Object Models in the TIL-Calculus 1.

Object Models in the 1. -Calculus

Jean-Guy Schneider

Software Composition Group
Institute of Computer Science and Applied Mathematics (IAM)
University of Berne

E-malil: schneidr@iam.unibe.ch
WWW: http://www.iam.unibe.ch/~schneidr/

SOAP Workshop, June 15,1999 © Jean-Guy Schneider

http://www.iam.unibe.ch/~scg/

Object Models in the TIL-Calculus 2.

Overview

mi-calculus based object model

Integration of Generic Synchronization Policies
pre-methods, generators

class abstractions

Inheritance, method dispatch strategies

mixins

references

N I O [O

SOAP Workshop, June 15,1999 © Jean-Guy Schneider

Object Models in the TIL-Calculus 3.

Pierce/Turner Basic Object Model

The basic object model of Pierce and Turner captures the essential
features of objects:

def emptyRef (X) = (v ¢, S, Q)

(Xreply (<Set:S, get:g>)
| 19(Y).c(2).(Yiepy (£) | €(£))
| S(Y) ((_:(Y)l Yreply (<>)

| !s(2).c(V).(C(D) | Ziepy (<>))
)

SOAP Workshop, June 15,1999 © Jean-Guy Schneider

Object Models in the TIL-Calculus 4.

Objects in the m-Calculus

Sangiorgi’s translation of an untyped OC(Adabi/Cardelli) into the
polyadic trcalculus:

Kior.nli =201, =" p).x(Lry).(Mgy 41 =11 [b]];)

[ab], =d¢t (v g)([aly | ()X, p,x0)

[a., O 2(y).bl, =91 (v a)([aly | A(X)PXnew-Xnewll:1Y).
([1=11b], | 1 2]xdry0)

[XIp =" px

SOAP Workshop, June 15,1999 © Jean-Guy Schneider

Object Models in the TIL-Calculus

ri_-Calculus based Object Model (1)

Class
Metaobject

Meta-Level

________ 4__l__

Base-Level

L

B Intermediate-

—>

-

~ Object

Interface-Adaptor

SOAP Workshop, June 15,1999 © Jean-Guy Schneider

Object Models in the TIL-Calculus 6.

mi_-Calculus based Object Model (lI)

Kioenli =20, =% (U xq,.. %) (F(<I1=Xy,.. h=%>)
| Mgz n%(X).[b]x, .)

[{io1.nli = bl =T (U xq, ... %SO 01. 0l = 2Y)-b ¢
1 4(S).€ (S) | 'S(Y)X epy (S)
| rljD]_._n IXJ(X)[S|J(<X,Se|f:S>)]))

[O(X)] =% (U pP)([Ol, | P(Y).Y,, (<X reply=r>))

[F], =0et 1 (F)

SOAP Workshop, June 15,1999 © Jean-Guy Schneider

Object Models in the TIL-Calculus 7.

Integration of GSP’s into Object Model

g GSP
Metaobject

Meta-Level

/ Base-Level

— ™ Method —™

<«— Wrapper |«—

— ™ Method —™

<«— Wrapper |«—

SOAP Workshop, June 15,1999 © Jean-Guy Schneider

Object Models in the TIL-Calculus 8.

Observations

[]

N I B O I

record-based basic object model is a robust basis for
modelling object-oriented features,

Intermediate-objects as collections of pre-methods,
controlling visibility of features based on scoping rules,
classes as first class entities: class metaobjects,
Inheritance as intermediate-object extension,

m—calculus expressive enough to model common features
of OOPL’s.

Problem: cannot define reusable class abstractions due to
the usage of pre-methods (explicit self-binding).

SOAP Workshop, June 15,1999 © Jean-Guy Schneider

Object Models in the TIL-Calculus 9.

From Pre-methods to Generators

Generator:
[1 defines behaviour of objects,

[1 requires self as additional parameter,
[1 A defines difference in relation to a parent class.

Gp(self) = Gp(self) U A(self,Gp(self))

Wrapper:
[1 fixed-point operator over a generator,

[1 establishes correct self-binding.

W = fix..; G(self)]

[1 Inheritance as generator composition

SOAP Workshop, June 15,1999 © Jean-Guy Schneider

Object Models in the TIL-Calculus 10.

Class Abstractions

A class abstraction (i.e. a function):.
[1 defines a class metaobject

[1 requires a A and a reference to a parent-class metaobject
C = class(A,parent)
Generator composition defines the inheritance model of a class:

Gp(self) = Gp(self) U A(self,G(self))
Gg(self,]) = A(self,l) 1 Gp(self,l 1 A(self,l))

Application of fixed-point operator defines method dispatch:

Gs(self) = fixq 1 [Gp(self') U A(self',Gp(self'))]

SOAP Workshop, June 15,1999 © Jean-Guy Schneider

Object Models in the TIL-Calculus 11.

Encoding of the Fixed-point Operator

The encoding of the fixed-point operator is based on a reference
cell and self being a function (and not a value):

def wrapper(lnit,res) = (v r, s, X) (emptyRef (<reply=x>)
| X(S).(!8(X). Sgex (X)
| generate(<init=Init,self=s,reply=r>)
; r(Y).(Sset(Y) | res(Y))

)

[1 functions are encoded as replicated processes

SOAP Workshop, June 15,1999 © Jean-Guy Schneider

Object Models in the TIL-Calculus 12.

Mixins

A mixin Is an abstract subclass (a “subclass” without specified
parent-class):

Gu(self,Gp) = Gp(self) U A(self,Go(self))

Applying a mixin Mto a class C merges the behaviour of Mand C:
Gu.c(self) = G(self) O G,(self,G.)
Wi.c = fiXeer[Gy. c(s€I)]
Mixin composition:

Gy, (self,Gp) = Gp(self) 0 Gy (self,Gp) O Gy, (self,Gp)

[1 Mixin composition/application is associative

SOAP Workshop, June 15,1999 © Jean-Guy Schneider

Object Models in the TIL-Calculus 13.

Ssummary

[1 an object is viewed as an agent containing local channels
(representing state) and agents (representing behaviour),

[1 class and mixin abstractions as functions: classes and
mixins as meta-level objects,

[1 subclass specification based on incremental derivation,

[self-binding and method dispatch strategies based on fixed-
point operators,

[1 compositional view of object-oriented abstractions
(e.g., inheritance as composition of generators):

[1 Unifying concept of agents and forms

SOAP Workshop, June 15,1999 © Jean-Guy Schneider

Object Models in the TIL-Calculus 14.

References

[1 Benjamin Pierce and David Turner. Concurrent Objects in a
Process Calculus, 1995.

[1 Ciaran McHale. Synchronization in Concurrent, Object-
oriented Languages: Expressive Power, Genericity and
Inheritance, 1994.

[Markus Lumpe, Jean-Guy Schneider, and Oscar
Nierstrasz. Using Metaobjects to Model Concurrent Objects
in PicT, 1996.

[1 Jean-Guy Schneider and Markus Lumpe. Synchronizing
Concurrent Objects in the Tt-Calculus, 1997 .

[1 Jean-Guy Schneider. Component, Scripts, and Glue: A
Conceptual Framework for Software Composition, 1999.

SOAP Workshop, June 15,1999 © Jean-Guy Schneider

	Overview
	Pierce/Turner Basic Object Model
	Objects in the p-Calculus
	pL-Calculus based Object Model (I)
	pL-Calculus based Object Model (II)
	Integration of GSP’s into Object Model
	Observations
	From Pre-methods to Generators
	Class Abstractions
	Encoding of the Fixed-point Operator
	Mixins
	Summary
	References

