
Cognitive defusion mobile application

Developing a single page application for cognitive

defusion exercises

Bachelor Thesis

Faculty of Science
University of Berne

Submitted by Pascal Y. Zaugg

Dapplesweg 14
3007 Bern

pascal.zaugg@students.unibe.ch
05-299-425

August 2015

Supervised by
Prof. Dr. Oscar Nierstrasz

Institut of Computer Science

Abstract

Today’s software architecture for mobile applications is strongly bound to one
specific operating system and its software development environment. Con-
sequently, developers need to maintain at least two code bases for Android
and iOS to reach a large share of smartphone users. In the last few years,
driven by the increasing calculation power of mobile phones, a new approach
emerged and Apache Cordova, a set of device APIs in JavaScript which al-
lows developers to build mobile applications without writing any native code,
was born.

This thesis is about how to develop an application with Apache Cordova.
It focuses on the use of technologies like Mercurial, Ionic and Calabash for
Android with the aim to create reliable and well-tested mobile applications.
An app for cognitive defusion exercises, formerly done with pen and paper,
was developed as part of a master thesis by Alexandra Barth at the Institute
of Psychology of the University of Berne. In a first step the development
process is documented and technologies are explained so that, in a second
part readers are invited to develop their own application by following an
elaborated tutorial.

As a result this paper shows that it is possible, with a certain amount of
effort and the will to learn to handle different frameworks, to create cross-
operating-system applications with the above mentioned goals.

Contents

1 Introduction 1

2 Documentation 3
2.1 Theoretical Background . 3
2.2 Requirement collection . 4
2.3 Prototyping . 5
2.4 Final product . 6

3 Technologies 8
3.1 Sinatra . 9
3.2 Storage . 11

3.2.1 CouchDB . 11
3.2.2 PouchDB . 12

3.3 Apache Cordova . 14
3.4 AngularJS . 16

3.4.1 MVC Design Pattern 17
3.4.2 Injector . 18
3.4.3 Double binding . 19
3.4.4 Scope . 20
3.4.5 Routing . 23
3.4.6 Directives . 24

3.5 Ionic . 25
3.6 Calabash for Android . 26

4 Conclusion 29
4.1 Reliabilty . 29
4.2 Maintainability . 30
4.3 Usefulness . 31
4.4 Multiple operating systems . 31

ii

5 Future Work 32
5.1 Todos . 32

5.1.1 TODO Nr.1 . 33
5.1.2 TODO Nr.2 . 33
5.1.3 TODO Nr.3 . 33
5.1.4 TODO Nr.4 . 34
5.1.5 TODO Nr.5 . 34
5.1.6 TODO Nr.6 . 34
5.1.7 TODO Nr.7 . 35
5.1.8 TODO Nr.8 . 35
5.1.9 TODO Nr.9 . 35
5.1.10 TODO Nr.10 . 36

6 Acknowledgement 37

Appendices 38

A Anleitung zur Wissenschaftlichen Arbeit 39
A.1 Introduction . 40

A.1.1 Download . 42
A.1.2 License . 42

A.2 CouchDB . 43
A.2.1 Installation . 43
A.2.2 Start and stop database service 43
A.2.3 Queries . 44
A.2.4 Database Manipulation 45
A.2.5 Document Manipulation 46
A.2.6 User Management . 48
A.2.7 Database security . 49
A.2.8 Setting up CORS . 50

A.3 PouchDB . 52
A.3.1 Installation . 52
A.3.2 Database Manipulation 53
A.3.3 Document Manipulation 53
A.3.4 Synchronizing with CouchDB 61

A.4 Ionic . 62
A.4.1 Installation . 62
A.4.2 Usage . 65

A.5 Calabash for Android . 76
A.5.1 Installation . 76
A.5.2 Usage . 76

iii

A.5.3 Feature . 77
A.5.4 Scenario . 78
A.5.5 Scenario outline . 78
A.5.6 Background . 79
A.5.7 Step definitions . 82
A.5.8 Running tests . 84

A.6 Mercurial . 87
A.6.1 Installation . 87
A.6.2 Basics . 87
A.6.3 Mercurial with bitbucket.org 91

A.7 Hands-on project . 93
A.7.1 Scenario . 93
A.7.2 Requirements . 94
A.7.3 Main Page . 96
A.7.4 Interaction . 102
A.7.5 Persistence . 108
A.7.6 Adding welcome sound 115
A.7.7 Integrate CouchDB . 118
A.7.8 Gherkin . 119
A.7.9 Implementation . 119
A.7.10 Further information . 126

iv

Chapter 1

Introduction

Today’s software architecture for mobile applications is strongly bound to
one specific operating system, its software development environment and its
particular language. To be more precise, in Android and iOS it is Java and
Swift/Objective-C respectively. Consequently, developers need to maintain
at least two code bases, which almost doubles maintaining and development
time and leads to duplication of work because code has to be written for
both application even though the logic is exactly the same. Being aware
of this problem developers started to create applications for web browsers.
Those applications came with a more cross-operating-system experience due
to the fact that they have a unified user interface. Moreover, browser-based
applications led to more concise and maintainable code. Nevertheless, they
came with severe disadvantages: System services like camera and sensors
or providers for contacts and calendar data could not be exploited or their
access was not standardized in different browsers. Furthermore, the user had
to be connected to the Internet at least at the start of the web application.
As a result, most developers stayed with the former approach.

In the last few years, with the ever increasing calculation power of mobile
phones and the tendency to move calculations of web pages from the server
side to the client side, a new approach emerged and Apache Cordova, a
set of device APIs in JavaScript which allows developers to build mobile
applications without writing any native code, was born. It serves as an
abstraction layer between the underlying operating system and the code base
using a webview and, therefore, HTML5 to create native applications. On
the one hand, the aim was to write a well-tested, reliable, maintainable and
useful mobile application running on both iOS and Android and, on the

1

other hand, I wanted to support the Departement of Clinical Psychology
and Psychotherapy of the Institute of Psychology in Berne in developing
mobile applications.

This report, written for the Software Composition Group at the Institute
of Computer Science of the University of Berne, documents the development
of a mobile application for cognitive defusion exercises, as part of a master
thesis by Alexandra Barth at the Institute of Psychology of the University
of Berne. Furthermore, it documents all the technologies which were used
to develop it. The first part includes a short abstract of the application
development process as well as a description of the final application. The
second part gives insight into most of the technologies used in this thesis.
Finally, the appendix holds an in-depth tutorial of how to design, test, write
and maintain a mobile application using a combination of frameworks like
Ionic, Calabash for Android, Mercurial, PouchDB and CouchDB.

2

Chapter 2

Documentation

After a long talk with Timo Stolz of the Institute of Psychology about mobile
application development in the context of psychology I sent a first email to
Prof. Oscar Nierstrasz, the head of the software composition group in Berne,
in March 2014 asking him if I could do develop a mobile application for my
bachelor thesis. On condition of finding someone to represent the customer
side of the application, he agreed to it. Shortly after, I started collaborating
with Alexandra Barth, a master student at the Institute of Psychology, in-
terested in developing an application to do a smartphone-backed field study
about cognitive defusion [13]. Shortly after our first meeting and in agree-
ment with Prof. Nierstrasz, we started developing a mobile application for
cognitive defusion exercises in September 2014. Then, in February 2015 the
application was deployed to study participants.

In this chapter you find a short documentation of the resulting application
consisting of the theoretical background of the exercises, the software design
process and the end product.

2.1 Theoretical Background

Until today it is not entirely clear why and how cognitive defusion works.
But an important point is that a thought seems less agitating if we do not
take it too seriously. This cannot always be achieved through logic thinking.
Cognitive defusion exercises do put a thought in a surreal situation (“imagine
your thought is written on clouds passing by”) or in a situation where it

3

is changing all the time, for example, by singing it. While producing the
thought in a different context one experiences oneself as producer of thoughts
and through that may see thoughts more as mental products than as facts.
More about the background of the exercises can be found in the master thesis
of Alexandra Barth[13].

2.2 Requirement collection

At our first meeting we collected requirements and wrote them onto cards.
After that Alexandra Barth rated each item with a scale of “wichtig” (im-
portant), “sehr wichtig” (very important) and “unbedingt nötig” (absolutely
necessary). Simultaneously I rated each item in ours to implement. Finally
Alexandra Barth selected which requirement would be implemented first.

Figure 2.1: Requirement example

In the beginning I used an excel sheet to collect the requirements, but
after a short while I found it easier to put them on index cards. A big
advantage is that you can spread them on the floor, sort and resort them the
way you want, write short notes on them with very little effort. So in this
case, the pen and paper way proved to be more convenient and gave me a
more profound overview on the work I was doing.

4

2.3 Prototyping

In a next step, prototyping was done on sticky notes and eventually it led to
implementation. Every cycle was organized in two weeks. After two weeks
we looked back on the requirements, revised or changed them and selected
new goals for the next cycle. This was repeated five times until the final
product took shape.

Figure 2.2: Example of sticky note with transitions (orange) and names (violet)

5

2.4 Final product

The final mobile application is available under http://scg.unibe.ch/
download/defusion/. It implements 17 views in a simple bluish green
design.

Figure 2.3: Navigation: start
of the application and navi-
gation

Figure 2.4: Exercise list: list
with all exercises

Figure 2.5: Hitlist: displays
the most effective exercises

On opening the application, users are asked to complete an online ques-
tionnaire. As soon as they have filled in the answers on personal data and
their psychological well-being it is possible to move on to the exercises. The
same procedure is repeated after four weeks of use.

Each exercise follows the same pattern. After selecting an exercise users
read the exercise information and description. If they like the exercise they
confirm by touching a button and move to the the initial page. There they
add their thoughts and how the feel about a particular thought in a scale
from 0 to 10. After confirming their data they move to the exercise page.
Users then have to stay for 30 seconds on the page while doing their exercise.
Afterwards, by pressing another button they move to the reflection page.
Finally they end up back on the exercise list.

6

http://scg.unibe.ch/download/defusion/
http://scg.unibe.ch/download/defusion/

Figure 2.6: Page of the questionnaire

Figure 2.7: informa-
tion and description

Figure 2.8: initial Figure 2.9: exercise Figure 2.10: reflec-
tion

7

Chapter 3

Technologies

In this part you will find a short description of all technologies used in my
project and how those technologies are linked to each other.

Figure 3.1: Application overview

The main application is built with Apache Cordova, a set of APIs that
allows a developer to access native device functions. In some parts of the
application the user has to leave the application to fill in a questionnaire on
the server. After that, he returns to the application. The synchronization

8

between the server side and the application side is automated by PouchDB,
a browser-based JavaScript database.

3.1 Sinatra

Sinatra is “a DSL [domain specific language] for quickly creating web appli-
cations in Ruby with minimal effort” [51]. It was designed and developed
by Blake Mizerany [52]. A popular project that uses Sinatra is the widely
known continuous integration server Travis CI [56].

Sinatra is a wrapper around Rack Middleware [33, 2] which, in simple
words, listens to a port (in this project to port 8080) and delegates requests
to methods defined by the user of Sinatra. It handles HTTP requests and
delivers responses to clients. Moreover, it “ties a specific URL directly to
relevant Ruby code and returns its output in response” [53]. Rack Middle-
ware is an enhanced interface to talk to web servers like Mongrel, Thin or
Apache via Passenger. However it has some more features like grouping and
ordering modules [1].

The next example shows a very simple routing. If this code runs on exam-
ple.com a call to http://example.com:8080/question is delegated
by Sinatra to the get method and then the simple HTML <h1>Question!</h1>
is returned. If there is a post request to http://example.com:8080/
answer, for example when sending a form, then the request is rerouted to
http://example.com:8080/answer and again <h1>Question!</h1>
is returned.

Listing 3.1: Simple routing in Sinatra

1 require ’sinatra’
2
3 get ’/question’ do
4 ’<h1>Question!</h1>’
5 end
6
7 post ’/answer’ do
8 #do something with the answer
9 redirect ’/question’

10 end

9

Furthermore Sinatra has an easy to use support for templates. I used erb
templates which can easily be rendered as seen in next example. Since erb
is already included in Ruby, there was no need to add another dependency.

Listing 3.2: Templates in Ruby

1 require ’sinatra’
2
3 get ’/question’ do
4 erb :question, locals => { :questionnrs => [1, 2, 3] }
5 end

Listing 3.3: Erb template example

1 <html><head><title>Question</title></head>
2 <body>
3 <% questionnrs.each do |questionnr| %>
4 <%= questionnr%>

5 <% end %>
6 </body>
7 </html>

In my project Sinatra ran on the server side and handled browser requests
done by the user.

Figure 3.2: Sinatra working with Ruby code and client

Sinatra proved to be an adequate choice, since it is lightweight, allowed for
a simple form of a questionnaire and stores the answers into the CouchDB.
Around 750 lines of code in combination with the couchrest gem, a Ruby
library to interact with CouchDB, to connect to the database instance was
all that was needed to get the server side of the application running. There
was no need for a more heavyweight framework like RubyOnRails.

10

Figure 3.3: One page of the questionnaire

3.2 Storage

3.2.1 CouchDB

CouchDB is a document-oriented NoSQL database. It was released in 2005
and became an Apache project in 2008. It stores data as JSON documents
[5] and provides a REST API to access data. Interestingly enough, BBC uses
CouchDB [24] as well as many smaller software projects and databases [6].

To retrieve data, you send a simple get request to the database:

Listing 3.4: Get request for document for CouchDB with curl

curl -X GET http://127.0.0.1:5984/database/document

Which would, in our case, (since the database does not exist) simply return
a JSON file stating an error:

11

Listing 3.5: JSON error object

{ "error": "not_found", "reason": "no_db_file" }

To create a database, only the following simple command is required:

Listing 3.6: Create database in CouchDB with curl

curl -X PUT http://127.0.0.1:5984/database

In my project this database is used to store the part of the user data that is
later used by Alexandra Barth to do her research[13, 38-57]. A big advantage
of this database is that there exists a client called PouchDB (see chapter
3.2.2) which hides the automatic synchronization between the local database
on smartphones and the database on the server.

3.2.2 PouchDB

PouchDB is a fresh, browser-based JavaScript database developed and main-
tained by a group around Nolan Lawson. Version 1.0.0 was released in the
year 2013 [43].

PouchDB is not self-contained. It is an abstraction layer over other
databases. Supported databases are, for example, IndexedDB and WebSQL
[41]. Databases created with PouchDB are persistent as long as they are
not deleted by the user. In other words, they are still available even if the
browser has been restarted since the last access.

Figure 3.4: PouchDB as abstraction layer

It was designed to be easily adjusted to synchronize with a CouchDB
instance on a server. Thus, it is possible to store data on a smartphone
without having an internet connection and, as soon as PouchDB connects, it
synchronizes with the CouchDB database on the remote side.

12

Creating a database is as simple as this:

Listing 3.7: Create database with PouchDB

pouchdb = new PouchDB(’my_pouch’)

Post a document with an ID created by the system:

Listing 3.8: Create document with PouchDB

1 pouchdb.post({
2 title: ’Heroes’
3 });

Delete a database:

Listing 3.9: Delete document with PouchDB

pouchdb.remove(docId, docRev)

Automated synchronization is a huge advantage because one does not
have to worry about making synchronization work. A problem that remains
is conflict resolution. In my project I took special care that, on the server
side, data may only be changed twice and on no more than two properties.
All other properties are only read. To avoid conflicts in synchronization, the
client side will only read the two properties in question without changing
them. Another advantage is that the database is environment aware so it
uses different approaches to store data on Android and iOS-Smartphones.

13

Figure 3.5: PouchDB working together with local storage and CouchDB. PouchDB is
synchronizing with the local storage as well as with a CouchDB database on the server
side. The only time the application reads from a PouchDB database is when it is started.
After that it only writes its current changes to it.

3.3 Apache Cordova

“Apache Cordova is a free, open source framework for building cross-platform
native applications using HTML5” [60, 1]. Cordova was initially developed as
PhoneGap by a software company called Nitobi. Nitobi donated its Phone-
Gap software to the Apache Foundation and was then acquired by Adobe
which was when two different kind of PhoneGaps emerged. The one called
Apache Cordova is less tightly bound to Abobe products [60, 7]. Well-
known companies using Cordova/PhoneGap for some of their applications
are Wikipedia, Facebook, Logitech and Microsoft [57].

Cordova can be seen as an abstraction layer between the business appli-
cation code and the operating system. Apache Cordova provides multiple
consistent APIs through JavaScript to do basic device manipulations on the
operating system level, like accessing the camera. With so called plug-ins,
sometimes written by third parties, this API may be extended. However,
Cordova does not translate HTML5 code into the native language of the de-
vice platform (like Objective-C or Java). It runs the code unmodified within
a provided single webview, which renders the web content within the native
application. At the beginning of the application Cordova loads the start-up
page and then passes the control to the webview [60, 2-3]. In other words,

14

it provides a container to run business application code written in HTML5.
In most cases a Cordova application shares many similarities with a web
application that is hosted on a server with the considerable advantage that
it is possible to interact with the built-in microphone, camera, the contacts
application and more.

Figure 3.6: Cordova as container

Creating a very simple app is as simple as creating an index page as seen
in the next code sample and putting it in the www folder.

Listing 3.10: index.html for Cordova application

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <meta charset="utf-8">
5 <meta name="viewport" content="initial-scale=1, maximum

-scale=1, user-scalable=no, width=device-width">
6 <title>Hi!</title>
7
8 <!-- cordova script (this will be a 404 during

development) -->
9 <script src="cordova.js"></script>

10
11 </head>
12 <body>
13 <h1>Hello Apache Cordova</h1>=
14 </body>
15 </html>

Run in the prompt in the console and deploy the .apk file to an android
device:

15

Listing 3.11: Build and run newly created apk on connected device

cordova build android
cordova run android

In my project Apache Cordova was used in combination with Ionic and
AngularJS (see sections 3.4 and 3.5) to provide all the business logic of the
application.

3.4 AngularJS

AngularJS is an open source JavaScript web application framework that has
become quite popular in the last few years. Started by Misko Hevery and
Adam Abrons in 2009 it became a Google project when Hevery joined Google.
Throughout its popular last years it was adopted by many large sites like
http://stackoverflow.com or http://www.nasa.gov. Since per-
sonal computers become more powerful every year a lot of web application
move away from the use of server-side-languages like PHP or Ruby. Devel-
opers tend to build more client-side applications bundled with Ajax calls to
retrieve data from the server. This is where AngularJS jumps in. It en-
hances static HTML to create, mostly client-sided, dynamic websites. [61,
10] It is downloadable from https://angularjs.org/. However, it is
automatically included in Ionic.

Ajax (asynchronous JavaScript and XML) is a way to build interactive
web applications. Instead of talking directly to the server web pages
using Ajax use an engine as intermediary. It combines several different
programming tools. Ajax allows web pages to update parts of a web
application on the spot in contrast to an HTTP request where the user
has to wait until the page is fully loaded [47].

Key features of AngularJS slightly altered from [50, 5] are:

• Declarative HTML approach

• Two way data binding

• Encourages MVC Design Pattern

• Easy unit testing

16

http://stackoverflow.com
http://www.nasa.gov
https://angularjs.org/

• Templating

• Routing

• Concepts like injector, directive and scope

AngularJS creates a highly dynamic HTML webpage. At page start-up
it waits for the DOM content loaded event. As soon as this event is emitted
an injector is created. Then the web page is compiled and displayed in the
browser.

Figure 3.7: AngularJS at start-up [25, 2]

3.4.1 MVC Design Pattern

The model is defined in plain JavaScript. AngularJS encourages people to use
the built-in service constructor to create and access the model. JavaScript is
an object based programming language with support for prototyping. Nev-
ertheless, it does not support class like constructs as in Java and Ruby by
default, but by associating functions to variables, you may create something
similar.

Listing 3.12: Create class like constructs with JavaScript

1 function Exercise() {
2 this.name = undefined;
3
4 this.force = undefined;
5 this.credibility = undefined;
6 this.discomfort = undefined;
7
8 this.thought = undefined;
9

17

10 this.finishedInitialPosition
11 = function finishedInitialPosition() {
12 return this.force && this.credibility
13 && this.discomfort && this.thought
14 && this.name;
15 };
16 }

The view is defined in HTML5 with a powerful addition, the directives (see
section 3.4.6). Controllers are defined by registering them to angular.module
which is provided by the AngularJS framework.

Listing 3.13: Create Controller in AngularJS

1 angular.module(’starter.controllers’, [])
2 .controller(’Ctrl’, function() {
3 //controlling stuff here
4 });

AngularJS provides a useful way to create controllers which, consequently,
can be associated to parts of the view (see section 3.4.5). After a controller
has been defined AngularJS allows you to assign controllers to parts of the
view. Controllers may be reused for other parts.

Listing 3.14: Assign Controller to DOM element in AngularJS

1 <div ng-controller="Ctrl">
2 <!-- this part is controlled by the Ctrl controller

-->
3 </div>

3.4.2 Injector

The $injector service of AngularJS provides a lookup for services and objects.
Dependencies are resolved by the injector when using the invoke method on
it. In the next example altered from [25, 8-10] we see the service work.

18

Listing 3.15: Use the injector to inject services

1 //create a module
2 var myModule = angular.module("myModule", [])
3
4 //create a service in that module
5 myModule.factory(’serviceA’, function() {
6 return "Hello World!"
7 });
8
9 //write a function using serviceA

10 function hello(serviceA) {
11 console.log(serviceA)
12 }
13
14 //retrieve injector for a module
15 var $injector = angular.injector([’myModule’]);
16
17 //let AngularJS inject your service into your function
18 $injector.invoke(hello)

3.4.3 Double binding

In AngularJS variables defined in double curly brackets are automatically
observed. This means that if a change to a variable in the model or controller
occurs those changes are reflected automatically in the view and vice versa.
To make it clear to AngularJS that such a change happened, one uses the
$apply method.

Figure 3.8: $apply, $digest life cyle from [25, 28]

19

As soon the $apply method is called the $digest cycle begins. As a con-
sequence, all variables watched by AngularJS are reevaluated and associated
functions are called. One $apply cycle may consist of multiple $digest cycles
[25, 28-33].

In the view (HTML code) bindings are denoted by double curly brackets

Listing 3.16: Bind variable to current scope

{{name}}

Name here refers to the name property of the $scope variable of the controller
[29].

Listing 3.17: Assign property to scope

$scope.name = "Pantalaimon"

3.4.4 Scope

A crucial part of AngularJS is the concept of the scope. It defines the exe-
cution context for expressions [34] and lets model, controller and view com-
municate with each other without binding them together too strongly [29].
Moreover, scopes are prototypically inherited and AngularJS uses chaining
to find properties missing on a lower level scope [28]. Each ng-controller
directive creates a scope for the elements it is responsible for. Subsequently
it nests its scope into its parent scope. Thus, properties defined in the child
controller scope may shadow properties of the parent controller scope as seen
in the next example [46]. Knowledge of the mechanism of prototypical inher-
itance is important because, for example, the ng-model directive creates
its own scope for its bound property.

Listing 3.18: HTML for 3.19

1 <html>
2 <head>
3 <title>Scope inheritance example</title>
4 <script src="java-script/angular.min.js"></script>
5 </head>
6 <body>
7 <div ng-app>

20

8 <div ng-controller="Parent">
9 <div ng-controller="Child">

10 </div>
11 </div>
12 </div>
13 </body>
14 </html>

Listing 3.19: Scope inheritance in AngularJS

1 function Parent($scope, $rootScope) {
2 $rootScope.greeting = "hey root"
3 $scope.greeting = "hey parent"
4
5 //waits for a message from its child
6 $scope.$on("print_greeting", function(event) {
7 console.log($scope.greeting) //prints "hey parent

"
8 delete $scope.greeting //remove property from

parent $scope
9 })

10 }
11 function Child($scope) {
12 console.log($scope.greeting) //prints hey

parent
13 $scope.greeting = "hey child"
14 console.log($scope.greeting) //prints hey child
15
16 //sends message to parent to print property

greeting
17 //and afterwards delete it
18 $scope.$emit(’print greeting’)
19 console.log($scope.greeting) // prints hey child
20 delete $scope.greeting // remove greeting property from

child $scope
21 console.log($scope.greeting) // prints "hey root"
22 }

For the example 3.19 above the scope chain looks like the next figure.

21

Figure 3.9: $scope chain for listening 3.19 and 3.18

In line 2 we set the property greeting with the value “hey root” in the
root scope. In the next line we assign “hey parent” to the property greeting
of the $scope of Parent and then we wait for a message of Child. This
code is executed first because the code is evaluated in the same order as
the ng-controller directives appear in the DOM. Then, the first line of
Parent is executed. Since there is no greeting property in the child scope
AngularJS goes up the chain and finds a greeting property in the parent
scope that then passed to console.log. In line 13 the greeting property of
Child is set to “hey child” and in the next line AngularJS finds this property
in the Child and displays it. Afterwards, in line 9, we emit a message that
leads to the execution of lines 7 and 8 in Parent. When trying to find
the property greeting in line 8 AngularJS immediately succeds in the scope
of Parent and prints “hey parent”. Note that AngularJS controllers never
check if there is a property set with the same name in its children. Then we
remove the property greeting from the Parent scope and return to line 19
once more. This line prints the property greeting of Child scope again and
because we only deleted the property of the parent scope we will receive “hey
child” once more. The next line deletes the property greeting on the current
scope. Thus if we now try to print the property greeting again, AngularJS
will neither find a property called like this in scope of Child nor in the scope
of Parent. Consequently, it will go up the chain one step further and finds
a the property set in the root scope, which was set right at the beginning of
the execution, and subsequentely print “hey root”.

22

3.4.5 Routing

In standard AngularJS application routing is done with the built-in $routeProvider
[32]. Due to Ionic using a more advanced and flexible framework called UI-
Router that uses a state machine, the $routeProvider will not be covered
here 1. Instead, the concepts of the UI-Router will be described.

To define states and bind them to urls, data and templates Ui-Router
implements a provider called $stateProvider that can be injected into our
configurations.

Listing 3.20: Define state for routing in AngularJS

1 angular.module(’myModule’, []).config(function(
$stateProvider) {

2 $stateProvider.state(’main’, {
3 template : "<h1>Main</h1>",
4 url : "\main"
5 })
6 })

In the above example, a state called main is created and binds the tem-
plate <h1>Main</h1> and the url /main to it. Hence, as soon as the url
main is requested a heading “Main” is shown.

An advantage of the state approach is that states do not have to be
bound to an url. In my project I created an exit state. This states stops the
application, for example, if the back button on Android is hit on the main
screen.

Listing 3.21: State without binding to an url

1 $stateProvider.state("exit", {
2 resolve: {
3 exit: function(User) {
4 document.addEventListener(’deviceready’, function ()

{
5 if(navigator.app && navigator.app.exitApp) {
6 navigator.app.exitApp();
7 }
8 }, false);

1More informations about $routeProvider can be found at
https://docs.angularjs.org/api/ngRoute/provider/$routeProvider

23

9 }
10 }
11 });

3.4.6 Directives

One of the most important concepts is that of a directive. They are “the at-
tributes or elements that augment the existing DOM element into a reusable
DOM component”[34, 22]. They are, at high level, markers at the DOM level
to tell AngularJS HTML compiler to attach specific behaviour to that DOM
element or its children. Directives may even change them [31]. AngularJS
has many built-in directives, for example, the ng-repeat directive, that
allows for iteration over a list and, thus, repeats parts of the html code.

Listing 3.22: Directive example with ng-repeat in AngularJS

1 <html ng-app>
2 <head>
3 <script src="angular.min.js"></script>
4 </head>
5 <body>
6
7 <li ng-repeat="number in [3, 2, 1, ’take off!’]">
8 <p>{{number}}</p>
9

10
11 </body>
12 </html>

The example above results in something similar such as

Listing 3.23: Rendered HTML with ng-repeat for listing 3.22 in AngularJS

1 <html ng-app="myApp">
2 <head>
3 <script src="angular.js"></script>
4 </head>
5 <body ng-controller="PhoneListCtrl">
6
7
8 <p>3</p>

24

9
10
11 <p>2</p>
12
13
14 <p>1</p>
15
16
17
18 <p>take off!</p>
19
20
21 </body>
22 </html>

It is possible to create own directives by registering them upon a module.
The directive below could then be referred to by my-directive in HTML
code.

Listing 3.24: Creating a custom directive in AngularJS

1 angular.module(’directives’, [])
2 .directive(’myDirective’, function() {
3 return {
4 template: ’<h1>Main</h1>’
5 };
6 });

AngularJS was used internally by the Ionic Framework (see section 3.5).
Ionic uses AngularJS to create its own directives.

3.5 Ionic

Ionic is a framework written in JavaScript to build mobile apps with HTML5.
It was created in 2013 by Drifty, a small company founded by Max Lynch
and Ben Perry [18].

Ionic heavily depends on AngularJS and Apache Cordova (see sections
3.3 and 3.4) and to make building hybrid mobile apps fast, easy, and beau-
tiful [61]. Developers called it “a powerful HTML5 native app development

25

framework that helps you build native-feeling mobile apps all with web tech-
nologies like HTML, CSS, and JavaScript” [22] and its goal is to make it
easier to develop native mobile apps with HTML5, also known as hybrid
apps [14]. Ionic itself was mostly designed to create smooth user interfaces
and experiences.

Figure 3.10: Ionic mental stack [61]

A decisive advantage of the Ionic Framework is that, firstly, it provides a
large set of prebuild css styles to make your app immediately look pleasant
and secondly implements concepts widely used in mobile applications like
side menus and header menus.

3.6 Calabash for Android

Calabash was created by Karl Krukow and Jonas Maturana Larsen of the
Danish LessPainful company. In 2012 the prior internally used automated
acceptance test framework was open sourced [35]. Already in 2013 it was
acquired by Xamarin that develops and maintains Calabash [55] until today.

Calabash allows human readable tests written in so called Gherkin. It
expresses the software to be built in real examples and brings stakeholders
and developers together. It is an adaption of the cucumber test framework
which was developed by a team around Aslak Hellesoy [17].

”By using real-world examples to describe the desired behaviour of the
system we want to build, we stay grounded in language and terminology that
makes sense to our stakeholders: we are speaking their language“ [62, 25]

This allows customer and developer to come up with a ubiquitous lan-
guage and to exchange requirements in a way both sides understand. Gherkin,
as in seen in the next example, is a DSL to describe a requirement and sce-
nario of the application in business language.

26

Listing 3.25: Scenario in Gherkin for Calabash

1 Scenario: As a user I should be redirected to the
overview page

2 When I filled in the questionnaire
3 And I wait for a maximum of "10" seconds
4 Then I see the "overview" page

Due to its high level of abstraction Gherkin is then bootstrapped to Ruby.
Furthermore, each step in Gherkin is then processed in Ruby where the
developer wires it to the model or in the case of Calabash to the application.

Figure 3.11: Wiring of Gherkin, step definitions and ruby code. Figure slightly altered
from [62, 41]

Listing 3.26: Step definition in Calabash

1 Given(/ˆI have not received my attestation$/) do
2 wait_for_page("overview")
3 execute_javascript(:file => "attestation-not-received.

js")
4 end

What Calabash does, in addition to Cucumber, is to provide possibili-
ties to communicate through gestures (touch, double-tab, pinch, etc.) with
the application, so the test developer can simulate user behaviour. It also
provides a way to inject JavaScript code into mobile applications under test,
which allows one to manipulate runtime JavaScript objects at runtime, for
example, to trigger timeout events earlier and speed up tests.

27

Calabash uses a seperate test server signed with the same key. The test
server is sending testing the application and is sending its result back to our
Ruby script.

Figure 3.12: Calabash in Android [63]

28

Chapter 4

Conclusion

Creating a reliable, maintainable and useful mobile application running on
multiple operating systems was the main goal of this project. As we have
seen, most of the technologies used in this thesis are around 2 to 4 years
old. Some of them are backed and used by large companies or foundations
like Google, Apache or Xamarin, others like PouchDB are only supported
by a small group of people. One might argue that they should not be relied
on because of their recency. However, throughout this thesis most of the
frameworks proved to be highly reliable and well-tested.

4.1 Reliabilty

Testing the application with Calabash for Android proved to be a conve-
nient but sometimes difficult decision. The framework is quite new, not too
well documented, especially in combination with Cordova, and changing fast.
Although finding ways of making tests work was rather time consuming, it
gave me an insight as to how Cordova and the other frameworks work. So,
in most cases it was worth the effort. However the irregular behaviour of the
framework was problematic at times since, in some cases, it led to flickering
scenarios.

Overall, the app was tested well. Each implemented requirement had at
least one test. Nevertheless, unit testing was a part of the whole development
process which could have improved bug resistance of the application once
more. Moreover, a continous integration server like Travis CI or Jenkins

29

might improve reliability of the application even more, particularly as soon
as multiple persons are involved.

4.2 Maintainability

Using Mercurial as the revision control system proved to be a good choice.
It follows the UNIX philosophy “each command should do one thing and do
it well” as closely as possible. In contrast to git, for example, each command
has only few or no options. Another advantage of Mercurial is its philosophy
that “history is permanent and sacred”. So, again in contrast to git, there
is almost no way to change its history and it is, therefore, less vulnerable for
data loss. [37] Thus, Mercurial was easy to use and provided all I needed.
Most importantly, Mercurial allows for returns to previous versions, the main
purpose of revision control systems, which improves the maintainability of
the code.

The code of this project on the client side was split into five parts:

app.js : Holding configuration application configuration parts like setting
up the states

classes.js : Class-like objects such as a music player or exercises.

controllers.js : AngularJS Controllers

services.js : AngularJS Services to pass information inside the application

language.js : Language file with all String resources of the application

This separation on the file level proved to be beneficial for maintain-
ability especially the string resources in language.js. It makes finding
and changing texts in the app very easy and additionally gave Alexandra
Barth the possibility to change labels, button texts and descriptions in the
application on her own.

The sheer amount of technologies used in this thesis might lead to the
conclusion that there were too many. When reviewing the scope of applica-
tion of each technology in chapter 3 it is obvious that they do not overlap.
Hence, each of them serves a specific purpose. However, keeping track of
the framework versions and their interaction with each other is demanding.
Since I was working alone and had full control of my working space I did
not have to think too much about versions. I updated them frequently and

30

if they did not work together I rolled back to a previous version. In a more
collaborative environment it would be advisable to use build systems like
rake or ant to automate the build as well as the test process. Additionally,
these tools make continuous integration easier.

4.3 Usefulness

In January 2015 the application was deployed to around 30 people. 5 of
them filled in a survey on system usability, the system usability scale [15].
Evaluating this score showed an acceptable usability. However, the small
amount of participants (n=5) has to be taken into account [13, 53].

4.4 Multiple operating systems

Android and iOS share 97% of the mobile phone market in Switzerland [12].
Globally, iOS 7 and 8 are used by more than 98% of the iOS users[11]. Less
than 5% of Android users have a version installed lower than version 4.0 [30].

The application runs successfully on iOS 7 and 8 but it was not tested
on iOS 6 and below. It runs as well on Android from version 4.0 Ice Cream
Sandwich to 5.1. The limiting factor for Android was PouchDB that did not
support Android version lower than 4.0. A Windows Phone App could not
be build because the effort of licensing it was not worth the outcome for less
than 3% of smartphone users. In conclusion, by assuming that the global
distribution of Android and iOS versions reflect the situation in Switzerland,
our application is available for around 93% of people owning a smartphone
in Switzerland.

31

Chapter 5

Future Work

To enhance the reliability of the software, unit tests should be introduced
and maintained and a continuous integration server might be set up. In
terms of maintainability a build system should be introduced. However in
a single person project the maintenance of this system might outweigh the
gain of better maintainability. Finding a way to use PouchDB with Android
3.0, Gingerbread would increase the share of Android users from 95% to
99.7% and, therefore, support our cause to develop an app running on as
many operating systems as possible. At last, refactoring parts of the app
would enhance reliability and maintainability on code level. A list of todos
to provide a starting point for future work can be found in the next section.

5.1 Todos

Even though the app works fine, there is still and always will be work to do.
Some todos was marked with a number in the code. This chapter describes
all of those todos and for some we make suggestions as to how the change
could be approached.

32

5.1.1 TODO Nr.1

⇒ concerning app.js

Instead of doing a workaround by setting and resetting a variable in Home-
Back we could use the $ionicPlatform.registerBackButtonAction method.

1 $ionicPlatform
2 .registerBackButtonAction(function (event) {
3 event.preventDefault();
4 }, 100);

More information:
http://stackoverflow.com/questions/26548418/disable-
hardware-back-button-in-ionic-application

5.1.2 TODO Nr.2

⇒ concerning app.js

There seems to be a possibility to exit an Windows phone application pro-
grammatically by simply adding a new plugin to Cordova.

More information:
https://github.com/gaqzi/cordova-plugin-exitapp

5.1.3 TODO Nr.3

⇒ concerning app.js

The initialization of the app is done in the SplashCtrl. The method
setup database should be moved into that initialization as well to make it
more consistent

33

http://stackoverflow.com/questions/26548418/disable-hardware-back-button-in-ionic-application
http://stackoverflow.com/questions/26548418/disable-hardware-back-button-in-ionic-application
https://github.com/gaqzi/cordova-plugin-exitapp

5.1.4 TODO Nr.4

⇒ concerning app.js

It is always possible that an error occurs when using a database. There
should be a better handling of those errors.
There are several options:

• Closing the app and hoping that it will restart properly the next time

• Send a message with some information to the developer

• Ignore error and hope that it has no severe effect

• Retry current transaction

• Try to find out what problem occurred and handle it accordingly

• Combine above mentioned options

5.1.5 TODO Nr.5

⇒ concerning app.js

The whole initialization of the states is now done in the app.js by using
helper methods. Those methods pollute the general scope. A far better idea
would be to move all methods and the creation of the states into a separate
class (Separation of concerns). Maybe create a StateBuilder class.

5.1.6 TODO Nr.6

⇒ concerning app.js

dateDiffInDays and dateDiffInHours polute the general scope. A better idea
would be to move those methods into a helper method.

34

5.1.7 TODO Nr.7

⇒ concerning app.js

Make dateDiffInDays more precise by using the hours as well.

Listing 5.1: More precise date difference

1 function dateDiffInDays(a, b) {
2 var MS_PER_DAY = 1000 * 60 * 60 * 24;
3
4 var utc1 = Date.UTC(a.getFullYear(), a.getMonth(),
5 a.getDate(), a.getHours());
6 var utc2 = Date.UTC(b.getFullYear(), b.getMonth(),
7 b.getDate(), b.getHours());
8
9 return Math.floor((utc2 - utc1) / MS_PER_DAY);

10 }

5.1.8 TODO Nr.8

⇒ concerning app.js

Together with TODO Nr.5 we should and could combine all add page func-
tions into one more general.

5.1.9 TODO Nr.9

⇒ concerning app.js

The definition of the array feels like a duplication. At least it should be
globally accessible.

35

5.1.10 TODO Nr.10

⇒ concerning app.js

Reroute to the previous state using a rule instead of doing it in the $state-
ChangeStart listener. This is only possible if we somehow have access to the
calling state, so there is need to extend the rule function

Listing 5.2: Use a rule to access exit state

1 rule: function(User, from) {
2 if(!navigator.app &&
3 !navigator.app.exitApp) {
4 return { access: false,
5 alternateRoute : from};
6 }
7 #If we reach here then we now
8 #the app will be exited right away
9 #in the resolve function

10 }

Listing 5.3: Changes to $stateChangeStart

1 $rootScope.$on(’$stateChangeStart’,
2 function(e, to, toParams,
3 from, fromParams) {
4 //...
5
6 var answer = to.data.rule(User, from);
7
8 //...
9 });

36

Chapter 6

Acknowledgement

Sincere gratitude goes to my friend and school colleague Stephan Wehrli who
switched many lessons with me every time I had to reach another milestone.

My special thanks also goes to Petra Zaugg who proofread all chapters
in many hours of work despite plenty of work to herself.

Furthermore, I want to thank Timo Stolz for his countless tips and tricks
concerning Ionic and AngularJS. He was never short on giving me advice and
sparing his time when I was stuck either with a design decision or concrete
coding problem. Moreover, I want to thank him together with Meiling Wong
for putting the tutorial part to the acid test.

Additionally I would like to thank my supervisor Prof. Oscar Nierstrasz
for letting me develop this app and above all for his patience when I could
not keep up with my own deadlines. Furthermore, I want to thank him for
proofreading the technologies chapter and giving me valuable feedback.

Last but not least, I would like to thank Alexandra Barth. What started
as a loose acquaintance became, throughout our work together, a solid friend-
ship. I want to thank her for her support and her clever and stimulating ideas
of how to improve the app step by step. She lent me her ear when I needed
someone to listen to my sorrows about this project and gave me support to
actually get everything done.

This thesis would never have been possible without the overwhelming
support of all the wonderful people around me. Thank you very much!

37

Appendices

38

Appendix A

Anleitung zur
Wissenschaftlichen Arbeit

39

A.1 Introduction

About this tutorial

This tutorial gives you an overview over several different technologies and
how to integrate them to create a powerful mobile application in short time.
It is written for Ubuntu/Linux users although most steps are probably, with
adjustments, easily fitted for iOS and Window users. As far as possible the
examples in this tutorial are minimal working examples.

The focus of this part of the paper lies on programming. First, we will
learn using database management systems like CouchDB and PouchDB. Sec-
ond, we learn Ionic and AngularJS to develop cross-operating-system mobile
applications with HTML5. Third, we get to know better the automated
acceptance test framework Calabash for android and a revision control sys-
tem called Mercurial. Finally, in the hands-on section, we integrate all our
knowledge into a single project. An analysis of how the different frame-
work operate internally and detailed informations on the inventors of these
technologies can be found in the main part of this thesis.

Preliminary knowledge

Although most examples in this tutorial are self-explanatory, in some cases,
we will need basic knowledge of Ruby, JavaScript or HTML. Moreover, the
reader should have some experience with the Linux terminal and Bash.

Prerequisites

The following hardware must be at hand:

• Server with Ubuntu 12.04 installed

• PC with Ubuntu 14.04

• Smartphone with Android ≥ 4.0 installed

• USB-Cable to connect the smartphone with PC

40

Conventions

Throughout this tutorial, we will see the following typographical conventions
that indicate different type of informations

A block of code looks like this:

1 Then(/ˆI retrieve my previous data$/) do
2 exists?("ion-item", "There was no item in the list")
3 end

A command to be typed into the command line will look like this:

sudo service couchdb stop

Command line outputs have this look

{ "ok" : true }

Paths, file names, code and elements related to code or code examples are
monospaced.

Tips and tricks to solve a problem faster or make life easier are to be
found in those boxes.

Warnings and parts where things might go wrong are in those boxes
with the picture of an exclamation mark on its side.

Additional information can be found in this boxes.

41

Versions

In this tutorial the most recent versions of each technology was used. At the
time of writing those were:

Ionic 1.6.3

Cordova 5.1.1

Calabash for Android 0.5.14

NodeJS 0.12.7

PouchDB 3.2.1

CouchDB 1.5.0

Mercurial 2.8.2

A.1.1 Download

The latex source code for this tutorial can be downloaded under
the following address http://scg.unibe.ch/download/defusion/
tutorial%20PZAUGG.zip.

A.1.2 License

This tutorial is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

You are free to copy and redistribute the material in any medium or
format. Further you are free to remix, transform, and build upon the material
for any purpose, even commercially.

However, you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.

42

http://scg.unibe.ch/download/defusion/tutorial%20PZAUGG.zip
http://scg.unibe.ch/download/defusion/tutorial%20PZAUGG.zip

A.2 CouchDB

In this section you will learn how to install CouchDB and do some basic
manipulation on it. All commands work on Ubuntu 12.04 and Ubuntu 14.04
if not stated otherwise. This Tutorial will cover the raw API of CouchDB.
However, CouchDB comes with its own administration interface called Futon,
which is not covered in this tutorial 1.

A.2.1 Installation

Use the following command to install CouchDB and all its dependencies on
your server.

Listing A.1: Install CouchDB[8]

sudo apt-get install couchdb

Throughout this chapter we will need curl to send HTTP request.
Install it with:

sudo apt-get curl

A.2.2 Start and stop database service

CouchDB can be restarted from the /etc/init.d/couchdb startup script
or in Ubuntu 14.04 with the service command.

To stop CouchDB we do:

Listing A.2: Stop CouchDB on Ubuntu 12.04[54]

/etc/init.d/couchdb stop

Listing A.3: Stop CouchDB on Ubuntu 14.04[54]

sudo service couchdb stop

1A good source to find out more about Futon is the Book “CouchDB: The Definitive
Guide” [2].

43

To restart CouchDB we do:

Listing A.4: Restart CouchDB on Ubuntu 12.04[54]

/etc/init.d/couchdb restart

Listing A.5: Restart CouchDB on Ubuntu 14.04[54]

sudo service couchdb restart

A.2.3 Queries

In order to manipulate and query the database we can use the command
line application curl with which we can send GET, DELETE, PUT and POST
requests to CouchDB. As soon as our CouchDB is running, we may submit
our first GET request.

Listing A.6: First CouchDB request [2, 12]

curl http://127.0.0.1:5984/

The answer will look like this:

Listing A.7: Answer to first CouchDB request

{
"couchdb":"Welcome",
"uuid":"453456114",
"version":"1.5.0",
"vendor": {"version":"14.04","name":"Ubuntu"}

}

Each query or request to CouchDB returns a JSON feed. It is natively
supported by JavaScript. Accordingly, CouchDB goes along well with web
applications.

JSON is short for JavaScript Object Notation. It is a lightweight
text-only syntax to store and exchange data or a collection of data in a
human-readable and easy-to-access way [45].

44

A.2.4 Database Manipulation

If we wish to add a new database to your CouchDB use the following com-
mand:

Listing A.8: Create a database via HTTP in CouchDB

curl -X PUT http://127.0.0.1:5984/warningsignals

This command as well returns an answer by CouchDB and looks like this:

Listing A.9: Answer from CouchDB after Database creation

{ "ok" : true }

Furthermore, to remove a database use this command:

Listing A.10: Delete a database via HTTP in CouchDB

curl -X DELETE http://127.0.0.1:5984/warningsignals

As mentioned CouchDB answers again:

Listing A.11: Answer of CouchDB to A.10

{ "ok" : true }

This is the way to get all databases:

Listing A.12: Get all databases in CouchDB

curl -X GET http://127.0.0.1:5984/_all_dbs

The answer to the command above is a JSON array. We will see the following
output provided that the request in A.2.4 was sent in advance.

Listing A.13: Answer to request for all databases in A.12 in CouchDB

["warningsignals"]

A longer example as bash script to repeat again removing, adding and retriev-
ing databases. The comments are the answer objects returned by CouchDB
after each request.

45

Listing A.14: Example with adding removing and retrieving databases in CouchDB

curl -X PUT http://127.0.0.1:5984/warningsignals
{"ok":true}
curl -X PUT http://127.0.0.1:5984/warningsignals
{"error":"file_exists",
"reason":"The database could not be created, the file

already exists."}
curl -X GET http://127.0.0.1:5984/_all_dbs
["warningsignals"]
curl -X PUT http://127.0.0.1:5984/user_data
{"ok":true}
curl -X GET http://127.0.0.1:5984/_all_dbs
["user_data", "warningsignals"]
curl -X DELETE http://127.0.0.1:5984/user_data
{"ok":true}
curl -X DELETE http://127.0.0.1:5984/user_data
{"error":"not_found","reason":"missing"}

A.2.5 Document Manipulation

Assuming that our aim is to create a document called small with a JSON
array holding the values “weariness” and “sickness” in it, then use the fol-
lowing command to do so:

Listing A.15: Create a document in CouchDB

curl -X PUT http://127.0.0.1:5984/warningsignals/small -d
’{ "signals":["weariness", "sickness"] }’

The first part defines the database in which the document is put. The second
part is the id of the document. The -d tells curl to use the part after -d as
the body of the text which is our JSON array.

To fetch a document one has to send a GET request.

Listing A.16: Fetch a document in CouchDB

curl -X GET http://127.0.0.1:5984/warningsignals/small

46

Once the command above is executed and the request in A.15 has been sent
too, then CouchDB returns:

Listing A.17: Answer to request A.15 in CouchDB

{
"_id":"small",
"_rev":"1-028a",
"signals":["weariness","sickness"]
}

A document can only be altered if the current revision number of the docu-
ment is known. This revision number is mandatory since CouchDB uses it
to find out if there are consistency problems.

Listing A.18: Alter a document in CouchDB

1 url="http://127.0.0.1:5984/warningsignals/small"
2 rev=$(curl -sS -I "$url" | sed -ne ’s/ˆETag: "\(.*\)".*$

/\1/p’)
3 curl -sS -X PUT $url?rev="$rev" -d ’{"signals":[]}’

In line 2 the document is fetched, the revision is filterd out of the response
with sed. This revision is then used to make another request where the
previous document is replaced with a new one holding only an empty array.

Deletion is achieved by following the same procedure, but instead of sending
a PUT request, you send a DELETE request.

Listing A.19: Delete a document in CouchDB

url="http://127.0.0.1:5984/warningsignals/small"
rev=$(curl -sS -I "$url" | sed -ne ’s/ˆETag: "\(.*\)".*$

/\1/p’)
curl -sS -X DELETE $url?rev="$rev"

47

At this point often the question arises if it is possible to delete a doc-
ument without knowledge of the current revision. It is not. Revision
numbers are essential for CouchDB to keep track of the changes made
to a document and to allow decent conflict management for us. In most
cases even deleted documents have a last revision, a so called tombstones
only containing its ID, revision number and a field deleted set to true
[49].

A.2.6 User Management

When setting up CouchDB the database has no security at all. So everyone
who accesses the database is administrator. CouchDB calls this state the
admin party [2, 189]. Obviously this is useful for first try outs and as long
your CouchDB does only listen to the loop back network interface. However,
as soon as we open our database to the public this is undoubtedly no accept-
able solution. By defining the first administrator all admin rights are passed
to her or him.

This is how an admin is created:

Listing A.20: Create an admininistrator in CouchDB

curl -X PUT http://127.0.0.1:5984/_config/admins/
pantalaimon -d ’"password"’

The admin is now added to the CouchDB configuration file [2, 190].

From now on only administrator pantalaimon has the right to create and
delete databases. Setting an admin has further consequences, for example,
only admin can create design documents, but this is not covered here 2.

Creating a database after setting up an administrator requires to put some
additions to be made to our requests. User name and password separated by
a colon and ending with an @ are needed to be put in front of the url.

Listing A.21: Create database as admininstrator in CouchDB

curl -X PUT http://pantalaimon:password@127.0.0.1:5984/
warningsignals

2See “CouchDB: The Definitive Guide” for more information in this direction [2]

48

CouchDB manages its users in a special database called user. To create
a user we have to put the user into the that database. The format of the
document can be seen below.

Listing A.22: Format of a user document in CouchDB[7]

{
"_id" : "org.couchdb.user:user_name",
"name" : "user_name",
"type" : "user",
"roles" : [],
"password" : "plaintext_password"

}

The part org.couchdb.user in the id is mandatory and can not be
omitted.

The command below creates a new user called roger.

Listing A.23: Create user in CouchDB

curl -X PUT http://pantalaimon:password@127.0.0.1:5984/
_users/org.couchdb.user:roger -d ’{"name":"roger", "
type":"user", "roles":[], "password":"salcilia" }’

Since users is a document, you first have to grab the revision number to
subsequently delete a user.

Listing A.24: Delete user in CouchDB

url="http://pantalaimon:password@127.0.0.1:5984/_users/org
.couchdb.user:roger"

rev=$(curl -sS -I "$url" | sed -ne ’s/ˆETag: "\(.*\)".*$
/\1/p’)

curl -sS -X DELETE $url?rev="$rev"

A.2.7 Database security

Each database defines its own security document where it stores the
users who have access to the database. As long as there is no security
document all users have access to it.

49

Listing A.25: Create security document

curl -X PUT http://pantalaimon:password@127.0.0.1:5984/
warningsignals/_security -d ’{"admins": {"names":["
pantalaimon"], "roles":[]}, "members":{"names":["roger
"], "roles":[]}}’

The above command creates a security document where Pantalaimon is set
as admin and Roger as member. Members can create and alter all docu-
ments besides design documents. Administrators have the same rights as
members, but they may alter design documents or add and remove mem-
bers and administrators. Nevertheless, a database administrator is allowed
to manipulate its database only, he cannot create or delete databases [9].

A.2.8 Setting up CORS

This section explains how to make CouchDB work with PouchDB. Thus,
reading this tutorial the first time it may be skipped and returned to when
section A.3 is finished.

To replicate PouchDB with CouchDB you must enable CORS. You may do
this by hand but the programmers of PouchDB saved us some time by making
a node script. Instructions on how to install NodeJS can be found in listing
A.53.

CORS is an abbreviation for cross-origin resource sharing. User agents
normally use same-origin restrictions to prevent a client-side web applica-
tion running from one origin getting data from another origin. Enabling
CORS means to enable a client-side obtaining data from another origin
[59].

Type the following command in a terminal on the computer where your
CouchDB is installed:

Listing A.26: Enable CORS for CouchDB with script

npm install -g add-cors-to-couchdb
add-cors-to-couchdb

50

The first line installs a script to enable CORS on your computer. The second
line runs the downloaded script and configures CouchDB to accept CORS.

It is possible to enable CORS remotely with the next command:

Listing A.27: Enable CORS remotely for CouchDB

add-cors-to-couchdb http://example.com:5948 -u pantalaimon
-p password

51

A.3 PouchDB

In this chapter we will learn how to set up a database with PouchDB in your
web browser and how to synchronize it with a database on CouchDB.

A.3.1 Installation

PouchDB is a JavaScript library for database management. It can be be
downloaded from the official PouchDB web page [42]. After downloading, we
put it into a sub folder of the folder where our HTML file is stored. We call
this sub folder java-script.

Listing A.28: Folder structure

root
|- index.html
|- java-script
|- pouchdb-3.6.0.min.js

In order to integrate it into our web application we have to load it with the
script tags.

Listing A.29: PouchDB scaffold

1 <html>
2 <head>
3 <title>Example 1</title>
4 <script src="java-script/pouchdb-3.6.0.min.js"></

script>
5 <script>
6 //Your JavaScript code comes here...
7 <script>
8 </head>
9 <body>

10 </body>
11 </html>

To run the examples in this chapter, we paste them between the second
script tags and open your file in your favorite browser. Each example, if
not mentioned otherwise, stands on its own and needs no presettings to run.

52

Please note that some examples do not show the same behaviour when called
twice.

A.3.2 Database Manipulation

Creating a database is done by creating a new PouchDB instance.

Listing A.30: Create database in PouchDB

1 var db = new PouchDB(’warningsignals’);

This command either creates a new database called warningsignals or opens
an existing database.

A PouchDB database is destroyed as soon as we call destroy on it.

Listing A.31: Delete database in PouchDB

1 var db = new PouchDB(’warningsignals’);
2 db.destroy()
3 .then(function() {
4 console.log("Successfully destroyed database.")
5 })
6 .catch(function(error) {
7 console.log("Could not destroy database.")
8 })

A.3.3 Document Manipulation

In order to add a document we call put or post upon our database instance.
While post creates its own unique document ID for us, we have to provide
it by ourselves if we are using put.

Listing A.32: Add document with put

1 var db = new PouchDB(’warningsignals’);
2 var early_signals = { signals : ["sickness", "weariness"]

};
3
4 db.put(early_signals, "early")

53

5 .then(function(response) {
6 console.log("Successfull added doc with rev: " +

response.rev)
7 })
8 .catch(function(error) {
9 console.log("Could not add doc because of: " +

error.message)
10 });

As you can see, PouchDB returns a response object when the promise was
resolved correctly. This object holds the ID and revision number and looks
like this:

Listing A.33: Response object in PouchDB

1 {
2 ok : true,
3 id : "early",
4 rev : "1-b61e29b03d1db200b7e538fe9142a577"
5 }

Returning the revision number at this stage turns out to be valuable to
manipulate documents later.

There are two ways to apply an ID to a document. Either, as seen in example
A.32, by passing a second argument to put or by including the ID directly
into the JSON document.

Listing A.34: Add document with put where ID is included in document

1 var db = new PouchDB(’warningsignals’);
2 var medium_signals = {
3 _id: "medium",
4 signals : ["headache", "dizzyness"] };
5
6 db.put(medium_signals)
7 .then(function() {
8 console.log("Successfull added doc.")
9 })

10 .catch(function(error) {
11 console.log("Could not add doc because of: " +

error.message)
12 });

54

Trying to add a document twice with the same ID will result in error.

Listing A.35: Add document twice

1 var db = new PouchDB(’warningsignals’);
2 add_signal()
3 add_signal()
4
5 function add_signal() {
6 var medium_signals = {
7 _id: "medium",
8 signals : ["headache", "dizzyness"] };
9

10 db.put(medium_signals)
11 .then(function() {
12 console.log("Successfull added doc")
13 })
14 .catch(function(error) {
15 console.log("Could not add doc because of: " +

error.message)
16 });
17 }

Running the example above results in the following output:

Listing A.36: Output of listing A.35

Successfull added doc
Could not add doc because of: Document update conflict

So, PouchDB recognizes that you have added a document with the same ID.
Thus the promise is not resolved and the callback in catch is called. An
error returned in catch holds the status number, a name, a message and a
boolean to determine if the object is an error. It looks similar to this:

Listing A.37: Error object in PouchDB

{
status : 409
name : "conflict"
message : "Document update conflict"
error : true

}

55

Getting a document is done by calling get on our PouchDB database in-
stance:

Listing A.38: Get document

1 var db = new PouchDB(’warningsignals’);
2
3 add_signal()
4 .then(function(response) {
5 db.get(’medium’)
6 .then(function(doc) {
7 console.log(doc)
8 console.log(doc.signals[0])
9 console.log(doc.signals[1])

10 })
11 })
12 .catch(my_catch)
13
14 function add_signal() {
15 var medium_signals = {
16 _id: "medium",
17 signals : ["headache", "dizzyness"] };
18
19 return db.put(medium_signals)
20 }
21
22 function my_catch(error) {
23 console.log("Could not add doc: " + error.message)

In our case the console will output headache and dizziness, which
are the two words we loaded into the database. A document returned by
PouchDB always holds the ID in variable id and the revision number in
variable rev in addition to the data that was stored. Hence, our object in
doc in example A.38 would look like this:

Listing A.39: Answer from A.38

{
signals : ["headache", "dizziness"],
_id : "medium",
_rev : "1-8f86e67dc093148d49dda9b12c209dce"

}

56

Fetching a document which does not exist results in an error:

Listing A.40: Get non-existing document

1 var db = new PouchDB(’warningsignals’);
2
3 db.get(’verystrong’)
4 .then(function(doc) {
5 console.log("Successfully fetched document")
6 })
7 .catch(function(error) {
8 console.log("Could not fetch document: " +

error.message)
9 })

Listing A.41: Error object of example A.40

{
error : true
message : "missing"
name : "not_found"
reason : "missing"
status : 404

}

If our goal is to update an existing document, we call put on your database
and add the updated document with its current revision number as argument.

Listing A.42: Update existing document

1 var db = new PouchDB(’warningsignals’);
2
3 add_signal()
4 .then(function(response) {
5 db.get(’medium’)
6 .then(function(doc) {
7 doc.signals.push("restlessness")
8 db.put(doc)
9 .then(everything_fine)

10 .catch(my_catch)
11 })
12 .catch(my_catch)
13 })
14 .catch(my_catch)

57

15
16 function add_signal() {
17 var medium_signals = {
18 _id: "medium",
19 signals : ["headache", "dizzyness"] };
20
21 return db.put(medium_signals)
22 }
23
24 function everything_fine() {
25 console.log("Everthing went well!")
26 }
27
28 function my_catch(error) {
29 console.log("Error: " + error.message)
30 }

The most important part of the last listing is to be found in lines 12 to
14. The fetched document is altered and a new element restlessness is
added to the signals array. Afterwards the modified document is put into
the database. Since the document already has a ref field this works well
and you see the desirable output:

Listing A.43: Output for A.42

Everthing went well!

To remove a document from the database you need to provide an ID and a
revision number. You may also send a whole document.

A fast method to add many documents simultaneously is to add them in a
bulk:

Listing A.44: Add multiple documents as bulk

1 var db = new PouchDB(’warningsignals’);
2
3 db.bulkDocs([
4 {_id : ’medium’, signals : [’dizzyness’] },
5 {_id : ’early’, signals : [’restlessness’, ’tachycardia’]

}
6]).then(function (result) {
7 var arrayLength = result.length;

58

8 for (var i = 0; i < arrayLength; i++) {
9 if(result[i].error) {

10 console.log("Error: " + result[i].message)
11 }
12 if(result[i].ok) {
13 console.log("Added " + result[i].id)
14 }
15 }
16 }).catch(function (error) {
17 console.log("Error: " + error.message)
18 });

It is possible to fetch all documents of a database in a bulk which is faster
than fetching each element after another. To do that, call allDocs on our
database instance. We will use the option include docs in this example
to fetch the documents as well. Leaving that option out would fetch only the
revision number and the ID.

Listing A.45: Fetch multiple documents as bulk

1 var db = new PouchDB(’warningsignals’);
2
3 db.bulkDocs([
4 {_id : ’medium’, signals : [’dizzyness’] },
5 {_id : ’early’, signals : [’restlessness’, ’tachycardia’]

},
6 {_id : ’late’, signals : [’overeagerness’, ’blur’] }
7]).then(function (result) {
8 var arrayLength = result.length;
9 for (var i = 0; i < arrayLength; i++) {

10 if(result[i].error) {
11 console.log("Error: " + result[i].message)
12 }
13 }
14
15 db.allDocs({include_docs : true})
16 .then(function(docs) {
17 console.log(docs)
18 for (var i = 0; i < docs.total_rows; i++) {
19 console.log("Fetched document: " + docs.rows[i].id)
20 }
21 })
22 .catch(my_catch)

59

23 }).catch(my_catch)
24
25 function my_catch(error) {
26 console.log("Error: " + error.message)

In lines 16 to 21 we see that the promise returns an object holding all fetched
documents. In our case this object looks similar to this:

Listing A.46: Structure of object returned by a bulk fetch

{
total_rows : 3,
offset : 0,
rows : [
{

id : "early",
key : "early",
value :

{
rev : "1-80d.."

},
doc :

{
_id : "early",
_rev : "1-80d..",
signals : ["restlessness", "tachycardia"]

}
},
{

id : "late",
key : "late",
value :

{
rev : "2-82f.."

},
doc :

{
_id : "late",
_rev : "2-82f..",
signals : ["overeagerness", "blur"]

}
},
{

60

id : "medium",
key : "medium"
value :

{
rev : "1-73e.."

}
doc :

{
_id : "medium",
_rev : "1-73e..",
signals : ["dizzyness"]

},
},

]
}

The property total rows holds the number of fetched documents while the
row property holds an array with information about the fetched documents
and the document in the doc property.

A.3.4 Synchronizing with CouchDB

As soon CORS is set in CouchDB as seen in A.2.8 synchronizing a database
in PouchDB is very comfortable:

Listing A.47: Sync PouchDB with CouchDB

1 db = new PouchDB("warningsignals")
2 db.sync("http://roger:salcilia@127.0.0.1:5984/

warningsignals", {live:true, retry:true});

In the above example we expect that there is user roger, who has at least
member rights in the warningsignals database. The options live and
retry determine the behaviour of the synchronization. The live switch tells
PouchDB that it should synchronize in regular intervals. Whereas the retry
switch does retry to establish a connection in an increasing interval even if
it failed to do so before.

61

A.4 Ionic

In this chapter we will learn how to install Ionic, how to use it to create our
first basic application and how to run our mobile application on an android
device.

However, this chapter only covers the very basics, the chapter A.7 then covers
how to build a more complex application integrating most concepts discussed
in this chapter.

Since Ionic is a mix of different applications we will use the term Ionic only
to refer to a feature unique to Ionic. We will use the name of the framework
the feature originally belongs otherwise.

A.4.1 Installation

In the beginning, we have to install all the dependencies

• Oracle Java Development Kit 7

• Android SDK

• Android Debug Bridge

• NodeJS

• Cordova

The Oracle Java Development Kit can, by adding an extra package reposi-
tory, be installed with apt package manager. Adding an extra repository is
needed because Oracle does no longer provide the official JDK as a default
installation for Ubuntu.

To install the JDK execute the following commands [58].

Listing A.48: Preparation installation of JDK

sudo apt-get install python-software-properties
sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java7-installer

62

Furthermore, we need to install Android SDK to develop an application on
Android. To do this, go the page https://developer.android.com/
sdk/installing/index.html?pkg=tools and download the stand-
alone SDK. Then, unzip the file into a folder of your preference. Open a
terminal and move to the unzip folder and there into the /tools folder.
Run the the SDK Manager with the following command.

Listing A.49: Start SDK manager

./android sdk

In order to avoid changing to the directory where our android development
tools lay, it is best to alter the $PATH environment variable in the terminal.
Additionally, we register an ANDROID HOME environment variable which
is used by Calabash and Ionic to find android tools in the tools subfolder
and the Android Debug Bridge in the platform-tools subfolder. This is
done by adding the following line to ∼/.profile.

Listing A.50: Set environment variables PATH and ANDROID HOME in .profile

export PATH=$PATH:path/to/sdk/folder/tools:path/to/sdk/
folder/platform-tools

export ANDROID_HOME="path/to/sdk/folder"

In order to make the two environment variables ANDROID HOME and PATH
available we need to source them in our terminal.

Listing A.51: Source .profile

source ˜/.profile

In some cases a command like ionic build might still fail because
the environment variables cannot be found. In this case it is best to
restart the computer and trying the failed command again.

The Android Debug Bridge is 32-bit and, therefore, needs more libraries to
run. They can be installed with the apt package management system.

Listing A.52: Install 32-bit libraries

sudo apt-get install libc6-i386 lib32stdc++6 lib32gcc1
lib32ncurses5 libgcc1-i386 libz1-i386

63

https://developer.android.com/sdk/installing/index.html?pkg=tools
https://developer.android.com/sdk/installing/index.html?pkg=tools

Now, select Tools, the build tools and the APIs for Android ≥ 4.0 within the
manager and click on Install.

Figure A.1: Android SDK Manager

To install Ionic you need NodeJS and Apache Cordova installed. On Ubuntu
14.04 you can use apt package manager as well to install both. We first
update the package index files and then install NodeJS, the NodeJS package
manager (npm) [23] and Cordova [19].

Listing A.53: Install NodeJS npm and cordova

sudo apt-get update
sudo apt-get install nodejs
sudo apt-get install npm
sudo npm install -g cordova

64

The newest Ionic version expects you to use NodeJS v.0.12. This version
is not available on built-in ppa in Ubuntu. To install the newest version
you need to run the following commands.

curl -sL https://deb.nodesource.com/setup_0.12 | sudo
bash -

sudo apt-get install -y nodejs

The first command prepares your package index list to include the pack-
age list of nodesource.com. The second command installs NodeJS [38].

Then, we finally install ionic:

Listing A.54: Install ionic

sudo npm install -g ionic

A.4.2 Usage

To create a new ionic project you the command below.

Listing A.55: Create blank ionic project

ionic start warningsignals blank

This command creates needed files and folders for your mobile application
called warningsignals. The forth part tells Ionic which predefined tem-
plates it should use. You may choose between tabs, sidemenus and
blank.

However, Ionic does not now yet, that we want to develop an application for
Android. This is done by typing the following line into your terminal.

Listing A.56: Tell Ionic to add Android

cd warningsignals
ionic platform add android

65

This prepares Ionic to build an android application. After the command in
listening A.55 and A.56 an outer structure folder of our project is defined,
which looks like this:

Listing A.57: Ionic project structure[19]

|-warningsignals
|- bower.json // Bower dependencies
|- config.xml // Cordova configuration
|- gulpfile.js // gulp tasks
|- hooks // custom Cordova hooks to execute on

specific commands
|- ionic.project // Ionic configuration
|- package.json // node dependencies
|- platforms // specific builds reside here
|- android // Android builds

|- plugins // where your Cordova/Ionic plugins
will be installed

|- scss // scss code, which will output to www
/css/

|- www // application code
|- css // CSS
|- js // JavaScript Code (Controller,

Services, etc)
|- lib // Additional JavaScript libraries

After this preparation we are ready to see first results. Ionic has three ways
to visualize your first application. The first one is the possibility to prepare
your application in a way to display it in your browser. To do this we have
to type in the next command.

Listing A.58: Show Ionic app in local browser

ionic serve

This is useful to get a first impression and do some debugging of your app,
but it has some limitations, especially if we work with plug-ins.

The second, and in most cases better, way is to directly deploy our app to
our mobile phone. We link phone and computer with an USB cable and then
run the next instruction.

66

Listing A.59: Run app on connected device

ionic run

In some cases your mobile phone may not be recognized by Ubuntu.
There are several reasons for that. First, try to find out if the Android
debug bridge (adb) does recognizes our phone. The adb bridge is avail-
able in the downloaded SDK folder.

adb devices

If our device is not listed there then we verify if we have enabled USB-
Debugging on our phone. In most cases the toggle to enable it can
be found under Settings>Developer options. Developer options is not
visible on every phone. If this should be the case then find the build
number on your phone. Usually you will find it under Settings>About
phone. Touch the build number seven times to activate the developer
options.

In some cases you might see ???? no permission output when you
type in the command in A.4.2. In this case ADB has not enough rights.
Therefore, you have to stop your ADB server and restart it with super
user rights.

Listing A.60: Restart adb with more rights

adb kill-server
sudo adb start-server

The third way is to build your application as follows.

Listing A.61: Building an Ionic application for Android

ionic build android

The newly created file with the ending .apk may be found in the warn-
ingsignals folder under platforms/android/ant-build. Move
this file to a place such as Dropbox or the phones SD-Card where it is possi-
ble to be accessed by a mobile device. Then, download it on the device and
install it. To be able to do that, we must enable that our device to accept

67

applications from unknown sources in the Developer options.

Another way to run your application is to connect it with our computer and
run:

Listing A.62: Run application with Ionic

ionic run android

The Ionic command start as used in A.55 creates an index.html file in
the www folder. This is a good starting point to develop our own application.
The index.html file looks similar to this.

Listing A.63: index.html created by Ionic

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <meta charset="utf-8">
5 <meta name="viewport" content="initial-scale=1, maximum

-scale=1, user-scalable=no, width=device-width">
6 <title></title>
7
8 <link href="lib/ionic/css/ionic.css" rel="stylesheet">
9 <link href="css/style.css" rel="stylesheet">

10
11 <script src="lib/ionic/js/ionic.bundle.js"></script>
12 <script src="cordova.js"></script>
13
14 <script src="js/app.js"></script>
15 <script src="js/controllers.js"></script>
16 <script src="js/services.js"></script>
17 </head>
18 <body ng-app="starter">
19 <ion-nav-bar class="bar-stable">
20 <ion-nav-back-button>
21 </ion-nav-back-button>
22 </ion-nav-bar>
23 <ion-nav-view></ion-nav-view>
24 </body>
25 </html>

CSS files, that make our application look more like a native mobile applica-
tion, are loaded in line 8 to 9. We may alter these files to give our app its

68

own unique look and feel.

In line 11 Ionic is loaded. Ionic itself loads AngularJS internally. This means
that from now on the variable angular is available. This is important to
remember once we are going to look at controllers and services.

Our own code is loaded in lines 14 to 16. Ionic creates JavaScript files for
different parts of the application.

app.js contains parts like initialize the application

controllers.js holds controllers to mediate between the view and the
model

services.js provides services beyond the scope of a controller, so con-
trollers may exchange data between each other, the system and online
resources

We could choose an entirely different distribution of our code but the way
Ionic prepares it proved to be useful and reasonable.

Ionic enhances AngularJS with more capabilities, especially on the side of
look and feel of an application. It heavily depends on built-in features of
AngularJS such as controllers, services or directives. Thus, it has many
predefined elements to make use of the MVC pattern easily.

MVC is a software architecture pattern for implementing user inter-
faces. It separates domain objects in the business model from their
presentation. For example, in a domain model temperature may only
be saved as a number, but we could visualize it in many different ways
such as in a thermometer. However, our domain model need not to
know anything about its representation. Generally, the model consists
of application data, and in most cases, the business logic as well, while
the view presents this data to the user. Thus, the controller mediates
between the two. [27] [34, 12].

Module

A core of AngularJS and, therefore, Ionic are modules. A module is a single-
core unit were you put your application code. It ensures encapsulation of the
functionalities of your application [34, 18].

69

1 angular.module(’controllers’, [])

The above code defines a module with the name controllers. The second
argument is an array for dependency injection.

Dependency Injection is a software architecture pattern to determine
how components get hold of their dependencies [30]. Dependencies in a
component are not defined within that component, but instead they are
defined in external components and then injected into the component.
This is a specialized form of inversion of control [26].

Controllers

Controllers mediate between the model and the views. They are defined upon
a module. In the next example we see a controller called MainController
defined upon a module ’controller’ with $scope injected.

Listing A.64: Create controller with $scope injected

1 angular.module(’controllers’, []).controller(’
MainController’, function($scope) {

2 $scope.signal = "Weariness"
3 })

Finally, to make use of the controller, they are assigned to any part of code.

Listing A.65: Controller assignment

1 <div ng-controller="MainController">
2 {{signal}}
3 </div>

Routing

In section A.4.2 you have been shown how to assign a controller directly in
your HTML code. A better way to do it is using the $stateProvider of UI-
Router to assign a controller to a state and, thus, to an url and a template
defined for that controller.

70

Listing A.66: Assign Controller in $stateProvider

1 angular.module(’starter’, [’controllers’])
2 .config(function($stateProvider) {
3 $stateProvider
4 .state(’main’, {
5 url : "/main",
6 template : "<h1>Hello</h1>",
7 controller : "MainController"
8 })

There are multiple ways to make a transition from one state to another. One
way is through browsing. We set a link with the a tag and as soon the user
touches a transition, the next state is entered. This is because most states
are linked to an url.

Listing A.67: Multiple states in AngularJS

1 angular.module(’starter’, [])
2 .config(function($stateProvider) {
3 $stateProvider
4 .state(’first’, {
5 url : "/first",
6 template : "<h1>Hello first</h1>" })
7 .state(’/second’, {
8 url : "/second",
9 template : "<h1>Hello second</h1>" })

10 })

Listing A.68: HTML file for multiple states in AngularJS

1 <body ng-app="starter">
2 <ion-nav-view>
3 <ion-view>
4 <ion-content>
5 Go to second
6 Go to first
7 </ion-content>
8 </ion-view>
9 </ion-nav-view>

10 </body>

71

A more AngularJS UI-Router way is using the ui-sref directive and let
AngularJS create the href tags.

Listing A.69: HTML file for multiple states in AngularJS using ui-sref

1 <body ng-app="starter">
2 <ion-nav-view>
3 <ion-view>
4 <ion-content>
5 <a ui-sref="second">Go to second
6 <a ui-sref="first">Go to first
7 </ion-content>
8 </ion-view>
9 </ion-nav-view>

10 </body>

Since ui-sref references a state instead of an url, we have to use the name
of the state instead of the url that is bound to the state. An advantage of
this approach is that we are able to perform relative calls as well.

Listing A.70: Example usage of state calls in with ui-sref [3]

1 ui-sref="contact.detail") - will go to the contact.detail
state

2 ui-sref="ˆ" - will go to a parent state
3 ui-sref="ˆ.sibling" - will go to a sibling state
4 ui-sref=".child.grandchild") - will go to grandchild state

Last but not least we can make state transitions programmaticaly by using
the $state service. The same rules for state changes applies for this as for
the ui-sref directive.

Listing A.71: ”Using $state service for state changes

1 $state.go("contact.detail") //will go to the
contact.detail state

Templates

Ionic places where templates fit in are declared with the <ion-nav-view>
</ion-nav-view> directive. As we have seen in listing A.63 line 23 there is

72

already defined such a directive. If our goal now is to put a template there, we
use the $stateProvider as seen in listing A.66. As soon as the url /main) is
requested, Ionic will render the template found in templates/main.html
at the place of ion-nav-view[21].

It is possible to use named templates. This makes it possible to use multiple
templates at the same level.

Listing A.72: Named templates

1 <ion-nav-view name="first"></ion-nav-view>
2 <ion-nav-view name="second"></ion-nav-view>

Additionally, this requires minor adjustments to our state in state provider.

Listing A.73: State for named templates

1 angular.module(’starter’, [’ui.router’])
2 .config([’$stateProvider’, function($stateProvider) {
3 $stateProvider.state(’main’, {
4 url : "/main",
5 views : {
6 ’first’ : {
7 template : "<h1>Hi</h1>",
8 },
9 ’second’ : {

10 template : "<h2>hello</h2>",
11 }
12 }
13 })
14 }])

If we use named templates we always have to use the syntax in listing
A.73 even if there is only one template. Otherwise, Ionic will fail to find
the correct place to render your template and display nothing at all.

The <ion-view> </ion-view> and the <ion-content> </ion-
content> are then used in the templates.

ion-view is a container for content and navigational informations. Further-
more it emits information, namely the view title or whether the navigation
bar should be displayed or not.

73

ion-content is a content area that allows scrolling [20] and makes sure
that our content is placed correctly. This is particularly important when
using the ion-nav-bar directive. More about that can be read in the next
chapters.

With that piece of new knowledge we can rewrite the example in listing A.66
and use a template stored in a separate file.

Listing A.74: Template as file called main.html

1 <ion-view>
2 <ion-content>
3 <h1>Hi</h1>
4 </ion-content>
5 </ion-view>

Consequently we will have to use templateUrl option in line 7 instead of
the template option.

Listing A.75: Adapted line 7 in listing A.66

7 templateUrl : "main.html",

Styling

If there is a ion-nav-view directive then it is possible to have an <ion-
nav-bar> </ion-nav-bar>. This sets a bar at the top of the application
which is updated when a state change happens. In listing A.76 we can see
such an element. It is possible to set a ion-nav-back-button inside
of it. This sets a back button into the header. However this back button
is maintained by Ionic and has only possible ways for interaction. So in
most cases it is best to define your own back button. To set a title for your
application, you need to set a view-title attribute in the ion-view directive.

74

Listing A.76: HTML body with ion-nav-bar and ion-nav-back-button directive. The title
is set in the ion-view directive.

1 <body ng-app="starter">
2 <ion-nav-bar>
3 <ion-nav-back-button>
4 </ion-nav-back-button>
5 </ion-nav-bar>
6 <ion-nav-view>
7 <ion-view view-title="Welcome to the real world!">
8 </ion-view>
9 </ion-nav-view>

10 </body>

Plug-ins

Cordova comes with many plug-ins. Those plug-ins enhance control over
specific elements of our mobile device. They offer possibilities to play music,
create notifications or start the standard browser of the mobile device.

To install a plug-in in Ionic do the following.

Listing A.77: Plug-in installation for Ionic

ionic plugin add cordova-plugin-device

The last part of the command is the plug-in name. We will see some plug-ins
in action in chapter A.7.

75

A.5 Calabash for Android

In this chapter you will learn the basics about Calabash for Android. A good
idea is to take your first application build with the knowledge of the above
chapters, build it and use the apk file to constantly exercise your knowledge
acquired throughout this chapter.

A.5.1 Installation

To install Calabash for Android, we first have to install Ruby and then install
Calabash for Android as a gem.

Listing A.78: Install Ruby 1.9.1 [48]

sudo apt-get install ruby-full

This will install Ruby 1.9.1 which is an older stable release. However, this
version will suffice in our case.

The next step is to install Calabash for Android.

Listing A.79: Install Calabash for Android Ruby gem

sudo gem install calabash-android

We now have successfully installed Calabash for Android.

A.5.2 Usage

When starting our first tests, it is a good idea to let Calabash create our test
folders.

Listing A.80: Create test folders

calabash-android gen

76

Our project test directory tree now looks similar to this.

Listing A.81: Calabash directory tree

root
|- calabash
|- features
|- step_definitions //Step definitions to intermediate

between Gherkin and application
|- calabash_steps.rb
|- support //Support files to manipulate

application before start and after ending
|- app_installation_hooks.rb
|- app_life_cycle_hooks.rb
|- env.rb
|- hooks.rb

Calabash for Android uses the Gherkin language. Gherkin is a DSL (domain
specific language) to describe the expected behaviour of an application in a
human-readable way. It is used as documentation and automated tests.

Listing A.82: First gherkin example

1 Feature: Main page, which is displayed on application
start

2
3 Scenario: Move to the settings page
4 Given I am on the main page
5 When I touch button "settings"
6 Then I am on the the settings page

Gherkin is a line-oriented language which uses indentation to define structure.
Tabs or spaces may be used as indentation. Most lines, from now on called
steps, start with keywords such as Feature, Scenario, Given, When
and Then as seen in the above example. Gherkin files are determined by
.feature file extensions.

A.5.3 Feature

A feature is a bundle of scenarios and scenario outlines. It is only allowed to
appear once at the beginning of a file. After the feature keyword follows

77

a short description of the feature. This description may be as long as needed
and can use as many lines as desired. The end of a feature description is
determined by the first appearance of the scenario keyword.

Feature files are probably best to be placed directly into the features
folder. However, if you prefer, especially if you have many features, you
are allowed to create sub folders. Calabash for Android looks through the
whole features folder and its sub folders to find promising .feature
files.

A.5.4 Scenario

A scenario is a behaviour of one specific aspect of the application. It starts
with the scenario keyword followed by a short description of its purpose.
After the description and in a new line it is succeeded by the keywords
given, when, then, and and but.

A.5.5 Scenario outline

A scenario outline is a collection of scenarios.

Sometimes there are scenarios that repeat themselvess as shown in the ex-
ample below.

Listing A.83: Repeating scenario example

1 Feature: Usage of the home button
2
3 Scenario: Use home button on main page
4 Given I am on the main page
5 When I touch button "home"
6 Then I am on the main page
7
8 Scenario: Use back button on settings page
9 Given I am on the settings page

10 When I touch button "home"
11 Then I am on the main page

In this case scenario outline is useful. It allows us to define multiple

78

scenarios in one statement. What Calabash internally does when running
this feature is that it takes each entry in the examples list and runs them as
if they were single scenarios ergo listing A.83 and A.84 do exactly the same.

Listing A.84: Scenario outline example

1 Feature: Usage of the home button
2
3 Scenario Outline: Usage home button leads to return to main

page
4 Given I am on the <page_name> page_name
5 Whe I touch button "home"
6 Then I am on the main page
7
8 Examples:
9 |page_name |

10 |main |
11 |settings |

A.5.6 Background

The background keyword is used to add context to a single feature. This
keyword is allowed only once in a file. The steps in it are executed before
each scenario.

Listing A.85: Background example

1 Feature:
2 Background:
3 Given I have filled in some data
4
5 Scenario:
6 When I am on the main page
7 Then I see a list of the data
8
9 Scenario:

10 Given I am on the main page
11 And I see a list of the data
12 When I touch button "delete"
13 Then the list of data disapears

79

In the above example we make sure that each time we are on the main page,
there is data to be manipulated.

The Programmer’s life is much easier if she or he uses a text editor
with syntax highlighting, for example, Geany or gedit. For Ruby there
exists already syntax highlighting in both editors but not for Gherkin.
We have to add it by ourself.

Save the file below to the folder /usr/share/gtksourceview-2.
0/language-specs with the name gherkin.lang.

Listing A.86: Gherkin language spec for syntax highlighting [39]

<?xml version="1.0" encoding="UTF-8"?>
<!-- Author: 2011 Ransford Okpoti -->
<language id="gherkin" _name="Gherkin" version="2.0"

_section="Scripts">
<metadata>

<property name="mimetypes">text/x-feature</
property>

<property name="globs">*.feature</property>
</metadata>
<styles>

<style id="keyword" _name="Keyword" map-to="
def:keyword"/>

<style id="feature" _name="Feature" map-to="
def:type"/>

<style id="steps_keywords" _name="Steps Keywords
" map-to="def:keyword"/>

<style id="constructors" _name="Constructors"
map-to="def:type"/>

<style id="variables" _name="Variables" map-
to="def:comment"/>

<style id="comments" _name="Comments" map-
to="def:comment"/>

</styles>
<definitions>

<context id="gherkin" class="no-spell-check">
<include>

<!-- Keywords -->
<context id="steps_keywords" style-ref="

steps_keywords">
<keyword>Given</keyword>

80

<keyword>When</keyword>
<keyword>Then</keyword>
<keyword>And</keyword>
<keyword>But</keyword>

</context>

<context id="comments" style-ref="comments"
end-at-line-end="true">
<start>#</start>
<end>\n</end>

</context>

<context id="feature" style-ref="feature">
<keyword>Feature</keyword>

</context>

<context id="constructors" style-ref="
constructors">
<keyword>Scenario</keyword>
<keyword>Scenarios</keyword>
<keyword>Outline</keyword>
<keyword>Background</keyword>

</context>

<context id="variables" style-ref="variables
">
<match>(<)(\w+)(>)</match>

</context>

<context id="arguments" end-at-line-end="
true">
<start>\|</start>
<end>\n</end>
<include>

<context ref="def:decimal" />
<context ref="def:float" />
<context ref="def:string" />
<context id="table_headings">

<match>\w+</match>
</context>

</include>
</context>

81

</include>
</context>

</definitions>
</language>

A.5.7 Step definitions

Step definitions, written in Ruby, wire the very high level Gherkin language
with our application. In Calabash for Android step definitions are defined in
the features/steph_definitions/calabash_steps.rb file. Each
step after the keywords given, when, then, and, but must be matched
to exactly one step definition.

4 Given I am on the main page

If we write a step definition for the step at line 4 in listening A.82 it would
look similar to the Ruby code below.

Listing A.87: Step definition example

1 Given(/ˆI am on the main page$/) do
2 # Check that you are on the main page
3 end

Each step may have one of four outcomes: success, pending, undefined, failed.
What outcome a step has is defined in a step definition like the one above.
A step is considered failed if there was either an error in your application or
the failure was forced by the fail command, it is pending if you use the
pending command and it is undefined if Calabash for Android cannot find
any step definition to match your step. Consequently, a step is considered
successful if it is in neither of those three states. Therefore, our example
above would return successfully for our given step.

Wait-for blocks

One problem in automated test for user interfaces is that in most cases there
is a slight delay from the touch of a button to the moment the wanted element
appears on the screen. Thus, if we query for an element immediately after

82

Calabash touched it, we may be unsuccessful. What we could do is add a
slight delay, for example with sleep(2), before each of our queries but this
causes some unpleasant delay to our tests. Calabash for Android provides
you with a structure that continuously runs a piece of code until it either
succeeds finding the wanted element or a time limit is reached. This moves
the inconvenient delays from the successful steps to the failed ones, which
are (hopefully) fewer.

Listing A.88: wait for structure

1 wait_for(:timeout => 10, :timeout_message => "Could not
find element") {

2 #query for an element here
3 }

The block is successful as soon as the last statement of the block is true.
Because there is no statement in our block above this example will fail after
10 seconds with the given timeout message.

There are several more options for wait for[16].

:timeout maximum number of seconds to wait

:retry frequency time to wait until retrying the block. Default is 0.2 sec-
onds.

:post timeout time to wait until block returns true. Default is 0.1 seconds.

:timeout message message in case timeout exceeds. Default is “Timed out
waiting...”.

:screenshot on error if true takes a screen shot on error. Default is true.

Queries

A thing you will have to do often in your developing process is to query for
elements in your view. Calabash for Android provides query(uiquery,

*args) for that. It will return an array of elements that matched our search.

As we are working with a webview in Ionic (see chapter A.4), we will have
to query that webview instead of querying for android elements. Luckily, the
developers of Calabash thought of that.

83

Listing A.89: ”Query webview for div”

result = query("systemWebView css:’div’)

The above example will query the webview provide by Cordova for all div in
and store the result in result.

Older versions of Cordova used a CordovaWebView instead of an Sys-
temWebView. So in old versions of applications build with Cordova you
will have to use the following query.

query("cordovaWebView css:’div’")

Calabash uses css selectors to query your webview. There are various patterns
for it[44], but the ones that have proven to be most useful are:

.button Selects all elements with class=“button”

#password Selects element with id=“password”

* Selectes all elements

div Selects all ¡div¿ elements

h1 div Selects all ¡div¿ elements inside a ¡h1¿ element

[name] Selects all elements with a name attribute

[name=“main”] Select all element with name=“main”

It is possible to combine the selectors.

Listing A.90: Query for ion-view element with name attribute set to ”main”

query("systemWebView css:’ion-view[name=\"main\"]’")

A.5.8 Running tests

When we created tests and step definitions we will want to run them. Hence,
we connect our device to our computer and type the following command into
the terminal.

84

Listing A.91: Running all features

calabash-android run /path/to/your/application/under/test/
application.apk

In some cases we will want to run one feature only.

Listing A.92: Running one feature

calabash-android application.apk features/feature_name.
feature

Futhermore, sometimes we will want to run one scenario only.

Listing A.93: Running one scenario

calabash-android application.apk features/feature_name.
feature:12

The instruction above runs the scenario placed at line 12 in the feature_
name.feature file.

It is possible to tag a scenario with a @tag name and run only those tagged
scenarios.

Listing A.94: Tag example

1 Feature:
2 @slow
3 Scenario: User sees a list
4 When I am on the main page
5 Then I see a list of the data
6
7 @slow, @important
8 Scenario: User deletes list
9 Given I am on the main page

10 And I see a list of the data
11 When I touch button "delete"
12 Then the list of data disappears

Listing A.95: Run features with a certain tag

calabash-android application.apk --tags @important

85

The above command will only run the first scenario at line 3.

Tags may be combined in different ways. One way is to combine the with
an and logic. Thus only scenarios having all those tags are executed.

calabash-android application.apk --tags @slow --tags
@important

Another way to bring them together is with an or logic. As a consequence
scenarios that have one of the tags are executed.

calabash-android application.apk --tags @slow,
@important

Moreover, a tag can be negated. Hence only scenarios without that tag
are executed.

calabash-android application.apk --tags ˜@important

86

A.6 Mercurial

In this chapter we will learn how to make use of Mercurial which is a dis-
tributed revision control system similar to git but with fewer commands.
However, this tutorial only provides an introduction to it 3. In this chapter
each example builds on the previous examples. So, it is best if we start at
the beginning and do one example after another.

A.6.1 Installation

To install Mercurial on Ubuntu we can use the apt package manager

Listing A.96: Installation of Mercurial

sudo apt-get install mercurial

A.6.2 Basics

First we create a new folder which you want revision controlled. Then we
use the terminal to change into our newly created folder and type the next
command to prepare this folder.

Listing A.97: Init Mercurial folder

hg init

From now on we can track all changes. To see how this works we create a
file called test.txt in a new initialized folder, fill it with some text and
wait what happens.

Listing A.98: Create file and retrieve Mercurial status

mk test.txt
echo "Hello" >> test.txt
hg status

3To learn more about Mercurial the book “Mercurial: The Definitive Guide” is
recommanded[40].

87

Mercurial will output this

Listing A.99: Result of Listing A.98

? test.txt

Mercurial tells us that we have created a new file but it does not know that
we want to track it. However, that is exactly what we would like to do.

Listing A.100: Add all files

hg add

The add command tells Mercurial to track all files shown in status with
a ?. Repeating the status instruction returns A test.txt which means
that our file is now tracked. Nevertheless at this stage we only told Mercurial
that we want to track the file but to later return to this current state of our
files we need to commit them.

Listing A.101: Commit a change

hg commit --message This is my first commit

The part behind –message holds your message associated to your commit. It
should be a short summary of what you have changed since the last commit.

A file that was added and committed once need not to be added again later
even if it changes. It is then tracked by Mercurial and changes to a tracked
file are committed as soon as we use commit.

Checking the status again as seen in listening A.98 we now get no result.
This means we have not changed anything since the last commit. To see all
our previous commits you use the log command.

Listing A.102: See log history

hg log

In our case we should see something like this.

Listing A.103: Example of a log

changeset: 0:bc1f7f9f63ab
tag: tip

88

user: Pas
date: Mon Jul 27 13:00:13 2015 +0200
summary: This is my first commit

At the row changeset we first see a number before the colon. This is the
number of the log entry and the hexadecimal number after the colon is the
revision number. At the rows user and date we find our user name and
the current date. At row summary on the last line our commit message is
listed.

To set your own username and email, use the ˜/.hgrc file in your
home directory, add the lines below to it and save it.

[ui]
username = here_comes_your_username

Sometimes it is convenient to have different branches to work on, for ex-
ample, a ’development’ and a ’deployment’ branch. On the ’deployment’
branch we could always hold a working version of your application and on
the ’development’ branch we could commit our current changes. To create a
new branch we use the branch command. To create a branch, it has to be
committed after giving the branch a name as seen in the example below.

The branch in a newly created Mercurial folder is called ’default’.

Listing A.104: Create a branch

hg branch development
hg commit --message "Create branch ’development’"
hg branch deployment
hg commit --message "Create branch ’deployment’"

All the created branches can be listed with the branches command.

Listing A.105: Show all branches

hg branches

89

With the previous commands we created two branches. Changing from one
branch to another is done with update. So, if we want to change from our
current ’default’ branch to our new ’development’ branch, we have to follow
the step in the next box.

Listing A.106: Change from one branch to another

hg update development

If we now change anything in our file this will only be affected in the devel-
opment branch. To do that you can either use the number of the log entry
before the colon or the hexadecimal number.

Listing A.107: Changes only affect current branch

$ echo "world!" >> test.txt
$ hg commit --message "Added more content to text.txt"
$ cat test.txt
hello
world!
$ hg update deployment
$ cat test.txt
hello

In some cases we may want to return to a previous version of our application.
A good way to do this is to create an new branch and then update this branch
to the revision we want to return to.

Listing A.108: Second example of a log

changeset: 0:bc1f7f9f63ab
tag: tip
user: Pas <pascal.zaugg@students.unibe.ch>
date: Mon Jul 27 13:00:13 2015 +0200
summary: This is my first commit

changeset: 1:da1ff9f62db
tag: tip
user: Pas <pascal.zaugg@students.unibe.ch>
date: Mon Jul 27 13:00:13 2015 +0200
summary: This is my second commit

If we wish to return to our first revision we have two possibilities.

90

Listing A.109: Return by log entry number

branch update 0

Listing A.110: Return by revision number

branch update bc1f7f

When returning by use of the revision number, it is in most cases sufficient
to use only the first six hexadecimal numbers.

In other occasions we want our changes to be moved from one branch to
another. This is done with merge. Change into the branch which you want
to bring together with another one and type the following into your terminal.

Listing A.111: Merge two branches

hg merge development
hg commit --message "Merged branch ’development’ into ’

deployment’"

The third part of the command is the name of the branch you want your
branch to merge with. After each merge you have to commit your changes
as seen above in line 2.

In some cases it is useful to tag a changeset (e.g. commit). In most cases you
will use this to tag your working versions. An advantage over other revision
systems is that tags in Mercurial are as well under version control and allow
changes in the future.

Listing A.112: Tag the current changeset as version 0.0.1

hg tag v0.0.1
hg commit --message "v0.0.1"

A.6.3 Mercurial with bitbucket.org

A distributed revision control system is convenient to keep track on your
progress on one computer, but its real strengths are shown as soon as it
is paired with an remote repository like bitbucket.org. It lets us push our

91

revision to it at the same time clone your repository to any computer you
want.

First we need to create an account on bitbucket.org. Then, create a new
repository on bitbucket.org and push our repository with the code in the
next box.

Listing A.113: Push first time to bitbucket.org

hg push https://bitbucket.org/your_username_on_bitbucket/
your_newly_created_repository

Now eachtime we want to push our changes to bitbucket.org we use this
command. On the other hand, if we want to get changes from it, you can
use the pull command.

Listing A.114: Pull from bitbucket.org

hg pull https://bitbucket.org/your_username_on_bitbucket/
your_newly_created_repository

If we want to use the same repository on an other machine, we create a new
folder, change into it and use the clone command.

Listing A.115: Clone respository from bitbucket.org

hg clone https://bitbucket.org/your_username_on_bitbucket/
your_newly_created_repository

It is rather inconvenient to write the whole path of the repository each
time we want to push our repository. Mercurial allows us to set a default
push. Open or create the file .hg/hgrc and add the lines below.

[paths]
default=https://bitbucket.org/your_username_on_bitbucket

/your_newly_created_repository

From now on it is enough to write hg push or hg pull to push or
pull our changes to or from the repository.

92

A.7 Hands-on project

In this chapter we will use, repeat and sometimes extend techniques and
technologies we have seen before. To be able to follow the examples in this
chapter, you either read the previous chapters about CouchDB, PouchDB,
Calabash for Android and Ionic, or bring expertise with those technologies.
You will see how to integrate those frameworks and how to use them in
different situations. In the beginning, every step is shown and explained, but
the further the tutorial advances common commands will only be referred
by text. For instance, the first time we tag and commit an iteration, we
will see the full command for that. However, from that point on we might
only describe the same work flow in text form without explicitly naming the
necessary commands.

A.7.1 Scenario

To make it more realistic, the following scenario will guide us:

We develop a small mobile application for a well-known company. Our aim
is to collect warning signals in different (pre)stages of psychotic episodes
to prevent relapses in patients suffering from schizophrenia. The mobile
application is a simplified version of a working sheet developed by Tania
Lincoln [36, 168] as seen further down. The application should work primarily
on Android, but in the future probably as well on iOS.

93

Figure A.2: Worksheet for patience suffering from schizophrenia [36]

A.7.2 Requirements

Our clients already did some homework and present us the following sketches
for their application at our first meeting.

After one hour speaking and discussing with our clients, we settle the follow-
ing requirements for our small application.

94

Figure A.3: Prototype of main page Figure A.4: Prototype of signal page

1. requirement

When I start the app
Then I am on the front page

2. requirement

When I am on the main page
Then I see a title "warning signals"

3. requirement

When I am on the main page
Then I see tabs with "early", "middle" and "late"

4. requirement

95

When I am on the main page
Then he sees an input field

5. requirement

When I am on the main page
Then I see a signal list

6. requirement

Given I enter some signals
When I restart the app
Then I see all entered signals

7. requirement

When I start the app
Then I hear a welcome sound

8. requirement

Given I log in
And I enter some signals
When I delete and reinstall the app
And I log in
Then I retrieve my previous data

A.7.3 Main Page

After reviewing all the requirements, our clients want us to develop the main
page first by choosing the requirements 1 to 3. What we do first is create a
new ionic project. We create a blank project. Furthermore, we add Android
as platform and build our first apk. Then we create a Mercurial repository
and commit everything to keep track of our progress.

96

Listing A.116: Create Ionic project

ionic start warningsignals blank
cd warningsignals
ionic add platform android
ionic build android
hg init
hg add
hg commit --message "First empty application"

The newly created apk may be found in the warningsignals folder under
platforms/android/ant-build.

As it is common in behaviour driven development, we start by writing our
first test before we do the implementation to make the test pass. Since we
do not want to pollute our Ionic repository with tests we create a new folder
calabash on our root level.

Afterwards, we change into that folder and let Calabash for Android create
the necessary folders.

calabash-android gen

We are now ready to create our first scenario, we name it
main page.feature and we put it into the features folder. Because
we already have collected requirements in given-when-then phrases, we have
little to do to start our first test.

Listing A.117: First feature with first requirement in main page.feature

1 Feature: Main page
2 Scenario: User sees main page at the start
3 When I start the app
4 Then I am on the front page

We connect our Android mobile device via USB to our computer and let our
first feature run. In order to do that we change into the calabash folder
and run

Listing A.118: First run of warningsignals app

calabash-android run ../warningsignals/platforms/android/
build/outputs/apk/android-debug.apk

97

As expected the line When the user starts the app, among the
other two, is already undefined as we have not created anything yet.

Listing A.119: Output after first failing tests

Feature: Main page
Scenario: User sees main page at start # features/

main_page.feature:2
When I start the app # features/

main_page.feature:3
Then I am on the main page # features/

main_page.feature:4

1 scenario (1 undefined)
2 steps (2 undefined)
0m28.201s

You can implement step definitions for undefined steps
with these snippets:

When(/ˆI start the app$/) do
pending # express the regexp above with the code you

wish you had
end

Then(/ˆI am on the front page$/) do
pending # express the regexp above with the code you

wish you had
end

Calabash gives us a hint as to what to do. In lines 12 to 18 it printed
code snippets in Ruby. We copy those lines into the file calabash/fea-
tures/step definitions/calabash steps.rb to work them out
[62, 14].

First, we have to wire the step When the user starts the app to our
application. Calabash restarts the app for every scenario by default so we
just check if the systemWebview of Cordova is there. The second step is a
little bit more tricky. The most comfortable way to find out if we are on the
front page is to give the main page template an ID and query for it. We
create a templates folder in the www folder. After that we create a new
template and name it main_page.html and finally save it to the freshly
created folder.

98

Listing A.120: Creating main_page.html

1 <ion-view name="main">
2 </ion-view>

Now we need to prepare the index file and set a controller.

Remove everything between the <body> tags and add the following HTML
code instead.

Listing A.121: index.html changes to line 25 to 32

25 <ion-nav-view></ion-nav-view>

The ion-nav-view directive tells Ionic that it has to render a template
here. Which template it renders is defined by the UI-Router.

Listing A.122: app.js changes to end of file

1 angular.module(’starter’,[’ionic’])
2 .run(function($ionicPlatform) {
3 #some more code
4)
5 .config(function($stateProvider, $urlRouterProvider) {
6 $stateProvider.state(’main_page’, {
7 url: "/main",
8 templateUrl: "templates/main_page.html",
9 })

10 $urlRouterProvider.otherwise(’/main’)
11 })

Next we wire our steps to our application with step definitions in calabash_
steps.rb.

Listing A.123: calabash_steps.rb changes to end of file

1 When(/ˆI start the app$/) do
2 wait_for(:timeout => 5, :timeout_message => "App was not

started. There is now webview") {
3 result = query("systemWebview")
4 not result.empty?
5 }
6 end
7

99

8 Then(/ˆI am on the front page$/) do
9 wait_for(:timeout => 5, :timeout_message => "You are not

on the main page") {
10 result = query("all systemWebView css:’ion-view[name

=\"main\"]’")
11 not result.empty?
12 }
13 end

We run our test again and we see that our first scenario is fully successful.

Listing A.124: Positive result of first test

Feature: Main page
Scenario: User sees main page at the start # features/

main_page.feature:2
When I start the app # features/

step_definitions/calabash_steps.rb:4
Then I am on the main page # features/

step_definitions/calabash_steps.rb:8

1 scenarios (1 passed)
2 steps (2 passed)
0m5.498s

The classic behaviour driven development cycle for our mobile applica-
tion would be: Defining the behaviour in Gherkin, create tests in step
definitions and in a last step do the implementation. Doing it like that
requires us to know already which elements, tags or directives we have
to use. Thus, this tutorial deviates from the original process for the
purpose of understandability.

Thus, we have accomplished our first goal and are ready for the next one. In
a first step we add requirements 2 to 3 to our main_page.feature file.

100

Listing A.125: Addition to main_page.feature

1 Scenario: User sees title
2 When I am on the main page
3 Then I see a title "warning signals"
4
5 Scenario: User sees tabs
6 When I am on the main page
7 Then I see tabs with "early", "middle" and "late"

As a second step, we add an ion-nav-bar directive to our index file and
set the title of the ion-view as well as adding the tabs.

Listing A.126: Addition to index.html

24 <body ng-app="starter">
25 <ion-nav-bar class="bar bar-header" align-title="center

"></ion-nav-bar>
26 <ion-nav-view></ion-nav-view>
27 </body>

Listing A.127: Full main_page.html template

1 <ion-view name="main" title="warning signals">
2 <ion-tabs>
3 <ion-tab title="early">
4 </ion-tab>
5 <ion-tab title="middle">
6 </ion-tab>
7 <ion-tab title="late">
8 </ion-tab>
9 </ion-tabs>

10 </ion-view>

Then, in a last and third step, we wire our test with our application by
adding the missing two steps.

Listing A.128: Addition to calabash_steps.rb

15 Then(/ˆI see a title "(.*?)"$/) do |title_name|
16 wait_for(:timeout => 5, :timeout_message => "There is no

title #{title_name}") {
17 result = query("systemWebView css:’ion-nav-bar’")
18 result[0]["textContent"] == title_name

101

19 }
20 end
21
22 Then(/ˆI see tabs with "(.*?)", "(.*?)" and "(.*?)"$/) do

|first_tab, second_tab, third_tab|
23 result = query("systemWebView css:’.tab-item’")
24
25 fail("There are not 3 tabs but #{result.count} tabs")

unless result.count == 3
26 fail("First tab is not called #{first_tab}") unless

first_tab == result[0]["textContent"]
27 fail("Second tab is not called #{second_tab}") unless

second_tab == result[1]["textContent"]
28 fail("Third tab is not called #{third_tab}") unless

third_tab == result[2]["textContent"]
29 end

To check the title name, we query for ion-nav-bar in line 17 and after-
wards assert that the text content of this element is our title.

We use the same approach to find out whether the tabs are called properly
or not. However, we do not query for an element, but for a class called tab-
item. Line 25 then checks if there are exactly three tabs and lines 26 to 28
check for the correct text in those tabs.

We run our tests again and see it passes. Additionally, we tag our current
changeset with “v0.0.1” and commit the changes.

Listing A.129: Tag and commit first iteration

hg tag "v0.0.1"
hg commit --message "Finished first iteration"

Finally, we have finished this week’s work and are eager to show our first app
to our client.

A.7.4 Interaction

As a second iteration our clients wants us to do requirements 4, 5 and 6.
Hence, we will add an input field to each tab and store the input data to an

102

array. After having consulted our clients we made requirement 5 a litte more
precise.

Gherkin steps

Listing A.130: Additions to main.features for second iteration

1 Scenario: User sees entry field
2 When I am on the main page
3 Then he sees an input field
4
5 Scenario: User sees signal list
6 When I am on the main page
7 Then I see a signal list
8
9 Scenario: User enters signal

10 Given I am on the main page
11 When I enter "weariness" into input field
12 And I press enter
13 Then I see "weariness" in the signal list

Implementation

We will start by adding the input field to our tabs. You could do that by
adding the input field to each tab in your main_page.html file, but this
would lead to a repetition of code for every tab. So, we decide to refactor
our code and use templates. Consequently, we then load the same template
for each tab.

Listing A.131: tab.html template

1 <ion-view title="warning signals">
2 <ion-content>
3 <label class="item item-input">
4 <input name="input" ng-model="input.value" ng-keyup="

save($event)" type="text"/>
5 </label>
6 <ion-list>
7 <ion-item ng-repeat="warningsignal in warningsignals

track by $index" type="item-text-wrap">

103

8 {{warningsignal}}
9 </ion-item>

10 </ion-list>
11 </ion-content>
12 </ion-view>

The ng-keyup directive in line 4 triggers, as soon a key is released, the
save function in $scope. ng-keyup exposes an $event object in its scope
that we pass to the save function. It is later used to determine if enter was
pressed. Additionaly we bind the property input.value to our input area
with the ng-model directive.

In the second part as of line 6 we create an ion-list directive and fill it
with items by iterating over a warning signals array.

To iterate over all warning signals in line 7 we could write
warningsignal in warningsignals without track by $in-
dex. The problem is that AngularJS expects unique names to track its
elements in ng-repeat and by default uses its content. In our case
this is the content of warningsignal. Consequently, it would not be
possible to enter the same warning signal twice.

Initially, there is no save function and no warning signals array in our scope
so we have to define it in a controller. Thus, we create a controller.js
file in our js folder. Since we want to use services to expose the signals list to
our controllers, we create as well a services.js file. To make sure they
are loaded into our application, we need to adjust our index.html file right
after the <!-- your app’s js --> comment.

Listing A.132: Adjustments to index.html to add new controllers.js and
services.js files

1 <script src="js/app.js"></script>
2 <script src="js/controllers.js"></script>
3 <script src="js/services.js"></script>

In services.js we create a new module called ’warningsignals.services’
and create a service which provides us with an empty array for each stage of
signals. We are going to use those arrays to store new signals in it.

104

Listing A.133: First services in services.js

1 angular.module(’warningsignals.services’, [])
2 .factory(’earlyWarningsignals’, function() {
3 early = new Array();
4 return early;
5 })
6 .factory(’middleWarningsignals’, function() {
7 middle = new Array();
8 return middle;
9 })

10 .factory(’lateWarningsignals’, function() {
11 late = new Array();
12 return late;
13 })

As for the controllers.js we create as well a new module called warn-
ingsignals.controller and create a controller for each tab. Further-
more, we inject our newly created services into our controllers.

We implement the same logic for all controllers. First we create, in line 3,
an input property in our scope. Second we create another property warn-
ingsignals and assign our injected array to it and third we create a last
property save and assign it a function to handle the call from ng-keyup
declared in A.131. This function checks, in line 7, if the enter key (keycode
13) was pressed and if the input field is not empty. If both premises are true
then the input is pushed into our array and the input field is emptied again.
The same behaviour is implemented for all controllers.

Listing A.134: First controllers in controllers.js

1 angular.module(’warningsignals.controllers’, [])
2 .controller(’EarlyController’, function($scope,

earlyWarningsignals) {
3 $scope.input = { value : "" }
4 $scope.warningsignals = earlyWarningsignals
5
6 $scope.save = function(event) {
7 if(event.keyCode == 13 && $scope.input.value.length

!= 0) {
8 earlyWarningsignals.push($scope.input.value)
9 $scope.input.value = ""

10 }

105

11 }
12 })
13 .controller(’MiddleController’, function($scope,

middleWarningsignals) {
14 $scope.input = { value : "" }
15 $scope.warningsignals = middleWarningsignals
16
17 $scope.save = function() {
18 if(event.keyCode == 13 && $scope.input.value.length

!= 0) {
19 middleWarningsignals.push($scope.input.value)
20 $scope.input.value = ""
21 }
22 }
23 })
24 .controller(’LateController’, function($scope,

lateWarningsignals) {
25 $scope.input = { value : "" }
26 $scope.warningsignals = lateWarningsignals
27
28 $scope.save = function() {
29 if(event.keyCode == 13 && $scope.input.value.length

!= 0) {
30 lateWarningsignals.push($scope.input.value)
31 $scope.input.value = ""
32 }
33 }
34 })

As mentioned, each controller implements almost the same logic for the
sake of simplicity. A better way to implement it, would be to move the
repeating logic into a service. This is left to the reader as exercise.

At last what we must not forget is to inject our new modules into our main
’warningsignal’ module. Hence, we change the first line of app.js as follows.

Listing A.135: Change to the first line of app.js

1 angular.module(’warningsignals’, [’ionic’, ’
warningsignals.controllers’, ’warningsignals.services’])

106

Calabash steps

We change now to our calabash-steps.rb file to start wiring our tests
to our application.

Listing A.136: New step definitions in calabash-steps.rb

1 Then(/ˆI see an entry field$/) do
2 exists?("input", "There is no entry field")
3 end
4
5 Then(/ˆI see a signal list$/) do
6 exists?("ion-list", "There is no signal list")
7 end
8
9 When(/ˆI enter "(.*?)" into input field$/) do |text|

10 enter_text("systemWebView css:’input’", text)
11 end
12
13 Then(/ˆI see "(.*?)" in the signal list$/) do |text|
14 result = exists?("ion-item", "There is no item in the

list")
15 fail("Not correct content \"#{result[0]["textContent"

]}\" in item") unless result[0]["textContent"].
include?(text)

16 end
17
18 def exists?(element, failure_message = "Could not find

element")
19 result = []
20
21 wait_for(:timeout => 5, :timeout_message =>

failure_message) {
22 result = query("systemWebView css:’#{element}’")
23 not result.empty?
24 }
25
26 return result
27 end

First we check if there is actually an input field and a signal list for require-
ment 4 and 5. As seen in previous examples we do that by querying the
webview namely for ion-list and input.

107

Implementing requirement 6 next is a little bit more difficult but still straight
forward. In line 10 we use Calabash’s own enter text method to fill our
text into the input field. There is only one input field hence, we are allowed
to query for an input tag without running into problems. In line 14 we then
check for the existence of the ion-item tag. If it exists we check if it holds
the correct text in line 15.

In cases where there are multiple inputs on one view, it a good practise
to define an unique ID for each of them in the HTML file and query for
this ID.

<input id="signalInput" type="text"/>

query("systemWebView css:’#signalInput")

We do not have to implement the step I press the enter button. It
is not necessary because it is a step provided by Calabash. This canned step
passes a keycode 13 to the application.

As mentioned by Aslak Hellesoy et al. “test automation is software
development” [62, 140] so the same good habits for maintainable and
reusable software in development should be applied to step definitions
as well. This is the reason why we created a separate method to check
for the existence of an element. So that we can reuse that method in
different part of our test.

Running Calabash shows that all our tests pass. Consequently, we tag our
current work with “v0.0.2” and commit it.

A.7.5 Persistence

In the third iteration our client chooses requirement 6. This means that our
client wants to make the data persistent over time. To store our data we will
use PouchDB as local storage. As well we decided to do some refactoring to
reduce code repetition.

108

Gherkin

Listing A.137: Requirements for third iteration

1 Scenario: User keeps his data after app shutdown
2 Given I enter some signals
3 When I restart the app
4 Then I see all entered signals

Implementation

First we need to download the PouchDB library from http://pouchdb.
com/, put it into the www/lib folder and then load the PouchDB library
in our index.html file.

1 <script src="lib/pouchdb-3.6.0.min.js"></script>

Second we create a PouchDB database and make it accessible for our appli-
cation. The best way to do it is through a service. All signal will be stored
in one document.

Listing A.138: Make PouchDB accessible for application

1 angular.module(’warningsignals.services’, [])
2 .factory(’pouchdb’, [’$q’, function($q) {
3 pouchdb = new PouchDB(’warningsignals’)
4 emptyDocument = { "early" : [], "middle" : [], "late" :

[] }
5 pouchdb.put(emptyDocument, "signals")
6
7 return {
8 add :
9 function(time, element) {

10 pouchdb
11 .get("signals")
12 .then(function(doc) {
13 doc[time].push(element)
14 pouchdb.put(doc)
15 })
16 },
17 get :

109

http://pouchdb.com/
http://pouchdb.com/

18 function(time) {
19 deferred = $q.defer()
20
21 pouchdb
22 .get("signals")
23 .then(function(doc) {
24 deferred.resolve(doc[time])
25 })
26 .catch(function(err) {
27 deferred.reject(err)
28 })
29
30 return deferred.promise
31 }
32 }
33 }])

We do not expose the whole PouchDB object to the user of our service
but provide only the necessary get and add function. One big advantage of
this approach is that we have all interaction with the database in one place
increases maintainability. In line 1 to 3 we create a PouchDB instance and
add a document called signals to it. This document holds three properties
“early”, “middle” and “late” each of them holding an array. Those arrays
will be used to store the signals at each stage.

The add function from line 8 to 17 accepts two arguments, one is the stage
and the other is the element to add to that stage. We get our signals
document from the database. Right after we get the correct property of that
document and add our new element to it. Finally we put our new element
back into our database.

The get function accepts one argument to determine the stage to be fetched.
It Returns a promise that is resolved as soon as we have fetched the array
for the stage we are looking for. In line 19 we create a deferred object from
the $q service. Afterwards we fetch our signals document, get the correct
property and resolve our deferred object. If an error occurs we reject the
promise. At last we return a new promise.

After creating new services, we can now completely our module for controllers
and reducing all controllers to a single one.

Listing A.139: Redesigned controllers in controllers.js of third iteration

110

1 angular.module(’warningsignals.controllers’, [])
2 .controller(’TabController’, function($scope, $state,

pouchdb) {
3 tab = $state.current.name.replace("main.", "")
4
5 $scope.warningsignals = []
6 $scope.input = { value : "" }
7
8 $scope.save = function(event) {
9 if(event.keyCode == 13 && $scope.input.value.length

!= 0) {
10 $scope.warningsignals.push($scope.input.value)
11 pouchdb.add(tab, $scope.input.value)
12 $scope.input.value = ""
13 }
14 }
15
16 pouchdb
17 .get(tab)
18 .then(function(doc) {
19 $scope.warningsignals = doc
20 })
21 })

Instead of using multiple controllers, one for each tab, we create one single
controller. The current state is found through the $state service in line 3.
The save function is almost untouched but instead of pushing it into the
array, we add it to our database via our new pouchdb service in line 11.
Finally, from line 16 to 20, we get the signals of the current stage out of our
database and assign them to our warningsignals property in $scope.

In a last step we need assign our new unified TabController to each tab
state.

Listing A.140: New state provider settings with unified TabController in app.js

1 $stateProvider
2 .state(’main’, {
3 url: "/main",
4 templateUrl: "templates/main_page.html",
5 })
6 .state(’main.early’, {

111

7 url: "/early",
8 views: {
9 ’early’: {

10 templateUrl: ’templates/tab.html’,
11 controller: ’TabController’,
12 }
13 }
14 })
15 .state(’main.middle’, {
16 url: "/middle",
17 views: {
18 ’middle’: {
19 templateUrl: ’templates/tab.html’,
20 controller: ’TabController’,
21 }}
22 })
23 .state(’main.late’, {
24 url: "/late",
25 views: {
26 ’late’: {
27 templateUrl: ’templates/tab.html’,
28 controller: ’TabController’,
29 }
30 }
31 })
32 $urlRouterProvider.otherwise(’/main’)
33 });

Calabash Steps

Listing A.141: Step definitions for third iteration

1 Given(/ˆI enter some signals$/) do
2 @signals = ["weariness", "sickness", "dizziness"]
3
4 for signal in @signals do
5 enter_text("systemWebView css:’input’", signal)
6 press_enter_button
7 end
8 end
9

10 When(/ˆI restart the app$/) do

112

11 shutdown_test_server
12 start_test_server_in_background
13 end
14
15 Then(/ˆI see all entered signals$/) do
16 result = exists?("ion-item", "There was no item in the

list")
17
18 @signals.each_with_index do |signal, index|
19 textContentIncludes?(result[index], signal, index+1)
20 end
21 end
22
23 def textContentIncludes?(result, expected, index)
24 content = result["textContent"]
25 fail("Not correct content \"#{expected}\" in #{index}.

item") unless content.include?(expected)
26 end

From line 2 to 7 we enter the elements called “weariness”, “sickness” and
“dizziness”. The interesting part is line 11 to 14. In line 12 we shut down
the test server which consequently shuts down our app. After that in the
next line we restart the server and thus restart our app. In line 15 to 21
we then check for if the signals survived the shutdown. We create a helper
function textContentIncludes? to check if an element includes a string
in its text content to avoid code repetition.

If we run all our tests now with -format progress, we see that our last
test is failing.

Listing A.142: Output of Calabash with option -format progress on after changes
for third iteration

1F
2
3 (::) failed steps (::)
4
5 Not correct content "sickness" in 2. item (RuntimeError)
6 ./features/step_definitions/calabash_steps.rb:83:in ‘

textContentIncludes?’
7 ./features/step_definitions/calabash_steps.rb:77:in ‘block

(2 levels) in <top (required)>’
8 ./features/step_definitions/calabash_steps.rb:76:in ‘each’

113

9 ./features/step_definitions/calabash_steps.rb:76:in ‘
each_with_index’

10 ./features/step_definitions/calabash_steps.rb:76:in ‘/ˆI
see all entered signals$/’

11 features/main_page.feature:32:in ‘Then I see all entered
signals’

12
13 Failing Scenarios:
14 cucumber features/main_page.feature:29

Calabash is taking a screenshot at the moment when a step fails Taking a
closer look at this screenshot shows us that there is one item too much.

Figure A.5: Screenshot after error in third iteration

But why is this? Did we make a mistake in our step definitions? No, we
didn’t. The problem is that Calabash preserves the application data in
each test run. So the added “weariness” from our scenario User enters
signal gets preserved and interferes with our current scenario. Lucky
for us Calabash provides a solution for this. We need to clear the ap-
plication data after each scenario. For that we change the after hook in

114

app_life_cycle_hooks.rb situated at features\support and use
the clear app data method after each scenario.

1 After do |scenario|
2 if scenario.failed?
3 screenshot_embed
4 end
5 clear_app_data
6 shutdown_test_server
7 end

Running our tests again, we see that everything is fine. As after each iteration
before we tag it with “v0.0.3” and commit.

A.7.6 Adding welcome sound

Gherkin

Listing A.143: Scenario for fourth iteration

1 When I start the app
2 Then I hear a welcome sound

Implementation

Our client wants to use a friendly killdeer chirp by Mike Koenig found
on soundbible.com at http://soundbible.com/grab.php?id=
1849&type=mp3 as welcome sound. Using sound is possible with the media
plug-in. Thus, before we can begin, we have to add this plug-in.

Listing A.144: Install the media plug-in

cordova plugin add cordova-plugin-media

At start we create a service to expose our music file to the application. As
soon as the service is loaded, we want it to play a file but as well there must
be a way to determine if a the media file is currently running or not. So
our Player should expose a Player.isRunning() function. We use an

115

soundbible.com
http://soundbible.com/grab.php?id=1849&type=mp3
http://soundbible.com/grab.php?id=1849&type=mp3

event listener for “deviceready” because the Media plug-in is only available
after this event.

1 .factory(’Player’, function() {
2 isRunning = false
3
4 document.addEventListener("deviceready", function() {
5 player = new Media("/android_asset/www/sounds/

killdeer.mp3",
6 function() { },
7 function(err) { },
8 function(status) { isRunning = (status ==

Media.MEDIA_RUNNING || status ==
Media.MEDIA_STARTING) })

9 player.play()
10 }, false);
11
12 return { isRunning : function() { return isRunning } }
13 })

Unfortunately the Media object has no native API to determine if a media
file is played. In line 2 we create a property (isRunning). It will be true
if currently a music file is playing or false otherwise. Then from line 4 to 7
we create a new media object. The constructor expects a path to a media
file as first argument. The second and third arguments are callbacks in the
case of success or error. Finally the last argument is a callback to monitor
the current state of the media file. We use this callback to populate our
isRunning property with either true if the media is running or starting
and false otherwise.

On iOS the path in the first argument don’t need /android/www/
attached to find a ressource, so here is case where you have to differ
between the two operating systems. A good way to do that is using the
Cordova device plug-in [4].

Finally in line 10 we expose our API to the user of this service. It consists
of only one method called isRunning.

Media objects provide further possibilities to manipulate a media
file. The most important and self-explanatory methods are play(),

116

pause(), and stop() a music and release() to release the un-
derlying audio resources. To learn more about it visit the Cordova
media plugin homepage https://github.com/apache/cordova-
plugin-media [10].

After the creation of our service we inject it into a new controller called
MusicController. Since the service is starting our media file directly, we
don’t have to do anything else than inject it into our controller. Consequently
our controller is empty otherwise.

Listing A.145: New MusicController in controllers.js

1 .controller(’MusicController’, function(Player) { })

At last we assign our new controller to the body of our application using the
ng-controller directive.

Listing A.146: Assignment of MusicController to body in forth iteration in index.
html

1 <body ng-app="warningsignals" ng-controller="
MusicController">

2 <ion-nav-bar class="bar bar-header" align-title="center"
></ion-nav-bar>

3 <ion-nav-view></ion-nav-view>
4 </body>

Calabash steps

To test if a media file is running need a little more effort. Since Calabash or
adb do not provide any native way to determine if music is running we have
to inject a JavaScript code into our application to retrieve and examine our
Player service. Here is where the injector comes handy.

Listing A.147: Use of injector to find out if music is running

1 Then(/ˆI hear a welcome sound$/) do
2 wait_for(:timeout => 5, :timeout_message => "You are not

on the main page") {
3 result = query("all systemWebView css:’ion-view[name

=\"main\"]’")

117

https://github.com/apache/cordova-plugin-media
https://github.com/apache/cordova-plugin-media

4 not result.empty?
5 }
6
7 wait_for(:timeout => 5, :timeout_message => "There is no

welcome sound") {
8 js = "var player = angular.element(document.body).

injector().get(’Player’); return player.isRunning()
;"

9 result = evaluate_javascript("systemWebView", js)
10 result[0] == "true"
11 }
12 end

In the first 5 lines we wait until the main page appears. We use this to make
sure that the device is actually ready and that AngularJS is loaded.

In line 7 we define the JavaScript code to be executed in our application.
To retrieve our Player service, we first create an AngularJS element of the
body. From this element we then retrieve its injector, which is the same that
is used in our controllers and services. Further we get our Player service
from this injector and store it into the player property. At last we return the
current state of the media with player.isRunning().

Running our previously created JavaScript in line 8 with exe-
cute javascript returns now an array holding either a “true” or “false”
string. “true” if an audio file is running, “false” otherwise. In line 9 we
then check if a file is running thus if our array holds a “true” string as first
element.

Running our tests shows us that everything is fine. Consequently, we tag our
current progress with “v0.0.4” and commit.

A.7.7 Integrate CouchDB

For the purpose of example and shortness security elements, data pro-
tection and parts of the error handling are not considered. The main
focus lies on synchronizing the PouchDB instance with CouchDB. This
section should therefore not be used as is in production code. Please be
aware of that when reading this section.

118

Throughout this section we will assume that there is CouchDB instance list-
ing to port 5984 of example.com and an admin called “admin” with a pass-
word “secret”.

A.7.8 Gherkin

Listing A.148: Data backup scenario for iteration 5

1 Scenario: User has data backup
2 Given I log in
3 And I enter some signals
4 When I delete and reinstall the app
5 And I log in
6 Then I retrieve my previous data

A.7.9 Implementation

Our first step is creating a database called “users” on CouchDB that stores
the data in one document per user. Next we create a general user who has
member access to the newly created database.

Listing A.149: Create user wsingnaluser with password verysecret

curl -X PUT http://admin:secret@example.com:5984/users
curl -X PUT http://admin:secret@example.com:5984/_users/

org.couchdb.user:wsignalsuser -d ’{"name":"
wsignalsuser", "type":"user", "roles":[], "password":"
verysecret" }’

curl -X PUT http://admin:secret@example.com:5984/users/
_security -d ’{"admins": {"names":[], "roles":[]}, "
members":{"names":["wsignalsuser"], "roles":[]}}’

In a next step we create our template for our login screen. Here we want to
give the user two choices to confirm his login data. Either he presses enter
on the keyboard or he touches the login button.

Listing A.150: Login template in login.html

1 <ion-view name="login" title="Login">
2 <ion-nav-buttons side="left">

119

3 <button class="button" ui-sref="main"><i class="ion-ios
-undo"></i></button>

4 </ion-nav-buttons>
5 <ion-content>
6 <label class="item item-input">
7 <input name="input" ng-model="input.value" ng-keyup="

save($event)" type="text"/>
8 </label>
9 <button ui-sref="main.early" class="button button-full"

ng-click="save()">Login</button>
10 </ion-content>
11 </ion-view>

We create back button with the ion-nav-button directive in line 2 to
3. Instead of using as text we use an ionicons icon by setting the class of
our nested i tag to the name of the icon we want to use. From line 6 to 8
we the same approach to create an input as seen before in the tabs. Right
after it we create a button. Buttons in ionic must always be of the class
“button” to ensure correct functionality therefore we use this class and the
class “button-full” to create button that horizontally stretches over the hole
screen. Furthermore the ng-click directive is used to listen to touches and
clicks to the button.

Thinking ahead and for the purpose of handing the user name from controller
to controller or to inject it into a service we create a User service with getters
and setter for the user name.

Listing A.151: User service to store pass around user name in services.js

1 .factory(’User’, function() {
2 var username = "signals";
3
4 return {
5 getUsername : function() {
6 return username;
7 },
8 setUsername : function(name) {
9 username = name;

10 }
11 }
12 })

120

Since we want to synchronize our PouchDB instance with our remote
CouchDB, we extend our pouchdb service with a sync() method. First
we create a new document with the user name, second we move all elements
entered before the login to this new document and third we synchronize both
databases. The reason why we do that is because at the beginning we don’t
know the name of the user but still we have to store our data in a document.
This document we called signals. As soon as we now the user name we
create document with his name and synchronize this document. If we do
not do that every person using this app would synchronize with the same
document.

The user name is a very bad idea to uniquely identify a document.
A better idea is to use uuid (universally unique identifier, for ex-
ample the methods described here http://stackoverflow.com/
questions/105034/create-guid-uuid-in-javascript.

Listing A.152: Extension of the pouchdb service

1 sync : function() {
2 pouchdb
3 .get(’signals’)
4 .then(function(doc) {
5 sync = function () {
6 pouchdb.sync("http://wsignalsuser:

verysecret@example.com:5984/users", {
7 live: true,
8 retry: true,
9 doc_ids: [User.getUsername()],

10 })
11 }
12 delete doc._id
13 delete doc._rev
14 pouchdb
15 .put(doc, User.getUsername())
16 .then(sync)
17 .catch(function(err) {
18 if(err.status == 409) {
19 sync()
20 }
21 })
22 })
23 }

121

http://stackoverflow.com/questions/105034/create-guid-uuid-in-javascript
http://stackoverflow.com/questions/105034/create-guid-uuid-in-javascript

Line 4 gets the current signals document. This document was used to store
the data when no user name was known. The line 6 assigns an anonymous
function to the sync variable. This function does the necessary steps for the
synchronization. It uses a doc ids filter to only synchronize the documents
with the id being the user name. The retrieved signals document is then
stripped of its id and rev properties. Subsequently this packed document
is put as a new document with the id set to the current user name. Then
in a last step in line 17 to 21 the synchronization process is started either
if adding the document was success or if there was a document conflict. A
document conflict returns the error code 409. It occurs if we want to create
a document that already exists. The reason why this might happen is if we
restart the app then maybe we already have synced once with the database
and therefore the document already exists.

Our login.html is still only a template without behaviour. Therefore we
implement a controller for it.

Listing A.153: Add behaviour to login.html

1 .controller(’LoginController’, function($scope, pouchdb,
User) {

2 $scope.input = { value : "" }
3
4 $scope.save = function(event) {
5 if((typeof event === ’undefined’ || event.keyCode == 13)

&& $scope.input.value.length != 0) {
6 username = $scope.input.value
7 User.setUsername(username)
8 pouchdb.sync()
9 $scope.input.value = ""

10 }
11 }

This controller looks almost identical to our TabController in listing
A.139. What is different is that instead of adding an element to our local
PouchDB instance we set the new user name in our User service in line 7 and
start synchronizing with our remote CouchDB.

For navigational reasons we add a button at the header of our tabs so we can
reach the login page from there.

122

Listing A.154: Button to navigate to the login page in tabs.html right after the
ion-view tag

1 <ion-nav-buttons side="left">
2 <button class="button" ui-sref="login"><i class="ion-

log-in"></i></button>
3 </ion-nav-buttons>

In a final step we wire our template together with our LoginController
by adding a new state login to the $stateProvider.

Listing A.155: Adding login state to $stateProvider in app.js

1 .state(’login’, {
2 url: "/login",
3 templateUrl: ’templates/login.html’,
4 controller: ’LoginController’
5 })

The basic programming part of this iteration is now finished and can move
on to wire our application to our scenario.

Calabash steps

Listing A.156: Calabash steps for iteration 5

1 Given(/ˆI log in$/) do
2 touch(’systemWebView css:".button"’)
3 enter_text(’systemWebView css:"#login-input"’, "Peter")
4 press_enter_button
5 wait_for_main_page
6 end
7
8 When(/ˆI delete and reinstall the app$/) do
9 sleep(2)

10 shutdown_test_server
11 clear_app_data
12 start_test_server_in_background
13 end
14
15 Then(/ˆI retrieve my previous data$/) do
16 result = exists?("ion-item", "There was no item in the

list")

123

17
18 @signals.each_with_index do |signal, index|
19 textContentIncludes?(result[index], signal, index+1)
20 end
21 end

Defining the Calabash steps is straightforward. To login we touch our only
button in the view then enter text in our login input and confirm it by
pressing the enter button. Then we wait until the main page appears.

For deleting and reinstalling in line 9 to 13 Calabash provides us with the
method we need. First we shut down the test server, then we clear the
application data and last we start our application again.

Finally to check if we retrieved the correct signals, we use exactly the same
code like in listing A.141 of the third iteration.

As it was with data chunks left in PouchDB after each test, it is now with
chunks in our remote database. Since we do not use the database in every
scenario we create a special “@clear” tag. Furthermore we create an after
hook especially for this tag in hooks.rb under calabash\features\
support.

Listing A.157: Use after hook for @clear in hooks.rb

1 After(’@clear’) do
2 url = ’http://wsignalsuser:verysecret@pas-web.ch:5984/

users/Peter’
3 rev = %x[curl -sS -I "#{url}" | sed -ne ’s/ˆETag:

"\\(.*\\)"/\\1/p’].chomp
4 system(%Q[curl -sS -X DELETE #{url}?rev="#{rev}"])
5 end

Now, we should not forget to tag our scenario

Listing A.158: Tagged scenario to clean up database after execution

1 @clear
2 Scenario: User has data backup
3 Given I log in
4 And I enter some signals
5 When I delete and reinstall the app
6 And I log in

124

7 Then I retrieve my previous data

Running all our tests shows us that we have finished our fifth iteration. We
tag this as version ’1.0.0’ and commit it.

Listing A.159: Last example output of Calabash with --format progress on and all
tests passing

........................

9 scenarios (9 passed)
24 steps (24 passed)
1m33.450s

125

A.7.10 Further information

You are now able to create a small but functional application. Unit testing,
an important part of the whole development cycle, was not mentioned in this
tutorial. AngularJS provides a nice unit testing environment. Find out more
at https://docs.angularjs.org/guide/unit-testing.

A good start to find out more about the frameworks of this tutorial is to
either have a look at the literature or visit the official homepages of each
technology.

126

https://docs.angularjs.org/guide/unit-testing

Bibliography

[1] AmberBit. Introduction to rack middleware. https:
//www.amberbit.com/blog/2011/07/13/introduction-
to-rack-middleware/, 7 2013. Retrieved 5 May 2015.

[2] Chris J. Anderson, Jan Lehnardt, and Noah Slater. CouchDB - The
Definitive Guide. O’Reilly, 1 edition, 2010.

[3] AngularUI. Ui router: ui.router.state.$state. http://angular-
ui.github.io/ui-router/site/#/api/ui.router.state.
$state. Retrieved 31 july 2015.

[4] Apache Software Foundation. Apache cordova api documentation.
https://cordova.apache.org/docs/en/3.3.0/cordova_
device_device.md.html. Retrieved 7 August 2015.

[5] Apache Software Foundation. Apache couchdb. http://couchdb.
apache.org/. Retrieved 23 June 2015.

[6] Apache Software Foundation. Couchdb in the wild - couchdb
wiki. http://wiki.apache.org/couchdb/CouchDB_in_the_
wild, 6 2013. Retrieved 6 July 2015.

[7] Apache Software Foundation. Security features overview - couchdb wiki.
http://wiki.apache.org/couchdb/Security_Features_
Overview, 2013. Retrieved 28 July 2015.

[8] Apache Software Foundation. Installing on ubuntu - couchdb
wiki. https://wiki.apache.org/couchdb/Installing_on_
Ubuntu, 4 2014. Retrieved 30 June 2015.

[9] Apache Software Foundation. 10.3.9. /db/ security - apache couchdb
2.0.0 documentation. http://docs.couchdb.org/en/latest/
api/database/security.html, 2015. Retrieved 28 July 2015.

127

https://www.amberbit.com/blog/2011/07/13/introduction-to-rack-middleware/
https://www.amberbit.com/blog/2011/07/13/introduction-to-rack-middleware/
https://www.amberbit.com/blog/2011/07/13/introduction-to-rack-middleware/
http://angular-ui.github.io/ui-router/site/#/api/ui.router.state.$state
http://angular-ui.github.io/ui-router/site/#/api/ui.router.state.$state
http://angular-ui.github.io/ui-router/site/#/api/ui.router.state.$state
https://cordova.apache.org/docs/en/3.3.0/cordova_device_device.md.html
https://cordova.apache.org/docs/en/3.3.0/cordova_device_device.md.html
http://couchdb.apache.org/
http://couchdb.apache.org/
http://wiki.apache.org/couchdb/CouchDB_in_the_wild
http://wiki.apache.org/couchdb/CouchDB_in_the_wild
http://wiki.apache.org/couchdb/Security_Features_Overview
http://wiki.apache.org/couchdb/Security_Features_Overview
https://wiki.apache.org/couchdb/Installing_on_Ubuntu
https://wiki.apache.org/couchdb/Installing_on_Ubuntu
http://docs.couchdb.org/en/latest/api/database/security.html
http://docs.couchdb.org/en/latest/api/database/security.html

[10] Apache Software Foundation. cordova-plugin-media/readme.md at mas-
ter - apache/cordova-plugin-media github. https://github.com/
apache/cordova-plugin-media/blob/master/README.md,
2015. Retrieved 7 August 2015.

[11] Apple. App store - support - apple developer. https://developer.
apple.com/support/app-store/, 2015. Retrieved 9 August 2015.

[12] areppim AG. Mobile os market share - switzerland. http:
//stats.areppim.com/stats/stats_mobiosxtime_ch.htm,
2008-15. Retrieved 9 August 2015.

[13] Alexandra Barth. Gedanken - Spiel - Raum: Kognitive Defusion -
Üebungen als Smartphone-App. Masterthesis, University of Berne, 2015.

[14] Adam Bradley. Where does the ionic framework fit in — the official
ionic blog. http://blog.ionic.io/where-does-the-ionic-
framework-fit-in/, 10 2013. Retrieved 5 May 2015.

[15] John Brooke. Sus: A quick and dirty usability scale. http://www.
usabilitynet.org/trump/documents/Suschapt.doc, 1996.
Retrieved 8 August 2015.

[16] calabash android developers. calabash-android/ruby api.md
at master calabash/calabash-android github. https:
//github.com/calabash/calabash-android/blob/
master/documentation/ruby_api.md, 2014. Retrieved 30
July 2015.

[17] Cucumber Limited. Cucumber. https://cucumber.io/, 2014. Re-
trieved 6 July 2015.

[18] Drifty. Drifty blog - building a great company with great products.
http://blog.drifty.com/. Retrieved 6 July 2015.

[19] Drifty. Installing ionic and its dependencies - ionic framework. http:
//ionicframework.com/docs/guide/installation.html,
2013-15. Retrieved 25 July 2015.

[20] Drifty. ion-content - directive in module ionic - ionic frame-
work. http://ionicframework.com/docs/api/directive/
ionContent/, 2013-15. Retrieved 31 July 2015.

128

https://github.com/apache/cordova-plugin-media/blob/master/README.md
https://github.com/apache/cordova-plugin-media/blob/master/README.md
https://developer.apple.com/support/app-store/
https://developer.apple.com/support/app-store/
http://stats.areppim.com/stats/stats_mobiosxtime_ch.htm
http://stats.areppim.com/stats/stats_mobiosxtime_ch.htm
http://blog.ionic.io/where-does-the-ionic-framework-fit-in/
http://blog.ionic.io/where-does-the-ionic-framework-fit-in/
http://www.usabilitynet.org/trump/documents/Suschapt.doc
http://www.usabilitynet.org/trump/documents/Suschapt.doc
https://github.com/calabash/calabash-android/blob/master/documentation/ruby_api.md
https://github.com/calabash/calabash-android/blob/master/documentation/ruby_api.md
https://github.com/calabash/calabash-android/blob/master/documentation/ruby_api.md
https://cucumber.io/
http://blog.drifty.com/
http://ionicframework.com/docs/guide/installation.html
http://ionicframework.com/docs/guide/installation.html
http://ionicframework.com/docs/api/directive/ionContent/
http://ionicframework.com/docs/api/directive/ionContent/

[21] Drifty. ion-nav-view - directive in module ionic - ionic frame-
work. http://ionicframework.com/docs/api/directive/
ionNavView/, 2013-15. Retrieved 31 July 2015.

[22] Drifty. Ionic documentation overview - ionic framework. http:
//ionicframework.com/docs/overview/, 2013-15. Retrieved 7
June 2015.

[23] Justin Ellingwood. How to install node.js on an ubuntu 14.04 server
— digitalocean. https://www.digitalocean.com/community/
tutorials/how-to-install-node-js-on-an-ubuntu-14-
04-server, 5 2014. Retrieved 25 July 2015.

[24] Erlang Solutions Limited. Erlang factory - enda farrell, software ar-
chitect for internet scaling. http://www.erlang-factory.com/
conference/London2009/speakers/endafarrell, 2009. Re-
trieved 6 July 2015.

[25] Vardi Eyal. Angularjs architecture. http://de.slideshare.net/
EyalV/angularjs-architecture, 5 2013. Retrieved 4 May 2015.

[26] Martin Fowler. Inversion of control containers and the dependency
injection pattern. http://www.martinfowler.com/articles/
injection.html, 2004. Retrieved 28 July 2015.

[27] Martin Fowler. Gui architectures. http://martinfowler.com/
eaaDev/uiArchs.html, 2006. Retrieved 27 July 2015.

[28] Fullstack.io. Scopes (part 2 of the angularjs - from beginner to expert in 7
steps series) — ng-newsletter. http://www.ng-newsletter.com/
posts/beginner2expert-scopes.html, 2013. Retrieved 31 July
2015.

[29] Google. Angularjs: Api: $rootscope.scope. https://docs.
angularjs.org/api/ng/type/$rootScope.Scope, 2010-2015.
Retrieved 10 May 2015.

[30] Google. Angularjs: Developer guide: Dependency injection.
https://docs.angularjs.org/guide/di, 2010-2015. Retrieved 28 July 2015.

[31] Google. Angularjs: Developer guide: Directives. https://docs.
angularjs.org/guide/directive, 2010-2015. Retrieved 9 Au-
gust 2015.

129

http://ionicframework.com/docs/api/directive/ionNavView/
http://ionicframework.com/docs/api/directive/ionNavView/
http://ionicframework.com/docs/overview/
http://ionicframework.com/docs/overview/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-an-ubuntu-14-04-server
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-an-ubuntu-14-04-server
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-an-ubuntu-14-04-server
http://www.erlang-factory.com/conference/London2009/speakers/endafarrell
http://www.erlang-factory.com/conference/London2009/speakers/endafarrell
http://de.slideshare.net/EyalV/angularjs-architecture
http://de.slideshare.net/EyalV/angularjs-architecture
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html
http://martinfowler.com/eaaDev/uiArchs.html
http://martinfowler.com/eaaDev/uiArchs.html
http://www.ng-newsletter.com/posts/beginner2expert-scopes.html
http://www.ng-newsletter.com/posts/beginner2expert-scopes.html
https://docs.angularjs.org/api/ng/type/$rootScope.Scope
https://docs.angularjs.org/api/ng/type/$rootScope.Scope
https://docs.angularjs.org/guide/directive
https://docs.angularjs.org/guide/directive

[32] Google. Angularjs: Tutorial: 7 - routing & multiple views. https://
docs.angularjs.org/tutorial/step_07, 2010-2015. Retrieved
10 May 2015.

[33] Alan Harris and Konstantin Haase. Sinatra: Up and Running. O’Reilly,
Sebastopol, 2012.

[34] Ari Lerner. ng-book - The Complete Book on AngularJS. Fullstack.io,
2013.

[35] LessPainful. blog.lesspainful.com. http://blog.lesspainful.
com/. Retrieved 9 August 2015.

[36] Tania Lincoln. Kognitive Verhaltenstherapie der Schizophrenie. Hogrefe
Verlag, Gttingen, 2006.

[37] Giancarlo Lionetti. Atlassian blogs. http://blogs.atlassian.
com/2012/02/mercurial-vs-git-why-mercurial/, 2 2012.
Retrieved 21 August 2015.

[38] NodeSource. Node.js v0.12, io.js, and the nodesource linux repositories
— nodesource - enterprise node.js training, support, software & con-
sulting, worldwide. https://nodesource.com/blog/nodejs-
v012-iojs-and-the-nodesource-linux-repositories,
2015. Retrieved 28 July 2015.

[39] Ransford Okpoti. How to create a gherkin syntax highlighter in gedit
— ransford okpoti’s blog. https://ranskills.wordpress.
com/2011/07/11/how-to-create-a-gherkin-syntax-
highlighter-in-gedit/, 7 2011. Retrieved 26 July 2015.

[40] Bryan O’Sullivan. Mercurial: The Definitive Guide. O’Reilly, 2009.

[41] PouchDB. Adapters. http://pouchdb.com/adapters.html. Re-
trieved 5 July 2015.

[42] PouchDB. Pouchdb, the javascript database that syncs! http://
pouchdb.com. Retrieved 17 July 2015.

[43] PouchDB. Releases pouchdb/pouchdb github. https://github.
com/pouchdb/pouchdb/releases?after=2.0.2, 2013. Re-
trieved 3 July 2015.

130

https://docs.angularjs.org/tutorial/step_07
https://docs.angularjs.org/tutorial/step_07
http://blog.lesspainful.com/
http://blog.lesspainful.com/
http://blogs.atlassian.com/2012/02/mercurial-vs-git-why-mercurial/
http://blogs.atlassian.com/2012/02/mercurial-vs-git-why-mercurial/
https://nodesource.com/blog/nodejs-v012-iojs-and-the-nodesource-linux-repositories
https://nodesource.com/blog/nodejs-v012-iojs-and-the-nodesource-linux-repositories
https://ranskills.wordpress.com/2011/07/11/how-to-create-a-gherkin-syntax-highlighter-in-gedit/
https://ranskills.wordpress.com/2011/07/11/how-to-create-a-gherkin-syntax-highlighter-in-gedit/
https://ranskills.wordpress.com/2011/07/11/how-to-create-a-gherkin-syntax-highlighter-in-gedit/
http://pouchdb.com/adapters.html
http://pouchdb.com
http://pouchdb.com
https://github.com/pouchdb/pouchdb/releases?after=2.0.2
https://github.com/pouchdb/pouchdb/releases?after=2.0.2

[44] Refsnes Data. Css selectors reference. http://www.w3schools.
com/cssref/css_selectors.asp, 1999-2015. Retrieved 30 July
2015.

[45] Refsnes Data. Json tutorial. http://www.w3schools.com/json/,
1999-2015. Retrieved 17 July 2015.

[46] Mark Rjcok. What are the nuances of scope prototypal
/ prototypical inheritance in angularjs? - stack overflow.
http://stackoverflow.com/questions/14049480/what-
are-the-nuances-of-scope-prototypal-prototypical-
inheritance-in-angularjs, 2012. Retrieved 9 August 2015.

[47] Margaret Rouse. What is ajax (asynchronous javascript and xml)?
- definition from whatis.com. http://searchwindevelopment.
techtarget.com/definition/Ajax, 2007. Retrieved 31 July
2015.

[48] Ruby community. Installing ruby. https://www.ruby-lang.org/
en/documentation/installation/#apt. Retrieved 27 July
2015.

[49] Tillmann Seidel. How to finally delete documents in couchdb -
eclipsesource blog. http://eclipsesource.com/blogs/2015/
04/20/how-to-finally-delete-documents-in-couchdb/,
2015. Retrieved 8 August 2015.

[50] Mani Shekhawat. Introduction to angularjs. http://de.
slideshare.net/manishekhawat/angularjs-22960631,
6 2014. Retrieved 14 June 2015.

[51] Sinatra. Sinatra: About. http://www.sinatrarb.com/about.
html. Retrieved 29 June 2015.

[52] Sinatra. Sinatra: Readme. http://www.sinatrarb.com/intro.
html. Retrieved 11 May 2015.

[53] Sinatra. Sinatra book. https://github.com/sinatra/
sinatra-book/blob/master/book/Introduction.
markdown, 11 2012. Retrieved 30 June 2015.

[54] StackOverflow. database - clean couchdb and restart - stack
overflow. http://stackoverflow.com/questions/13030551/
clean-couchdb-and-restart, 2012. Retrieved 30 June 2015.

131

http://www.w3schools.com/cssref/css_selectors.asp
http://www.w3schools.com/cssref/css_selectors.asp
http://www.w3schools.com/json/
http://stackoverflow.com/questions/14049480/what-are-the-nuances-of-scope-prototypal-prototypical-inheritance-in-angularjs
http://stackoverflow.com/questions/14049480/what-are-the-nuances-of-scope-prototypal-prototypical-inheritance-in-angularjs
http://stackoverflow.com/questions/14049480/what-are-the-nuances-of-scope-prototypal-prototypical-inheritance-in-angularjs
http://searchwindevelopment.techtarget.com/definition/Ajax
http://searchwindevelopment.techtarget.com/definition/Ajax
https://www.ruby-lang.org/en/documentation/installation/#apt
https://www.ruby-lang.org/en/documentation/installation/#apt
http://eclipsesource.com/blogs/2015/04/20/how-to-finally-delete-documents-in-couchdb/
http://eclipsesource.com/blogs/2015/04/20/how-to-finally-delete-documents-in-couchdb/
http://de.slideshare.net/manishekhawat/angularjs-22960631
http://de.slideshare.net/manishekhawat/angularjs-22960631
http://www.sinatrarb.com/about.html
http://www.sinatrarb.com/about.html
http://www.sinatrarb.com/intro.html
http://www.sinatrarb.com/intro.html
https://github.com/sinatra/sinatra-book/blob/master/book/Introduction.markdown
https://github.com/sinatra/sinatra-book/blob/master/book/Introduction.markdown
https://github.com/sinatra/sinatra-book/blob/master/book/Introduction.markdown
http://stackoverflow.com/questions/13030551/clean-couchdb-and-restart
http://stackoverflow.com/questions/13030551/clean-couchdb-and-restart

[55] Melisa Tolentino. Xamarin acquires lesspainful, introduces automated
ui testing platform — siliconangle. http://siliconangle.
com/blog/2013/04/16/xamarin-acquires-lesspainful-
introduces-automated-ui-testing-platform/, 2013. Re-
trieved 9 August 2015.

[56] Travis CI GmbH. Travis ci: Continous integration and deployment that
just works. https://travis-ci.com/, 2014. Retrieved 29 May
2015.

[57] Andrew Trice. Who uses phonegap/apache cordova — an-
drew trice. http://www.tricedesigns.com/2012/03/27/
who-uses-phonegapapache-cordova/, 4 2012. Retrieved 6 July
2015.

[58] Koen Vlaswinkel. How to install java on ubuntu with apt-get —
digitalocean. https://www.digitalocean.com/community/
tutorials/how-to-install-java-on-ubuntu-with-apt-
get, 2014. Retrieved 25 July 2015.

[59] W3C. Cross-origin resource sharing. http://www.w3.org/TR/
cors/, 2014. Retrieved 8 August 2015.

[60] John M. Wargo. Apache Cordova 3 Programming. Addison-Wesley Pro-
fessional, 2013.

[61] Jeremy Wilken. Ionic in action - meap version 9. http://www.
manning.com/wilken/IonicinA_MEAP_ch01.pdf, 2015. Re-
trieved 6 July 2015.

[62] Matt Wynne and Aslak Hellsoy. The Cucumber Book. Pragmatic Pro-
grammers, Ilc., 2012.

[63] Xamarin Inc. Introduction to calabash - xamarin. http:
//developer.xamarin.com/guides/testcloud/calabash/
introduction-to-calabash/, 2015. Retrieved 7 May 2015.

132

http://siliconangle.com/blog/2013/04/16/xamarin-acquires-lesspainful-introduces-automated-ui-testing-platform/
http://siliconangle.com/blog/2013/04/16/xamarin-acquires-lesspainful-introduces-automated-ui-testing-platform/
http://siliconangle.com/blog/2013/04/16/xamarin-acquires-lesspainful-introduces-automated-ui-testing-platform/
https://travis-ci.com/
http://www.tricedesigns.com/2012/03/27/who-uses-phonegapapache-cordova/
http://www.tricedesigns.com/2012/03/27/who-uses-phonegapapache-cordova/
https://www.digitalocean.com/community/tutorials/how-to-install-java-on-ubuntu-with-apt-get
https://www.digitalocean.com/community/tutorials/how-to-install-java-on-ubuntu-with-apt-get
https://www.digitalocean.com/community/tutorials/how-to-install-java-on-ubuntu-with-apt-get
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
http://www.manning.com/wilken/IonicinA_MEAP_ch01.pdf
http://www.manning.com/wilken/IonicinA_MEAP_ch01.pdf
http://developer.xamarin.com/guides/testcloud/calabash/introduction-to-calabash/
http://developer.xamarin.com/guides/testcloud/calabash/introduction-to-calabash/
http://developer.xamarin.com/guides/testcloud/calabash/introduction-to-calabash/

	Introduction
	Documentation
	Theoretical Background
	Requirement collection
	Prototyping
	Final product

	Technologies
	Sinatra
	Storage
	CouchDB
	PouchDB

	Apache Cordova
	AngularJS
	MVC Design Pattern
	Injector
	Double binding
	Scope
	Routing
	Directives

	Ionic
	Calabash for Android

	Conclusion
	Reliabilty
	Maintainability
	Usefulness
	Multiple operating systems

	Future Work
	Todos
	TODO Nr.1
	TODO Nr.2
	TODO Nr.3
	TODO Nr.4
	TODO Nr.5
	TODO Nr.6
	TODO Nr.7
	TODO Nr.8
	TODO Nr.9
	TODO Nr.10

	Acknowledgement
	Appendices
	Anleitung zur Wissenschaftlichen Arbeit
	Introduction
	Download
	License

	CouchDB
	Installation
	Start and stop database service
	Queries
	Database Manipulation
	Document Manipulation
	User Management
	Database security
	Setting up CORS

	PouchDB
	Installation
	Database Manipulation
	Document Manipulation
	Synchronizing with CouchDB

	Ionic
	Installation
	Usage

	Calabash for Android
	Installation
	Usage
	Feature
	Scenario
	Scenario outline
	Background
	Step definitions
	Running tests

	Mercurial
	Installation
	Basics
	Mercurial with bitbucket.org

	Hands-on project
	Scenario
	Requirements
	Main Page
	Interaction
	Persistence
	Adding welcome sound
	Integrate CouchDB
	Gherkin
	Implementation
	Further information

