape γ. Two helper functions are used, one to find a
suitable coordinate system in a set of points (Algorithm 2) and another one to create a
transformation matrix (Algorithm 3). In order to define the computational complexity
following variables are used:

• n number of points in a shape

• l number of lines in a shape

• nα number of points in shape α

• lα number of lines in α

• nγ number of points in shape γ

• lγ number of lines in γ

Any point comparisons are done within an equality range, because coordinates cannot
be compared directly due to floating point imprecisions. Points which have a smaller
distance from each other than a small experimentally determined range are considered
equal.
The findCoordinatePointsIn call from Algorithm 2 to find a coordinate system in a
shape is in O(n) if n is the number of points in the given shape. The loop runs once
through all points and builds a coordinate transformation matrix described in Algo-
rithm 3.3.1. The createMatrix call in the Algorithm 3 needs constant time k. If this
matrix has a determinant which is non-zero, a coordinate system can be built from those
three points and the transformation matrix is returned.
Line 2 and 6 from Algorithm 1 are in O(nα) because the transform call transforms every
point in α with the matrix Mα→local. Therefore, it loops through every point in α.
The loop running from lines 7 to 23 is called nγ · (nγ − 1) · (nγ − 2) times because all
three distinct points in γ are considered. The doPointsMatch call in line 13 goes over
all points in α and checks whether the coordinates match with all points in γ, therefore
having to run nα · nγ times. If all the points match, all the lines of the shape α which was
found in γ are considered, whether the rules left hand side α has the same lines as the
subshape found in γ, the dictionary pointMap maps points in α to subshape points in γ.
The doLinesMatch call therefore goes over all lines in α and for every line goes over
all lines in γ, to see if the starting and end point of each line matches, therefore having to
run lα · lγ times.

CHAPTER 3. SUBSHAPE DETECTION 24

The whole subshape detection algorithm runs in
O(nα + nγ · (nγ − 1) · (nγ−2) · (nγ + nα · nγ + lα · lγ)).
Due to the nature of shape grammars, rules usually stay fixed, therefore the number of
points in α do not change and the runtime can be considered for a fixed α:
Oα(nγ · (nγ − 1) · (nγ−2) · (nγ + nγ + lγ)) = Oα(n4

γ + n3
γ · lγ)

If we only look at the point comparison part, which is enough to find a transforma-
tion τ so that the points match, this will be in Oα(n4

γ).
This method of subshape detection is slightly less efficient than the algorithm presented
by Krishnamurti [4]. The standard algorithm for subshape detection only transforms
points from α to γ. The method presented here has to transform both points in α, as well
as from γ into a local coordinate system. Because the number of points in γ increase this
additional transformation from γ to a local coordinate system is costly and increases the
degree of the polynomial by one. Even though this is the case, it is still a polynomial and
the algorithm is used effectively in the implemented interpreter.

4
Match Filtering And Selection

4.1 Filtering
The implementation goal of the interpreter is to reduce active input while the image
generation is ongoing. The interpreter has to find subshape matches of α inside the
target shape and choose according to some strategy. This section provides a few simple
conditions by which unwanted subshape matches can be removed. The filter 4.1.1
and 4.1.2 have been implemented in the current interpreter, and the other ones are
described briefly.

4.1.1 Filter Intersections
When generating new points some of them might already be present in the shape. In
the extreme case, a rule transformation would change nothing in the base shape. If a
rule application on a specific subshape has no effect e.g. all generated points are already
there, we can discard it. Based on preferences, a match could also be discarded if there
are only some points already present or they can be reused.
Also, by moving points or creating lines, they might intersect. If a match leads to an
intersection of lines, it can also be discarded or allowed, again based on preferences of
the user. Figure 4.1 shows such a case of self intersecting lines when using the triangle
inlay rule from Figure 3.3 which splits triangles into three new triangles. If after splitting
a triangle once we choose the big triangle again as a subshape a line intersection occurs.
Note that a triangle has several subshapes given rotation, reflection, and scaling which

25

CHAPTER 4. MATCH FILTERING AND SELECTION 26

was mentioned in Section 3.3. The filtering based on intersection in the interpreter works
by checking whether any new generated line intersects with all the present lines.

(a) Start (0 Rule applications) (b) The triangle after applying the rule
once.

(c) This time choose the original wrong tri-
angle to split indicated in red.

(d) This leads to an intersection.

Figure 4.1: Applying the triangle inlay rule seen in Figure 3.3 a few times leads to self
intersection of lines.

4.1.2 Filter Based On Transformation Properties
The Subshape Detection Algorithm 1 will match shapes which are rotated, translated,
scaled and/or sheared. Although this is very powerful, not all of these operations are
necessarily wanted. Maybe only uniformly scaling is allowed, so a square will only

CHAPTER 4. MATCH FILTERING AND SELECTION 27

match as a square and not as a rectangle or maybe the shape should not be rotated. The
naive algorithm will collect all matches, regardless of scaling, translation, rotation and
shearing. All those operations are encoded in a transformation matrix in homogeneous
coordinates and it is possible to extract them by matrix decomposition. For example, if
no rotation is allowed, extract the angle and check if it is bigger than zero and discard it
if this condition evaluates to true. Or if uniform scaling is desired, extract scale x and y
to check if those are equal. In any case, this makes it possible to mold the algorithm to
conform to desired properties when matching shapes.

4.1.3 Filter Based On Bounding Box
When using a shape grammar it is often the case that images of a certain size (width,
height) should be created. However, by simply running the algorithm numerous times,
and thus changing the geometry of the final shape, it is not guaranteed that the geometry
created will be restricted to the inside. This bounding box or arbitrary shape is called a
limiting shape by Stiny et al. [9]. Restricting a shape grammar is also mentioned by Tapia
[11], which should prevent the generation of very large or small shapes. Even though
restricting a grammar is already mentioned in Tapia [11], it still requires additional user
interaction to run the interpreter.
If a rule transformation applies new geometry evenly around a certain point, one could put
the bounding box on the shape in a way that it compasses everything after the generation.
So the rule fills a big enough area and then one can cut out an image from this area
by using the given bounding box. Although this might work in certain cases, a rule
could simply expand geometry in one direction, never filling a big enough area to cut an
image out of it. Regarding this, it seems to be easier and more performant to restrict rule
applications inside a bounding box because outside geometry will not be used. There are
two ways leading to different textures:

1. Check every match if the points generated or translated from it (by β) are inside
the bounding box
By checking this, it is sure that no points will ever leave the bounding box. This is
the go-to method if no lines should be cut in half by the bounding box. However,
this leads to empty space between the borders of the image and the drawn geometry
which might not be desired.

2. Check every match and only reject those that generate geometry outside of it.

4.1.4 Filter Based On Pixel Size
After transforming a shape several times the generated points could be very near to
already present ones. This is especially true if a grammar operates recursively like the

CHAPTER 4. MATCH FILTERING AND SELECTION 28

rule in Figure 3.2. Any new points will move closer and closer together until they cannot
be distinguished anymore, which is clearly present in Figure 1.3. Based on the pixel
grid of an image, any rule application which produces points falling between the grid
coordinates can be discarded.

4.2 Match Selection Problem
Because a shape is made up of many points and lines, there usually are several subshapes
inside. The subshape detection algorithm 1 outlined in the Section 3.3 will collect all
these matches with relevant data. For example, it collects which points in α match to
which other point in the target shape and also a transformation matrix used to get from
points in α to γ. With all these different matches, one has to be chosen in order to apply
the rule. Depending on the choice of subshape to use in each step of a rule application,
different images can be produced. This section outlines several basic heuristics that can
be applied given a rule and a shape to solve the match selection problem.
Selection Rules have also been mentioned by Stiny et al. [9], although very basic and
restricted to simple grammars. The heuristics outlined here try to be broader and
applicable for various rules.
Each heuristic will give each subshape match a score and then choose from all matches
the one with the best score according to the specific heuristic. In related work such as
by Krishnamurti [5] it was always assumed that a designer would choose which match to
use for a rule step. However, it would be desirable to streamline the creation of textures
by only setting input parameters at the beginning, and let the algorithm run and choose
matches to use by itself. The methods presented in this section enable a more autonomous
interpreter, which requires less user interaction. Possible rule selection strategies are
presented below. The heuristics from Sections 4.2.1.1, 4.2.1.2, and 4.2.2 are currently
supported, the others are briefly described.

4.2.1 Probability Based Heuristics
4.2.1.1 Random Choice

Given that we would like to apply the rule uniformly over the whole geometry instead of
concentrating in one specific area, the obvious first choice might be a random selection.
A short example shows why this is not recommended at least for some grammars.

CHAPTER 4. MATCH FILTERING AND SELECTION 29

(a) Start (0 Rule applications) (b) 16 rule applications

(c) 35 rule applications

Figure 4.2: Triangle Grammar applied randomly on a single triangle

CHAPTER 4. MATCH FILTERING AND SELECTION 30

To show why the rule only applies in a certain area we can consider Figure 4.3.

(a) We start again with a simple triangle (b) Apply the rule once

(c) After two rule applications (d) Apply the rule once more

Figure 4.3: Triangle inlay grammar applied with labelled triangle subshapes

CHAPTER 4. MATCH FILTERING AND SELECTION 31

After applying the rule once we get three triangles A, B, and C as shown in Fig-
ure 4.3(b). A random choice will pick each of the three triangles with an equal probability
of P (A) = P (B) = P (C) = 1

3
. Applying the rule once more leads to the triangles A, B,

C1, C2, and C3 as in Figure 4.3(d). The probability of picking triangles A, B randomly
has now actually decreased to P (A) = P (B) = 1

5
and choosing a smaller triangle will

now happen with a probability of P (C1 ∪ C2 ∪ C3) =
3
5
. This means the probability of

picking an older triangle decreases while the probability of splitting a smaller triangle
increases which leads to the situation in Figure 4.2 only expanding in one corner of the
triangle. A random approach as in Figure 4.2 is clearly not desired for this type of rule.

4.2.1.2 Balanced Random

Given the problem of a Random Choice in 4.2.1.1 we can alter the selection heuristic
a bit to factor out all the matches on a same shape (but in different configurations) to
remove the skewing of probabilities against unsplitted triangles.

This is done by grouping together triangles which were created in the same step as
shown in Figure 4.4. We first select a random group and then choose randomly from all
triangles in the selected group. In the first two steps (Figures 4.4(a) and 4.4(b)) random
selection happens as before. However, if we look at the triangles now in Figure 4.4(c)
we see that there are two groups. Group 1 contains triangles A, B and group 2 triangles
C1, C2, and C3. In this case the probability of choosing group 1 is: P (G1) =

1
2

which leads to the probability of A, B:
P (A) = P (B) = P (G1) · P (B|G1) =

1
2
· 1
2
= 1

4

In the next step in Figure 4.4(d):
P (A) = P (G1) · P (A|G1) =

1
3
· 1
2
= 1

6

The probabilities of older triangles still decrease but less noticeable than the random
selection heuristic and produces images such as in Figure 4.5. Even though this balanced
random method seems to create a slightly more uniform image than 4.2.1.1 visible
in Figure 4.5, it does not produce perfectly uniform splitted triangles. This strategy
seems widely applicable, even more so if not perfectly uniform rule transformations are
required.

CHAPTER 4. MATCH FILTERING AND SELECTION 32

(a) We start again with a simple triangle (b) Apply the rule once and group together
triangles

(c) After a new transformation group again
triangles together which were created in the
same step

(d) Apply the rule once more

Figure 4.4: Example how to group triangles with SGBalancedRandom heuristic

CHAPTER 4. MATCH FILTERING AND SELECTION 33

(a) Start (0 Rule applications) (b) 16 rule applications

(c) 35 rule applications

Figure 4.5: Triangle Grammar applied with balanced random heuristic on a single triangle

CHAPTER 4. MATCH FILTERING AND SELECTION 34

4.2.2 Age Based Heuristics
Every point in the shape γ has an attribute to store in which rule step it was created. With
this information we can calculate the age of a point by comparing its creation time with
the current number of steps already performed. Before any rule application, every point
is assigned a creation time attribute of zero. Any new points created by the first rule step
will have a creation time of one and this attribute increase in every rule step. With this
setup we can score a subshape based on the age of its points.
For example, we can first assign shapes the maximum age of creation value of all its
points as an attribute. Then we choose the shape that has the minimum of this assigned
attribute. This guarantees that subshapes with older points will take precedence over
newly created shapes or, on the contrary, scoring subshapes higher if they have more
recently created points in them.
This heuristic is very promising for certain grammars like the grammar in Figure 3.4. For
any tiling pattern generating rules, this heuristic is a good fit because it will prefer any
subshapes near the center of the shape where points have a higher age than the points at
the edge of the tiling. A small example how the selection by using the highest age of a
shape works follows.
We start with an initial hexagon γ where every point has a rule creation time of zero
in Figure 4.6. In the middle of every hexagon is the highest rule step attribute of its
points, where a higher attribute means it was created in a later step. Therefore, if we
want to pick the oldest hexagon, we choose one with the lowest inscribed number. We
add in the first rule step another hexagon and give every new point a creation time of 1 in
Figure 4.6(a). In the next step we choose the hexagon with the minimal creation time
inscribed which is again the first square and leads to Figure 4.6(c). After filling up, we
can only continue with a hexagon that has a minimal maximum age of 1 and therefore
we have to expand evenly around the initial hexagon in Figure 4.6(d). Therefore it is
possible to create complete tiling patterns as in Figure 4.7.

CHAPTER 4. MATCH FILTERING AND SELECTION 35

(a) Start (0 Rule applications) (b) The newer hexagon has a one inscribed

(c) After another rule step a second
hexagon is new with an id of two

(d) In total 6 hexagons with increas-
ing ids

(e) Choose again 1 to expand the pattern
outward

Figure 4.6: Example how to select hexagons based on when they were created

CHAPTER 4. MATCH FILTERING AND SELECTION 36

(a) Start (0 Rule applications) (b) 6 rule applications

(c) 16 rule applications

Figure 4.7: Hexagon tiling grammar created with age selection, preferring subshapes
with a higher age.

CHAPTER 4. MATCH FILTERING AND SELECTION 37

4.2.3 Shape Geometry Heuristics
The triangle inlay grammar in Figure 3.3 shows the distinct property that we would like
to split the triangle having the biggest area, whereas the recursive square grammar from
Figure 3.2 requires the interpreter to choose the smallest square. Therefore we can use
the subshape size of a match for scoring, usually preferring a bigger size. Considering
tiling grammars, every subshape has the same size and this method of scoring is not
applicable. In case a subshape has no area due to being single lines or points, the convex
hull can be used to attach a size to a subshape. Another simple strategy to score matches
is to consider properties of a shape such as distances between points, line lengths, or
vertex degree. Any of these properties could also be used for selecting subshape matches.

4.3 Coloring And Additional Data Tags
Because shape grammars only work on shape geometry, the produced images do not have
colors and need to be colored manually after the generation steps. Stiny et al. [9] describe
material specification having the form of painting rules. Each step of a rule adds a new
shape which overlaps a previous one. Coloring rules were defined by the intersection or
union of these shapes. Even though these coloring rules by set description can be used,
they do not seem to be particularly useful for more than a handful of operations. Shapes
cannot be described as a set if they are not closed. In addition set description gets quite
unwieldy due to combinatorial explosion when describing combinations of intersections
and unions between a number of shapes. Instead of defining material properties and
colors depending on set description of areas, the primitives in a shape, its points and
lines could be labelled directly for coloring. Stiny [8] mentions adding the additional
label weight to points and lines describing line thickness or point radius. Stiny [8] also
describe weights for solids, which can produce several tones when areas with different
weights are drawn atop of each other.
In this implementation another approach is used:
Instead of defining more rules that operate on a finite set of chosen colors, every rule has
a function that assigns colors to areas in β relative to the colors used in areas from α.
This function creates the new color of the three new triangles relative to the color of the
split triangle. Because this function can take any color as input instead of a fixed number
of transformations, we can apply it to an arbitrarily colored starting shape. Figure 4.8
shows the result of such a color transformation given a starting triangle with such an
arbitrary color, in this case either blue or red.

Although the current implementation of the interpreter does not store areas as faces
or polygons as primitives, but instead only stores points and lines, a label defining the
polygon area can still be added to the shape. When drawing, these polygon labels are

CHAPTER 4. MATCH FILTERING AND SELECTION 38

(a) Transformation of a blue colored trian-
gle.

(b) Transformation of a red colored triangle

Figure 4.8: Shape grammar rules can work on any colored starting shape. The color
transformations are defined relative to the input color.

extracted from the shape and drawn based on the properties described in the labels, e.g.
its color.
A different approach also is described by Knight [3], defining a new type of grammar
called a Color Grammar that can be used to create colored shapes. This might lead to
even more color variations, either instead of or together with the function approach used
in the implementation of the editor in this work.
Furthermore, there is newer work on so called sortal grammars described by Stouffs [10],
where the same example as in Figure 3.2 was given, changing coloring between black
and white. This might also be usable if one wants to add more coloring possibilities.
The shape itself can also contain additional data, either used for rendering or data used
for other purposes with the shape. For instance, texture ids could be assigned to faces
or other rendering properties can be distributed over a mesh by a subdividing shape
grammars, which can then be used by a modern renderer to create a more realistic image
instead of the more abstract ones currently made.

5
Editor and Interpreter

(a)

Figure 5.1: The editor with different areas to define rules and shapes. Rules can be
applied to the γ shape on the right by pressing the apply rule button.

39

CHAPTER 5. EDITOR AND INTERPRETER 40

The main goal of the editor is to test the new subshape detection algorithm outlined
in Section 3.3. It acts as the front end of the shape grammar interpreter and we can
visually debug shapes with it. A rule is applied and the result of a rule transformation on
the shape can be examined at every step. The rules and the starting shape can also be
modified with the editor. This is more convenient than specifying shapes and rules by
code. The editor has two main areas to draw the rule and the starting shape γ, which can
be seen in Figure 5.2(a). Both areas allow us to add new points or remove existing ones.
In addition, lines can also be removed or created by connecting two points. Figure 5.2(b)
shows how we can set some of the filter parameters from Section 4.1 by clicking on
the corresponding checkboxes. After defining the α and β shape of the rule on the left
drawing area and γ on the right we can press the apply rule button in Figure 5.2(b) to
transform the shape.
In order to prevent redefining the same shape every time, standard configurations can
be loaded by code. We can open the editor with a previously set rule and starting shape
γ, which can be defined with a small domain specific language (DSL). This DSL has
been created in Pharo itself without parsing the source due to the expressive syntax of
Smalltalk. A small excerpt how a shape is created can be seen in Listing 1.
shape := SGShapeBuilder new

points: {#a -> (0@0). #b -> (1@0). #c -> (1@1)};
lines: {#a -> #b. #b -> #c. #c -> #a};
build.

Listing 1: Create a triangle shape

Instead of using the editor, it is also possible to just run the interpreter with parameters
provided in code without using a graphical interface. The Listing 2 shows a small
example how we can run and create images.
builder := SGImageBuilder new.
builder

from: 1 to: 35 by: 5;
background: Color white;
config: (SampleConfigurations new triangleInlayConfig);
filterIntersections;
name: 'triangle_inlay_balanced';
folder: self baseFolder;
size: 500@500;
selector: (SGBalancedSelector new);
export.

Listing 2: Use the SGImageBuilder to run the interpreter and produce image output

We can specify how many times the rule is to be applied to a shape. In this case, we
go from one application to 35 and output an image every five rule steps. The filtering
parameters and match selection strategies from Section 4.2 can be set directly in code.
This setup makes it possible to quickly test and prototype the interpreter and editor.

CHAPTER 5. EDITOR AND INTERPRETER 41

(a) Area to define a rule (1) and a starting shape (2)

(b) Set filtering parameters by clicking on a checkbox (3) and apply the rule (4)

Figure 5.2: Set the filtering parameters and apply the previously defined rule.

6
Evaluation

The novel subshape detection presented in Algorithm 1 Section 3.3 works for all gram-
mars described in Section 3.2.1. However, only by examining these examples and
without further proof it is not clear whether the algorithm is really equivalent to the
one in Krishnamurti [4], though intuition indicates very strongly that it should be. In
practice, the interpreter is usable to produce images such as in Figures 1.3, 4.5, and
Figure 4.8. Therefore the method presented in Algorithm 1 is a usable alternative to the
commonly used algorithm from Krishnamurti [4]. It is quite simple to implement with
transformation matrices using homogeneous coordinates.
Even though we examined several selection strategies in 4.2, only some grammars such
as in Figures 3.3, 3.2, and Figure 3.4 have been considered. More conclusions on running
an interpreter independently without further user input could be drawn by analyzing
grammars with different properties from the examined ones. The editor and the domain
specific language used for defining shapes have greatly helped in finding defects concern-
ing the interpreter. The selection strategies are used to create many rule transformations
on a shape without user interaction. Images like in Figure 4.5(c), 4.2(c), and 1.3 with up
to more than a hundred transformations would have been tedious to create by hand.

42

7
Conclusion

We build a shape grammar interpreter and proof-of-concept editor given Algorithm 1
proposed in Section 3.3. The new subshape detection method is based on comparison of
two shapes α and γ, each having their own coordinate systems, in a common local system.
The complete transformation from one shape to the other can be obtained by chaining
two transformations together. First, by going from α coordinates to a local system, then
by going from this local system into the coordinate system of γ. The interpreter is robust
and can be used to create various images, either uncolored as in Figures 4.2, and 4.7 or
colored as in Figure 4.8. We create these images without further user input, apart from
supplying parameters at the beginning, by using match selection and filtering strategies.
The interpreter uses match selection and filtering to choose by itself where to apply a
rule and therefore does not require manual user input while running.
Further work could be done regarding how multiple rules in a grammar play together.
In this case they could be applied either in sequence or the interpreter could assign
probabilities to them for choosing randomly. In addition, there might be many more
useful selection strategies than mentioned in the Section 4.2. This heavily depends on the
intent of the user and also which rules are chosen to transform the starting shape. Only a
sample of rules have been considered in Section 3.2.1. Other strategies might be more
applicable when choosing a different set of rules.
By building an interpreter and proof of concept editor, we have shown that the algorithm 1
can be used as an alternative to the one described in Krishnamurti [4]. With help of the
subshape detection algorithm and the strategies for the subshape selection it is possible
to build a self-running shape grammar interpreter.

43

8
Anleitung zu wissenschaftlichen

Arbeiten

This chapter describes the implementation details and usage of the shape grammar
interpreter and editor of the thesis. The source code of the implementation is hosted on
github [12]. The interpreter is programmed in Pharo (Smalltalk)1 and the editor uses the
low level UI framework Bloc2 to define GUI elements and render them to the screen.
Even though Bloc is still in development, it could already be used effectively for the
purpose of creating a usable editor as the front-end for the shape grammar interpreter. The
backend is the interpreter that can perform subshape detection and transform shapes with
given shape grammar rules. A video showing the editor is available on the repository [12].

8.1 Interpreter

8.1.1 Class structure
Shape grammars have several key components that we can model directly in the class
structure. First, we need to define two-dimensional geometric shapes.
Points and vectors are both defined by the SGVector class. Each SGLine has a reference
to two SGVector endpoints. The SGShape class as shown in Figure 8.1 defines a shape
by having a collection of points stored in SGVectors and lines as SGLines. We also

1https://pharo.org/
2https://github.com/pharo-graphics/Bloc

44

https://pharo.org/
https://github.com/pharo-graphics/Bloc
https://pharo.org/
https://github.com/pharo-graphics/Bloc

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 45

have the possibility to add and remove points or lines and to query whether a point or line
already belongs to a shape. A rule has two shapes α and β. In addition, a rule possesses

Figure 8.1: The SGShape, SGVector, and SGLine classes. They define a shape with
points and lines.

a dictionary, mapping points from α to β. Such a rule is shown in Figure 8.2. Matrix
transformations as applied by the SGMatrix class work on vectors like usual but it should
be noted that they use homogeneous coordinates for 2D geometric transformations.
After doing subshape detection of the shape α inside a target shape γ all subshapes with
relevant data are stored in separate SGShapeMatch instances visible in Figure 8.3.

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 46

Figure 8.2: The SGRule class. It has an α and a β SGShape. The transformation from
α to β is stored in the SGShapeDelta class.

Figure 8.3: A SGMatchFilter filters a list of subshape matches. The subshape matches
are modeled with the SGShapeMatch class that stores additional data about a subshape
match.

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 47

For example, the transformation matrix going from α to a local coordinate system and
then to the coordinate system in γ is stored in two separate matrices subToLocalMatrix
and localToBaseMatrix. Two dictionaries lineMap and alphaToBase store the
mappings from points and lines in α to points and lines in γ.

The SGMatchFilter class filters such a list of shape matches to remove unwanted
ones. A rule has such a filter and we can create custom filters by extending from the
SGMatchFilter as seen in Figure 8.3.

In addition to a filter, a rule also has a SGMatchSelector in order to select from possi-
ble subshape matches a suitable one to apply its shape transformation. Figure 8.4 show
three implemented match selectors. A match selector receives a list of SGShapeMatch
classes and returns a single selected one. More selectors can be added by extending the
SGMatchSelector base class and then adding the custom selector to the rule.

Figure 8.4: A few match selectors that extend the SGMatchSelector class. Custom
selectors can be implemented by extending this base class.

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 48

8.1.2 Shape Transformation
There are five different operations performed on the shape in the implemented interpreter:

1. Remove Points

2. Remove Lines

3. Add Points

4. Add Lines

5. Translate existing points

A change from one shape to another by these five operations is encapsulated in a
SGShapeDelta class.
A SGShapeDelta as seen in Figure 8.2 contains the Add Points and Add Lines operation
in a SGShape instance variable called addedShape. The Remove Points and Remove
Lines operations are stored in another SGShape variable called removedShape. In
addition, the Translate existing points is stored in a dictionary that maps a point to its
new position. If we want to apply a transformation on a target shape γ we can just add
the addedShape’s geometry to γ and remove the removedShape from it. After this
we just move the points in γ as defined by the movePointTo dictionary.
Also, it is very easy to define the reverse operation from a given SGShapeDelta. Simply
exchange the added and removed shapes position and we set the movePointToDict
mapping to the old point position instead of the new one stored in the original shape delta.

The SGShapeDelta class is also used in the rule representation. A rule has two shapes
α and β and we change the geometry between these two shapes again with the same
operations. Therefore a shape delta can be constructed to define the relative change
between α and β again in a SGShapeDelta class.

In the end the interpreter has two components. A starting shape on which the rule
is applied and a grammar containing several rules. This is shown in Figure 8.5.

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 49

Figure 8.5: The interpreter

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 50

8.2 Domain Specific Language
In order to define shapes and other parameters for the interpreter a compact domain
specific language (DSL) has been developed in Pharo (Smalltalk). This DSL is used to
create shapes, rules, and grammars and is easier to use than defining them in code. In
addition, the SGImageBuilder class can be used to create a series of images given a
starting shape and a grammar.

8.2.1 Shape Creation

shape := SGShapeBuilder new
points: {#a -> (0@0). #b -> (1@0). #c -> (1@1)};
lines: {#a -> #b. #b -> #c. #c -> #a};
build.

Listing 3: Create a shape with manually specified labels.

shape := SGShapeBuilder new
points: {};
lines: {(0@0) -> (1@0). (1@0) -> (1@1). (1@1) -> (0@0)};
build.

Listing 4: Create a shape by specifying points inside the line declarations.

shape := SGShapeBuilder new
points: {(0@0). (1@0). (1@1)};
lines: {1 -> 2. 2 -> 3. 3 -> 1};
build.

Listing 5: Create a shape where ids are assigned automatically.

shape := SGShapeBuilder new
points: {#a -> (0@0). #b -> (1@0)};
lines: {#a -> (1@0). #b -> (1@1). 1 -> #a};
build.

Listing 6: Create a shape with mixed id declarations.

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 51

shapeBuilder := SGShapeBuilder new.
shapeBuilder point: (#a -> (0@0)).
shapeBuilder point: (#b -> (1@0)).
shapeBuilder point: (#c -> (1@1)).
shapeBuilder line: (#a -> #b).
shapeBuilder line: (#b -> #c).
shapeBuilder line: (#c -> #a).
build.

Listing 7: Create a shape by specifying points and lines each by a separate message sent
to the shape builder.

Figure 8.6: The triangle that is created by the SGShapeBuilder above.

A shape has points and lines. Points are passed as an array {} where each entry is
separated from the other by a full stop. Every entry has the form 〈id〉 → (x@y) where
the 〈id〉 can be any object to identify a point. For example numbers can be used as an id,
any objects in general or as in the example in Listing 3 Smalltalk symbols. The position
will be specified in (x@y) where x and y are the coordinates. The id can also be omitted
and the points will be automatically assigned a number which is incremented for every
point starting at index 1 as in Listing 5. We can also specify points directly in the line
declaration part as shown in Listing 4.
Lines are also passed as an array {} and have the form:
〈id1〉 → 〈id2〉
〈id1〉 → (x@y)
(x@y)→ 〈id2〉
(x1@y1)→ (x2@y2)
where id1 specifies the id of the starting point and id2 the id of the ending point of a line.
If a point (x@y) is given as the start or endpoint instead of an id, the list of points is
browsed to see whether a point with the given coordinates already exists. If not, the point
is added with the next available id. Therefore it is possible to simply specify lines and

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 52

the corresponding points are added automatically as in Listing 6. Listing 7 shows how to
declare points and lines separately instead of passing all at the same time in arrays.

8.2.2 Rule Creation
A rule consists of the shapes α and β. In addition, a mapping has to be specified from
points in α to points in β. Usually, points in α map to points with the same coordinates
in β. If the coordinates from α to β differ it means the point is moved when the rule is
applied. A rule can be defined by using the DSL as seen in Listing 8.

ruleBuilder := SGRuleBuilder new.
ruleBuilder alpha
points: {(#a -> (0 @ 0)). (#b -> (1 @ 0)). (#c -> (1 @ 1))}.
ruleBuilder alpha
lines: {(#a -> #b). (#b -> #c). (#c -> #a)}.
ruleBuilder beta
points: {(#a -> (0 @ 0)). (#b -> (1 @ 0)).
(#c -> (1 @ 1)). (#d -> (0.7 @ 0.3))}.
ruleBuilder beta
lines: {(#a -> #b). (#b -> #c). (#c -> #a).
(#a -> #d). (#b -> #d). (#c -> #d)}.
ruleBuilder map: {(#a -> #a). (#b -> #b). (#c -> #c)}.
rule := ruleBuilder build.

Listing 8: Create a rule

ruleBuilder := SGRuleBuilder new.
ruleBuilder alpha
points: {(#a -> (0 @ 0)). (#b -> (1 @ 0)). (#c -> (1 @ 1))}.
"... add some lines for alpha"
ruleBuilder beta
points: {(#a -> (0 @ 0)). (#b -> (1 @ 0)).
(#c -> (1 @ 1)). (#d -> (0.7 @ 0.3))}.
"... add some lines for beta"
ruleBuilder automap.
rule := ruleBuilder build.

Listing 9: Create a rule where points with the same coordinates are automatically mapped.

The α and β shapes can be created according to section 8.2.1. The SGRuleBuilder#map
message requires an array {} of ids in the form:
idα → idβ
where idα is a point id in the α shape and idβ is point id in the β shape.
A point mapping from alpha to beta can also be written as:
(xα@yα)→ (xβ@yβ)

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 53

(a) α shape of rule (b) β shape of rule

Figure 8.7: The rule defined by the listings above.

If a point is specified instead of an id, it will be inferred based on the coordinates if possi-
ble. Instead of specifying all mappings by hand, the message SGRuleBuilder#automap
can be used, which means that points from α to β with the same x and y coordinates are
associated as in Listing 9. Figure 8.7 shows the visual representation of the rules defined
in Listing 8 and 9.

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 54

8.2.3 Grammars and Configurations

grammarBuilder := SGGrammarBuilder new.
grammBuilder name: 'A simple Grammar'.
r1 := grammarBuilder newRule.
"... define rules as before"
"add a new rule by accessing a new SGRuleBuilder"
r2 := grammarBuilder newRule.
"..."
grammar := grammarBuilder build.

Listing 10: Creating a SGGrammar

A grammar in the implementation is just a set of rules. Listing 10 shows how a grammar
is created with the SGGrammarBuilder class. Each rule can be specified as outlined in
section 8.2.2 and the grammar can be named.
In addition to a grammar, the interpreter also needs a starting shape. Both, the grammar
and the starting shape, are encapsulated in an SGConfiguration, which can be created
as shown in Figure 11.

configBuilder := SGConfigurationBuilder new.
grammarBuilder := configBuilder grammar.
"... specify grammar"
shapeBuilder := configBuilder shape.
"... specify the starting shape"
configuration := configBuilder build.

Listing 11: Creating a SGConfiguration

8.2.4 Parameter Specification
It is possible to modify the selection process of the interpreter. In a first step the interpreter
filters out unwanted subshape matches where a rule could be applied. This is configured
with the SGMatchFilter, which is shown in Listing 12.

ruleBuilder := SGRuleBuilder new.
ruleBuilder filter: (SGMatchFilter new
intersections: true;
anyPresentGeometry: true;
yourself).
... "define rest of the rule"

Listing 12: Filtering options

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 55

Currently following filter options are available:

1. Filter intersection: Filters a rule application if it introduces a line that intersects
with an already present line.

2. Filter anyPresentGeometry: If a rule would create a point or line that already exists
at this position then the specific rule application is also filtered out.

By default no filters are applied.

In a second step the interpreter has to choose a subshape match where the rule should be
applied. This is configurable by choosing a SGMatchSelector from several selection
strategies:

ruleBuilder := SGRuleBuilder new.
ruleBuilder matchSelector: (SGBalancedSelector new).

Listing 13: Use of the SGBalancedSelector

ruleBuilder := SGRuleBuilder new.
ruleBuilder matchSelector: (SGRandomSelector new).

Listing 14: Use of the SGRandomSelector

ruleBuilder := SGRuleBuilder new.
ruleBuilder matchSelector: (SGDegreeSelector new).

Listing 15: Use of the SGDegreeSelector

Any selector which extends the general SGMatchSelector interface can be added to a
rule. Listings 13, 14, and Listing 15 show three implemented selectors. This way it is
also possible to implement custom selectors and set them to a rule without modifying the
codebase itself.

8.2.5 Image Generation
In order to export SGShapes one can use two methods as shown in Listing 16 and 17.

shape := SGShapeBuilder new.
"... define your shape"
"store it"
shapeElement := SGShapeElement shape: shape.
shapeElement asSpartaForm writePNGFileNamed: 'filename.png'

Listing 16: Use of the SGShapeElement, which extends BlElement.

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 56

builder := SGImageBuilder new.
builder from: 1 to: 35 by: 5;
config: (SampleConfigurations new triangleInlayConfig);
filterIntersections;
name: 'triangle_inlay_balanced';
folder: self baseFolder;
size: 500@500;
selector: (SGBalancedSelector new);
export.

Listing 17: Use of the SGImageBuilder

Listing 16 shows how to store a shape manually with a method that is implemented in the
Bloc library. Another approach is to use the SGImageBuilder class as in Listing 17,
which has several options to configure the image creation:

• from: 〈x〉 to: 〈y〉 by: 〈z〉
The rule is applied 〈y〉 times to the shape. Every 〈z〉 step an image is taken in the
range from 〈x〉 to 〈y〉. This allows to create several images each created after every
rule step. In addition the first and the last image are always stored by default.

• config: - Defines a starting shape and a grammar as explained in Section 8.2.3.

• name: - Describes the name of the image.

• folder: - The folder in which the images reside after the generation.

• size: - Size of the images created.

• selector: - Convenience function to specify a match selector. This can also be
achieved by creating a selector and storing it in a rule as in Section 8.2.4.

• filterIntersections - Another convenience function to specify some filters as in
Section 8.2.4.

• export - Finally start running the grammar and store the generated images.

Figure 8.8 shows three images created by the SGImageBuilder class.

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 57

(a) Start (0 Rule applications) (b) 16 rule applications

(c) 35 rule applications

Figure 8.8: A few images that were created by the SGImagebuilder.

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 58

8.2.6 Image Creation Infrastructure In Pharo
A lot of images were created either for use in the thesis directly or to test out certain
properties while developing the different filters and selectors. In order to streamline
the process of image creation and to update the images in case the editor or interpreter
changed, handy features of the Pharo environment were used. All image examples were
implemented as a distinct message in the SGImageExamples class. Every message of
this kind uses the SGImageBuilder to create and save an image in a specified base
folder, in this case the image folder of the thesis. An example of such a message is shown
in Listing 18.

triangleInlayBalanced
<script: 'SGImageExamples new triangleInlayBalanced'>
| builder |
builder := SGImageBuilder new.
builder from: 1 to: 35 by: 5;
config: (SampleConfigurations new triangleInlayConfig);
filterIntersections;
pointColour: Color black;
pointSize: 5;
lineColour: Color black;
lineWidth: 2;
background: Color white;
name: 'triangle_inlay_balanced';
folder: self baseFolder;
size: 500@500;
selector: (SGBalancedSelector new);
export

Listing 18: A message to create a series of images with the pragma 〈script:〉

A message to create an example image is annotated with the pragma 〈script: ’SGImage-
Examples new messageName’〉 which allows you to run the message directly from the
system browser as shown in Figure 8.9. Listing 18 shows the code of such a message
that can be run from the system browser.

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 59

Figure 8.9: Run any message to create an image directly from the system browser.

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 60

In addition Pharo has some other nice properties that can help debug generated shapes
and rules. By using the pragma 〈gtExample〉 we can also inspect a shape from the system
browser, which can be seen in Figure 8.10. Figure 8.11 shows the shape if we inspect it.

Figure 8.10: Debug the shapes from the system browser.

Figure 8.11: View of the selected shape.

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 61

8.3 Editor

8.3.1 Basic usage
The editor has two main areas. First, we can edit the points and lines of a rule by drawing
in the rule area visible in Figure 8.12(a). A rule has two shapes α and β of which both
can be manipulated separately. We can add a point by clicking somewhere on the shape.
A line can be added by selecting two different points and pressing ctrl . To remove a line,
simply press the D key when both endpoints are selected. A point can be deleted by
selecting it first and then pressing the D key. The target shape γ in Figure 8.12(a) on
the right can be modified the same way.

After defining α, β, and γ we can select filtering parameters as shown in Fig-
ure 8.12(b) by clicking on the checkboxes.
Then we can apply the rule by clicking on the apply rule button in Figure 8.12(b). The γ
shape on the right will be transformed and the changes are directly visible.

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 62

(a) Area to define a rule (1) and a starting shape (2)

(b) Set filtering parameters by clicking on a checkbox (3) and apply the rule (4)

Figure 8.12: Set the filtering parameters and apply the previously defined rule.

CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 63

8.3.2 Implementation in Bloc
Regarding the implementation, most domain objects in shape grammars such as shapes,
rules, and grammars themselves have their own widgets. These specific Bloc ele-
ments such as the SGShapeElement, SGRuleElement, and SGGrammarElement can
each display their associated domain object. So we can define a shape, store it into a
SGShapeElement, and display it with the use of Bloc. In the same manner we can
define rules and grammars and directly inspect them from the Pharo workspace. This
allows to quickly define these domain models and visualize them with the widgets in
Bloc. Any domain modeling mistakes are directly visible and do not require more tedious
debugging steps by running code to display them manually. A video showing the editor
is available on the repository [12].

8.3.3 Reflection
Programming in Pharo has been a very pleasant experience. Two main features really
stand out. First, the ability to inspect custom made domain objects visually. Shapes
defined in code or with the domain specific language can directly be visualized from the
system browser. This means faster and better feedback with respect to recently written
code. It makes the development also more interactive. Second, the reflective nature of
Smalltalk. It is for example possible to list all methods in a certain protocol and run
them in order. All methods that create images are added to a certain protocol. If we
want to regenerate all images we can run every message in this protocol. Also we can
define messages that return shapes in a certain protocol and dynamically use all these
messages to display all shapes to choose from in the editor. These and other features
were very convenient for creating and exporting images. Also the expressive syntax of
Pharo (Smalltalk) was used to create a domain specific language without the necessity to
parse the source code. All in all, we feel that the usage of Pharo was a good choice and
can improve productivity.

Bibliography

[1] M Agarwal and J Cagan. A blend of different tastes: The language of coffeemakers.
Environment and Planning B: Planning and Design, 25(2):205–226, 1998. doi:
10.1068/b250205.

[2] K. N. Brown, C. A. McMahon, and J. H. Sims Williams. A formal language for
the design of manufacturable objects. In Proceedings of the IFIP TC5/WG5.2
Workshop on Formal Design Methods for CAD, pages 135–155, Jun 1994.

[3] Terry Knight. Color grammars: Designing with lines and colors. Environment and
Planning B: Planning and Design, 16:417–449, Jan 1989.

[4] R Krishnamurti. The construction of shapes. Environment and Planning B, 8(1):
5–40, 1981.

[5] Ramesh Krishnamurti. SGI: An interpreter for shape grammars. Technical Report,
Centre for Configurational Studies, Design Discipline, The Open University, Jan
1982.

[6] Michael E. Mortenson. Mathematics for Computer Graphics Applications: An
Introduction to the Mathematics and Geometry of CAD/Cam, Geometric Modeling,
Scientific Visualization. Industrial Press, Inc., New York, NY, USA, 2nd edition,
1999. ISBN 083113111X.

[7] Christian Santoni and Fabio Pellacini. gTangle: A grammar for the procedural
generation of tangle patterns. ACM Trans. Graph., 35(6):182:1–182:11, Nov 2016.
ISSN 0730-0301. doi: 10.1145/2980179.2982417.

[8] G Stiny. Introduction to shape and shape grammars. Environment and Planning B:
Planning and Design, 7(3):343–351, 1980. doi: 10.1068/b070343.

[9] George Stiny, James Gips, George Stiny, and James Gips. Shape grammars and the
generative specification of painting and sculpture. In Segmentation of Buildings for
3DGeneralisation. In: Proceedings of the Workshop on generalisation and multiple
representation , Leicester, 1971.

64

BIBLIOGRAPHY 65

[10] Rudi Stouffs. On shape grammars, color grammars and sortal grammars: a sortal
grammar interpreter for varying shape grammar formalisms. In Digital Physicality
- Proceedings of the 30th eCAADe Conference - Volume 1 (eds. H. Achten, et al.),
pp. 479-487, Faculty of Architecture, Czech Technical University, Prague, Czech
Republic, 2012, Nov 2012.

[11] M Tapia. A visual implementation of a shape grammar system. Environment and
Planning B: Planning and Design, 26(1):59–73, 1999.

[12] Lars Wüthrich. Shape Grammar interpreter and editor implemented in Pharo.
https://github.com/Laeri/shapegrammar_pharo, 2018.

[13] E. Zhang, P. Wonka, Y. Kobayashi, F. Bao, and Y. Li. Geometry synthesis on
surfaces using field-guided shape grammars. IEEE Transactions on Visualization
& Computer Graphics, 17:231–243, Feb 2010. ISSN 1077-2626. doi: 10.1109/
TVCG.2010.36.

https://github.com/Laeri/shapegrammar_pharo

	1 Introduction
	2 Related Work
	3 Subshape Detection
	3.1 Homogeneous Coordinates
	3.2 Grammar, Rule and Shape Representation
	3.2.1 Example grammars

	3.3 Subshape Detection By Point Comparison In Local Coordinates
	3.3.1 Coordinate Transformation
	3.3.2 Transformation Matrix Example
	3.3.3 General Idea Behind The Algorithm
	3.3.4 Maximal Lines
	3.3.5 Algorithms
	3.3.6 Computational Complexity

	4 Match Filtering And Selection
	4.1 Filtering
	4.1.1 Filter Intersections
	4.1.2 Filter Based On Transformation Properties
	4.1.3 Filter Based On Bounding Box
	4.1.4 Filter Based On Pixel Size

	4.2 Match Selection Problem
	4.2.1 Probability Based Heuristics
	4.2.1.1 Random Choice
	4.2.1.2 Balanced Random

	4.2.2 Age Based Heuristics
	4.2.3 Shape Geometry Heuristics

	4.3 Coloring And Additional Data Tags

	5 Editor and Interpreter
	6 Evaluation
	7 Conclusion
	8 Anleitung zu wissenschaftlichen Arbeiten
	8.1 Interpreter
	8.1.1 Class structure
	8.1.2 Shape Transformation

	8.2 Domain Specific Language
	8.2.1 Shape Creation
	8.2.2 Rule Creation
	8.2.3 Grammars and Configurations
	8.2.4 Parameter Specification
	8.2.5 Image Generation
	8.2.6 Image Creation Infrastructure In Pharo

	8.3 Editor
	8.3.1 Basic usage
	8.3.2 Implementation in Bloc
	8.3.3 Reflection

