FORM PROCEDURES

by

I. Hogg
0. M. Nierstrasz
D. Tsicliritzis

Computer Systems Research Group
University of Toroato
121 St. Joseph St.
Toronto, Ontario
Canada
MSS 144

-

-102-

Abstract

This paper outlines an effort to introduce automation into an office forms system
(OFS). OFS allows its users to perform a set of operations on electronic forms. Actions
are triggered automatically when forms or combinations of forms arrive at particular
nodes in the network of stations. ‘The actions deal with operations on forms. This
paper discusses the facilities provided for the specification of form-oriented automatic

procedures and sketches their implementation.

~103-

Form Procedures

1. Intreduction

OFS is an elecironic forms manegement system [Tsichritzis 1980, 1981, Cheung
1979, 1980, Gibbs 1979, 1980]. I provides an interface to MRS, a smaii relational data-
base system [Hudyma 1978, Kornatowski 1979, Ladd 1979]. OFS and MRS were written
_in C within the UNIX operating system [Kernighan 1978, Ritchie and Thomson 1978].

They have both been distributed widely to organizations.

An OFS system consists of a set of stations distributed over a number of machines
in a network. Each user has a private set of forms residing in his station. A user may
only manipulate those forms which he temporarily "owns" in the sense that they are
part of his database. Communication and interaction between stations is achieved by

allowing users to mail forms to one another.

A distinction is made in OFS between form types, form blanks and form instances.
A form blank is simp}y the form template used to display a form instance. A form
instance corresponds to. an actual filled form represented as a tuple in the database of
forms. Its fields may have values assigned: to ‘it. and it always has a uniqué key
assigned at creation time by the system. A formn {ype is the specification of a form
blank and a set of Geld Lypes (see below). A form file is a relation used to store all
forms of the same type belonging to a station: The collection of form files for a station
is a form daiabase. Figure 1 shows a form blank and form instance for the form type
called order. Note that some fields of the form instance need not have values associ-
ated with them. The key field must have a value which is automatically assigned by the

system.

Form fields may be of six different types. Manual fields of type 1 may be inserted

or modified at any time, type 2 may be inserted at any time bhut not modified, and type

-104-

ORDER FORM KEY:
Customer number: —.____ Cuslomer mime:
Rem: o Description:
Prices — . o
Quantity:
Total:

An order form blank

ORDER FORM KEY: 00001.00000

Customer number: 354____ Customer name: CSRG

Item: 254 Description: Office Forms System
Price: 200.00

Quantity: 2_______
Total:

An order form instance

Figure 1 iform blanks and instances

3 must be inserted at form creation and never modified.. Aulometic felds of type 1 are
key fields, always the first field of a form, type 2 date fields, and type 3 signature fields

bearing the station's name if the preceding field is filled in.

Form operations are creation, seclection, and modification. Forms may also be
attached to dossiers. Dossiers are lists of forms which are not necessarily of the same

form type. but which have something in common that the user wishes to capture.

Forms may not be destroyed, although they may be mailed to a "wastebasket sta-
tion"” which eonceptually skrads thn electronic form. The wastebasket station may in

facl archive rather than erase a form depending upon Lhe needs of a particular appli-

Fan P e e 2 el e e s

-105-

cation. Form instances are unique, and musi always exist al cxaclly one location in the
system. They are either in some form file or waiting in a mail tray. Forms may be
mailed from oﬁe station to another. They must wait in a mail tray and be explicitly
retrieved in order to be placed in the receiving station's form file. Copies may be made
of forms, but thcy arc assigncd a unigque kcy consisting of the key of the original form

together with a system-generated copy number distinguishing it from the original.

Form files may be accessed as a whole using an MRS interface. However, in this
case no protection is provided against illegal operations such as destroying a form or
creating a form with a key that is already in use. Therefore, the MRE interface is not

meant to be used except by privileged users.

OFS is basically a passive system, i.e., the user has to initié'.:e every action. The
only automatic form processing that OFS will do occurs if a form is mailed to a special
automatic station. Such a station periodically reads its mail and submits the forms as
input to an application program. These programs musl be written so as to preserve
compalibility with OFS. Consequently, the specification of an OFS automatic procedure
requires a great deal of knowledge of the inner workings of OFS. The TLA project was
conceived as a tool to introduce automatic form processing into OFS [Hogg 1981, Nier-

strasz 1981].

A set of features was chosen to study the design and implementation issues of a
reasonably useful but unembellished automatic forms system. A number of assump-
tions were made about the meaning of a "forms procedure", especially within the con-

text of OFS.

The user interface is presented in terms of objects with which the OFS user is
aiready familiar. Specifying operations within a procedure corresponds closely to per-

forming those operations within a manual system. A user who is editing an automatic

-106-

forms procedure manipuiates "sketches" of forms. Sketches are form-like objects that
represent the forms that the procedure will eventually manipulate. The same form
template which OFS uses to display form instances is used quite differently in TLA to
deseribe preconditions and actions in office procedures. The specifications are non-

procedural and have a simple syntax.

TLA does not assume any knowledge of the system state other than what is avail-
able to the user in his form file or his mail tray. This corresponds to the notion in OFS
that users can only manipulate the forms that they "own"”. Anything happening outside
a user's own workstation does not concern him. The domain of automation is that of
the individual workstation. The complexity of determining when to trigger a procedure

is thereby considerably reduced.

An automatic procedure is meant to capture the notion of an office worker collect-
ing forms al his or her desk uniil a "complete set" is compiled. He can then process
the forms and file them or send them on their way. on their way. Processing of the
collection of forms may rause forms to be modified or new forms to be added to the
set. Reference tables and calculating tools are made available through an interface teo

a local library of application programs.

The other aspect of automation supplied by TLA is that of "smart forms" which
automatically fill in certain fields using previously filled-in fields as arguments. The
dornain nere is that of the form alone, so triggering takes place whenever a form is

created or modified.

There are two types of automatic fields. The first type is filled in only if all its
argument fields have values. The other type accepts null values, and is filled in even if
some argument fileds are missing. Fields are initially filled in sequence. When an

automatic field is reached, an applicaticn program written in a conventional program-

-107-

ming language (usually C or the UNIX Shell) is executed. The output from this program
is assigned to that field. If any argument fields are subsequently modified, the
automatic fields which use it are also updated. Typicai applications are arithmetic
operations such as sales tax calculations, or database queries such as filling in a

customer’s address.

"Smarter forms" with fields that change value depending upon time conditions, the
state of the system, or any other variable, were not implemented. Some "smarter

form" problems can be solved wilhh TLA'S aulomatic procedures.

Automatic procedures have preconditions and actions, but no posteonditions in
the usual sense. Satisfying all preconditions guarantees the successful completion of
all actions. There is only a very limited sense in which a procedure may "fail". For
example, it may never be triggered because missi;xg forms do nol arrive. Posteondi-
tions may be interprete& in terms of the preconditinns of another antomatic procedure

to which control of the forms is passed.

Automatic procedures run concurrently with the manual functions of the users.
Conflicts can erise over the form manipulations. Forms heing collected by en
automatic procedure could be modified or shipped away manuaiiy. They can even be
“stolen” by another competing automatic procedure. This implies that when a com-
plete set of forms is gathered for some procedure, it has to be temporarily “removed”

from the system. This operation safeguards the forms until they are processed.

2. Interface -

The specification of an automatic procedure in TLA bears some resemblence to
SBA and OBE [De Jong 1980, Zloof 1980]. The precondition segment of a procedure
bears a resemblance to a @BE query with forms instead of tables as the data objects.

In the simplest form of a TLA precondition, putting a value in a field of a precondition

-108-

indicates that & form is to be found with a field matching that value. The action seg-
ment of the procedure is similar. The simmplest operation is to assign to a field the

value specified in an action.

The order in which: forms needed by a procedure arrive is not important. The
order in which aclions are performed is not specified in detail. TLA merely ensures
Lthal Lhe procedure be logically consistent. The specification is non-procedural. The
user indicates what formns are to he cojlected, and what is to be done with them. He

does not specify how they are to be collected or how the actions are to be performed.

Preconditions in TLA describe what, when aﬁd where. For each procedure there is
a working sei of forms. The working sel may include forms that co-me only from cer-
tain workstations, forms local to the station specifying the procedure, or forms that
have just been processed by another automatic procedure. One may also specify a pro-

cedure to run only at certain times or ranges of times.

A TLA procedure is a colicction of "sketches”. A skeich resembies a form, but is to
be distinguished from form blanks, form types or form instances. A precondition
sketch indicatcs a request to the system to find "a form that looks like this”., An action
skelch indicates a request to modily a form that has already been obtained. In either
case a sketch describes a form instance before or afler processing by the procedure.
The medium of specification of a sketch is the same form blank which is the template
for the lorm instance being described. Actions and precondiﬁions which do not refer to
informalion found on a form are specified by pseudo-sketches of "pseudo-forms”. For
example, the condition that a procedure process only forms coming from user "john'

must be indicated on a special source pseudo-skeich.

Sketches are used to capture the restrictions referring to values that appear on

the face of the forms in the working set. Local resérictions are constant field values,

-109-

sels or ranges of values, and relations between values of the fields on a given form. The
local restrictions refer oniy to the values appearing on a single form in the working set.
TLA tries to determine whether a given form satisfies the local restrictions (including
the source condition) for some sketch in some automatic proceéure. If it does, TLA
notes that information and atiempts to match that form with other forms to obtain a

complete working set for that procedure.

Figure 2 is an example of a precondition sketch instructing TLA to watch for order
forms requesting "Tin tear-drops”. Since this information can be found right on the
order form, it is a local prccondition. A sample procedure including such a sketch
might perform the single action of returning a form that says "We stopped making

those things years ago!".

ORDER FORM KEY:
Customer number: Customer name:
Iterm: Description: Three Letter Acronym
Price:
Quantity:
Total:

Figure 2 A precondition sketch

Clobal restrictions on the working set of an automatic procgdure are the join con-
ditions between values of fields appearing on different forms. One expects all the forms
in a procedure’s working set to be linked by cerlain common field values. Matching
ficld values are therefore probably adequate to model many applications of automatic

procedures. However, simple inequality restrictions may also be specified.

-110-

Figure 3 shows how a link is made to find an inv form for the itemn requested on an
order form. Each sketch in o procedure has a name assigned by the user. This name is
prepended to Lthe ficld name. In this way a field of a different skeleh ean be referenced
within a skeclch. Notc thal ono could cguivalernily have placed the restriction

"=inv.item” in the item number feld of the order precondition sketch.

INVENTGCRY RECORD KEY: _
Ttem: =ord.item______ Description:
Price: .
Quantity instoek; .

Figure 3 A global (join) precondition

We can also restrict thc source of maeil being processed by an automatic pro-
cedure. Suppose, for example, that the accounting department rcccives an order form
from the ordering department. This may be interpreted as a request to forward a
customer’'s address to the warehouse so that.the order may be filled. If, however, the
order form arrives from the warehouse, that may indicate that the order has gone
through, and thal an invoice should be mailed out. Figure 4 shows an origin pseudo-
form sketch for such an appiication. Forms may thus be processed differently depeng-
ing upon their point of origin. Alternatively, the special ficld not may be filled in to
indicate that. only forms coming from stations not listed in the pseudo-sketch should
be provessed by the procedure. The pseudo-station me is also available (o indicate

that forrns must (or must not) come from within the station’s own files.

All form modification actions are indicated on action sketches. Every form mani-

puiated by a forms procedure has a precondition sketch and an action sketch. Actions

e X AN

-111-

CRIGIN PSEUDO-SKETCH
NOT: —

Stations:

ordering

¥igure 4 An origin pseudo-sketich
which do not concern themselves with field values must be expressed via pseudo-forms.

The action form sketch indicates all insertions and updates to the form. The
values to be inserted may be constant values, eg., an authorization, copied fGeld values,
or possibly function calls to application programs. We distinguish, therefore, between
the original and the updated value of any field. A ﬁe!d which must ke copied to arolher
form may itself be modified, and the wrong value must nol be used. l'urthermore, the
function calls may access both the original and updated values of fields. In fact, the

original value of a field will cften be one of the arguments to a function call update tc

that field.

The action sketch of figure 5 illustrates several features. The price of an item is
filled in by copying it from an inv form. A program called "mult” is called to calculate
the total. Finally, the original value of quantity is accessed whereas the updated value
of price is used. Nole Lthal ihe symbols "7, "?" and "t are used to respectively access
functions, original and updated field values. If none of these symbols are w»sed, a con-

stant string value is inserted.

-112-

ORDER FORM KEY:

Customer number: _______ Customer name:

ftem: Description:
Price: ?inv.price—_____
Quantity:

Total: #mull !price ?quantity

Figure 5 An aciion skeich

Some analysis is needed to ensure that every updated field uitimately depends
only upon values originally available on the working set of forms. It is clearly incorrect
to update each of two fields by copying over the updated value of the other. Suppose
that the price field of tﬁe order form were updated to "linv.price"” and the price field of
the inventory form were updated to "lorder.price”. No order of execution could make

sense of the request.

Field constraints must be obeyed. Procedures that create forms must fill in cer-
tain flelds. Procedures that modify forms must only modify fields with an appropriate
type. Implied actions must also be evaluated if a procedure modifies or inserts a field

which is an argument to an automatic field.

After all form modifications are completed, zero or more copies of each form are
fnade. Each form or copy may then be left in the user's files, inserted j.nto a dossier or
shipped to another station. The mechanism used to specify these operations is the des-
tination pseudo-sketch; an example is shown as figure 8. Copy O is the form manipu-
lated by a procedure, and one additional destination pseudc-sketch is filled in for each
copy of that form. The operations available are leave, ship and dossier. The first of

these requires no where argumeni, bul the olhers require Lthe name of a stalion or a

-113-

dossier respectively. This may be given as a simple constant or a field or function

value, just as in action skelches,

DESTINATION PSEUDO-SKETCH COPY: O__

Operation:' ship
Where: accounting

TFigure G Destination pseudo-sketch

A weak sort of postcondition is available by employing a function call to decide the
operation, dossier name or shipping destination. General postconditions can only be
acheived by cooperating form procedures which accept .diﬁerent cases of the working
sat of forms. Suppdse. for example, that the proccssing of an order causcs the quan-
tity of an item in stock to dip below a certain acceptable level. We may wish, at this
point, to send a memo tc; the manager initiating an increase in the production of the
item. The procedure which processes orders is incapable of conditionally producing
this memo as a postcondition to inventory update. It could unconditionally produce
such a memo and then functionally decide to mail it either to the manager or to a gar-
bage collection station. A cleaner approach, though, is to have a separate procedure

which searches for low inventory items, and then sends the memo.

With this approach individual tasks are clearly identified. Automatic procedures
are simple and completely devoid of any control flow. Furthermore, the implementa-
tion is simpler because' postconditions correspond to separate procedures. The low

inventory checker, for example, is only invoked when an inventory form is updated.

-114-

3. Tmplementation

An automatic forms procedure in TLA is specified by a coilection of skeiches, and
as such describes what is to be done rather than how to do it. The sketch representa-
tion is very convenient for the user. This format, however. is wholly unsuitable for
implemcntation. The specification must be analysed and translated for greater run-

time efficiency.

We cannot predict when the forms required to trigger a forms procedure may
arrive. The processing musi, therefore, of necessity be broken into distinct parts. The
specification in terms of sketches contains information of four basic kinds: local {form)
constraints, global {(working sct) constraints, duplicate form types (so that one form is
not uscd to match two skctches within o single working dossier), and actions. The exe-
cution of a forms procedure makes use of these four specifications at different stages.
IL is convenient to process these specifications al procedure definition time, and

translate them into formats that require no further run-time analysis.

Suppose that TLA is notified of the availability of a form for automatic processing.
It first checks whether the form matches the local conditions of any precondition
sketch for that form type. The local conditions are comprised of the source restriction
and the field constraints. If a form docs not match the local constraints of any precon-
dition sketch, then TLA assumes thal no procedure is prepared to handle it. Suppose
that a form does match the local constraints of one or more precondition sketches.
That form is lthen a candidat= for a working set for some procedure(s). It is immaterial
whether or not a working set including that form is complete. There is always the pes-

sibility that at some time the missing forms of the working set could arrive.

The form instance in figure 7 matches the local condition of Lke precondition

sketch, 7. e. quantity>0. There may not necessarily be a global match if there is no

-115-

order form with the same item number. Even if there is an order form with the same
item number, it may not satisfy the other constraints of its precondition sketeh.

Nevertheless, TLA notes thal a local mateh has been made and waits for the rest of the

working set to arrive.

INVENTORY RECORD KEY:

Item: =ord.item_—_______ Description: -
Price: i
Quantiity in stoel: >0_

Precondilion sketch

INVENTORY RECORD KEY: 0600L.00000

Item: 485 Description: Workstation
Price: 16000.00——___
Quantity in stock: 12

Form instance matching local preconditions

Figure 7 Local matching

TLA checks the local constraints of a form, records ité findings, usually determines
that the form does not complete a working sel, and then wails for more forms to
arrive. Further processing may not occur for some time. All local constraints for
forms of the same type are extracted from all procedures and stored in a common file.

This file is opened to check the local constraints of a given form for all procedures.

After the local constraints have been mateched for a form, TLA checks link condi-
tions between the corresponding sketches of the procedure. The link conditions are

stored in files by procedure. Suppose that, in the previous example, TLA found an

~-116-

order for item D002. It would note.that the link between the inventory and order form
precondition sketches were satisfied by these two form instances. If the working set
consisted of only these two forms, then the procedure actions would be performed.
Otherwise, TLA will wait until forms are found to match the remaining links of Lthe pro-

cedure.

Even if forms arrive together, the processing of the forms is sequential. TLA treats
each form individually. A locking algorithm guarantees that two forms cannot be pro-
cessed at once al a given workstation. Generally forms will not arrive simultaneously.
One can expect a considerable delay between the establishment of local constraints

and the evaluation of links between forms.

Actions are performed only once a working set of forms has been compiled.
Actions are stored in a separate file. TIA preprocesses procedures to check the legal-
ity of actions and to determine a legal order of execution if one exist. No further run-

tirne analysis is performed. Actions run to completion.

The example in figure 8 implicitly requires that price must first be copied from
the inventory form before its value may be multiplied by the quantity. This establishes

a legal order of actions for that sketch.

An admittedly uﬁlikely case is captured in figure 9 which is triggered if TLA
dclects two inventory forms for a single item. Since thsre are two precondition
sketches in the procedure, TLA assumes that they refer to two different forms in the
working set. Otherwise, any inventory form would trivially satisfy both precondition
sketches and thus trigger the procedurc. When the proccdurc is written, TLA notes
immediately that two precondition sketches describe forms of the same type. It per-
forms a key comparison of those forms in any working set identified to guarantee that

they are not one and the same.

-117-

ORDER FORM ' KEY: — e

— Customer name: . —m

Customer number:

Item: Description:
Price: ?inv.price—______

Quantity:
Total: #mullt !price ?quantity

Figure 8 Urdering of actions

INVENTORY RECORD o KeYr

Item: - .—- Description:

Price:
Quantity in stoek:

Precondition sketeh invi

INVENTORY RECORD KEY:

Item: =invl.item_______ Desecription:
Price:
Quanlily in slock:

Precondition sketch inv?

Figure 8 Duplicate form lypes in a procedure

The TLA automatic precedure interpreter is triggered upon receipt of mail, form
creation and form modification. Since the last two are the responsibility of the user,
triggering in these cascs involves conly the spawning of a new interpreting process. In

the first case, however, the interpreting process is initiated by the user who sent the

-118-

rail.

Automatic procedures are meant to run regardless of whether the user to whom
the corresponding station belongs ever signs on after the procedure is written. Mail in
the system is routed through a host control node. The sending station sends a message
to the host consisting of the contents of the form tuple and the name éf the station
which is to receive the mail. The host then storcs the form, updates the receiving
station’s mail tray and scnds a message to the recipient’'s station. At the recipient’s
station machine, the interpreting process is started. I communicates with the host,
asking for images of each new form in the recipient's mail-tray. The interpreter main-
tains files of form images for each form available for automatic processing. It deletes
the images when the forms have been processed either autématically or by the user.
The images are vopies of Lhe vonlenls of each form for use by the interpreter alone,
and are stored just as forms are stored. The user, however, has no access to the
images as forrms. They may not be modified, shipped away, or otherwise manipulated.

They are not properly forms or copies of forms, but merely images of forms.

Mail may arrive while the interpreter is running. It therefore continues to process
all mail until it discovers an empty tray in a manner similar to that of the line printer
daemon in UNJX. Only one interpreter may run at any time for a given station. In this
way we eliminate interference problems betweoen interpreters. A lock is placed on the

running of the interpreter for a given station.

4, Sketch and Instance Graphs

The working sel of o [orat procedure is sbsiracled in Lterms of a skefch graph with
the sketches as coloured vertices, and the matching conditions as edges in the graph.
The form gathering algorithm must find corresponding forms and satisfy matching con-

ditions of the sketch graph. An instance graph is generated associated with the forms

-119-

retrieved. The interpreter tries to match the sketch graph in the instance graph.

Consider the precondition sketches in figure 10. A link between the account and
order forms is estahlished across the customer number. A link between the order and
inventory forms is captured by fwo global conditions, one by ilem number and the

other by quantity.

CUSTOMER ACCOUNT KEY:

Customer number: =order.number
Credit rating:
Balance:

ORDER FORM KEY:

Customer number: Customer name:

Item: Description:
Price:
Quantity: <=inv.quantity
Total: ____

INVENTORY RECORD KEY:

Item: =order.itemn_____ Description:
Price:
Quantity in stock:

Figure 10 Precondition skefches of a procedure

The corresponding skelch graph is shown in Ggure 11, Each sketeh is represented

by a labelled/coloured node. Bach collection of global conditions between a pair of

~120-

sketches is represented by a single edge.

When a form is passed to the interpreter,; it first reads the file of iocal constraints
for the forms of that type. Whenever a match is found, the interpreter notes which
sketch of which procedure is matched by the form, and it enters a tﬁple consisting of

the form type, the form kecy, the proccdure and the sketch matched into a relation

(called "NODE").

The file of global constraiﬁt.s for the procedure matched is then read. For every
link concerning the matched sketch, I'LA establishes whether the current form satisfies
the join conditions with any of the forms previously recﬁrded in the NODE relation. For
every new link found, TLA inserts a tuple into another relation ‘called EDGE. EDGE
records the form keys, tvpes, sketch names and procedur;e narne of every link esla-

blished.

account order inventory

k- : * %

Figure 11 A sketch graph for a single procedure

The NODE and EDGE relations describe an instance graph with forms as vertices or
nodes and links between them as edges. The vertices are coloured according to which
sketch the form matches. If a form matches two or more distinet sketches in one or
more procedures, it is multiply represented, once for cach sketeh. Procedure names
partition the instance graph, since there can be no links between sketches of different
procedures. For each partition we wish to match the sketch graph that descri}:es the
working sei of forms for that procedure. Nodes are assigned a unique colour for each

sketch, and the corresponding colours are used in the instance graph. An instance of

-121-

the sketch graph, then, must be found within the instance graph.

Figure 12 shows the ‘instance graph for the procedures of figure 8. Forms have
been found to match each of the precondition sketches of the procedure, but therc is
no complete workiné, set. When a working set is found. it'is processed and it disappears
from the instance graph. Note that most of the disconnected subgraphs of the
instance graph are in fact subgraphs of the sketeh graph. In the lasl case, however,
there are two orders for a single item, and the relationsbhip is nnt that simple. The first
account form to complete either working set will complete the "copy” of the sketch

graph to be found in the instanece graph.

er inventory

account or
%k

%

* % ¥

*

Figure 12 The instance graph for a procedure

The relationships between the forms in the working set of a form procedure are
usually best expressed in terms of the join conditions. The sketch graph will generally
be connecled, The inslance graph, however, will more often consist of several partially

corﬁplete working sets of forms, and so will usually be disconnected.

If the join conditions imposed on the working set of forms are '"nice" then each
connected subgraph of the instance graph will also be a subgraph of the sketch graph.

1t is conceivabie, however, that two forms satisfying a precondition sketch may each

-122-

salisfy a join condition with a third form satisfying a second sketch in the same pro-
cedure. This anomaly will occur if the imposed join conditions are "not nice enough”.
In this case, the connected subgraphs of the instance graph are not as simply related
to the sketch graph. Thus, establishing when a complete working set of forms has been

compiled requires careful analysis.

When TLA has finished processing a form we know that the instance graph contains
no copies of the sketch graph. If a copy of the sketch graph is identified, then a work-
ing sel has been found, the procedure is executed, and the corresponding nodes and
edges arc purged from the instance graph. No more working sets remain. When a new
form arrives, a working set of forms may be completed only if thal new form is
included. The analysis of the instance graph, then, need only concern the connected

subgraphs which include nodes representing the new form.

Join conditions giving rise Lo sketch frees seem natural, since the "cheapest”
description of the relationships bLetween sketches would contain no cycles. If A is
related to B and B is reiated to C, then one would hope not to find any other relation-
ship holding between A and C. In practice, however, things may not be that simple.
Join conditions might give rise to cycles, or even disconnected sketch graphs. Suppose
that the warehouse, for example, has a single value form at its workstation keeping
track of the total doliar value of its stock. The procedures wh-ich update it would
include a blank preccndition sketch for a value fornmi. Since there is no confusion
about which value form is needed, there are no local or global conditions to be

specified for it. The corresponding sketch graph in figure 13 is therefore disconnected.
5. Graph-chasing

The algorithm which searches the instance graph for a copy of the sketch graph

employs a list of polential working sefs. Initially there exists a single such set contain-

account order inventory value

* % * *

Figure 13 A disconnecled sketch graph

ing only the key of the newly added form. Edges are traversed in the instance graph

and keys are added lv eavh sel until all the edges and nodes in the sketch graph have

been checked.

We start at the node of the sketch graph corresponding to the new form. We
traverse edges leading out from that node, and check off any new nodes that we reach.
We may follow any previously untraversed edges leading from any node we have thus
far reached. Edges will iead back to old nodes wherever cycles occur. If the sketch
graph is disconnected, then the subgraph containing the first node will be traversed
first. Edges not in that subgraph cannot lead from old nodes until an edge is traversed

which checks off two new nodes.

The sketch and instance graphs in figure 14 will be used to illustrate the graph-

chasing algorithm. The example contains both cycles and disjoint subgraphs.

Sketches 3 and 5 are sketches for the same form type but represent distinct
forms in the procedure. The terms {a, b, e, ...p] are keys belonging to forms Lhat
match the local conditions of the sketch graph. Form a, for example, matches sketch
1. Edges in the instance graph represent joins. Forms e and f, for example, satisfy the

global conditions between sketches 2 and 3.

The addition of form p resuits in the completion of the working set (a,c.f.h.p)
where previously no complete working set existed. The algorithm presented here will

identify this set of forms.

-124-

3
1 2 4
* * *
*
5
Sketch graph (t_vf:e(S) = type(5))
. @
% h
*
*
b

Instance graph (p is the most recently added node)

Figure 14 Saomple sketch and instance graphs

As we trace a path through the sketch graph, we try to mimic our actions non-
deterministically in the instance graph. If we follow an edge in the sketch graph, we
attempt to follow that edge in the instance graph for each set in our list. For each sue-
cess we add a néw key to some set, and for each failure, we delete a set. Suppose that
several edges may be traversed in Lhe instance graph for a given edge of the sketch

graph. We then split the current set and add & new node for 2sach copy. The closing of

~124%-

a cycle in the sketch graph corresponds conceptually to a select on the set list. In this
way we ensure that links actually exist in the instance graph for the {wo relevent forms

represented in each set.

Figure 15 dcscribes the steps followed in locating the working set in our example.

If at any point all working sets are lost, the algorithm halts with no working set of forms

identified.
potential
working
sets
12345
ol p is a new form matching sketch
5.
f p From node 5 in the sketch graph
g bp we can reach node 3 along edge
(3,5). The edges ({3.£).(5.p)) and
((3.g).(5,p)) in the instance graph
are followed and the potential
working set is "split".
cf p The edge (2,3) is now followed,
af p splitting the first set of the previ-
dg op uus slep.
acf p Follow edge (1,2).
bdf p
bdg p
acf p Rdge (2,5) completes a cycle.
Perform a selgct on the sets
resulting from the last step.
Since {(2,4).{5.p)) is not in the
instance graph, two polential
working sets are lost.
acfhp All the edges in the sketch graph
have been traversed. A form that
matches sketch 4 must be added.
acfhp Check thal formn [differs from
, form p. ‘

Figure 15 Finding a iwvorking set of forms

-126-

The skeich and instance graphs are described as follows: The sketch graph is
G'(N',E’) where N’ = {1, ... nj is the set of colours and E’ is & subsel of N' x N’ conlaining
no (i, j) where i = j. F is the set of form keys. The instance graph is G(N,E) where N is a
subset of N' x F and E is a subset of N x N, Furthermore, we adopt the convention that

if x = (i, k) belongs to N, then x' =i and x" =k, and if e = (%, y) belongs to E, then e’ =

(', 5').

In the example,
N' = {1,2.3.4,5,
B = §(1,2), (2,3), (3,9), (2,5},
F = {a,b,c.d.f,g.h,l,m.p),
N = §(1.a). {1,b), ...{3.p)}. and
E = {((1,a).(2,¢)), ((1,b),(2,)), -..({R,c).(5,PIN}.

We note, then, that for each x in N, X’ must belong to N’, and for each e in b, €’
must belong to E’ -- i.e. nodes and edges in the instance graph correspond to nodes and

edges of the sketch graph.

Suppose that finding a complete set of forms is equivaient to lecating an instance
of the sketeh graph within the instance graph. We can express this as follows: We seek
all subsets N of N such that (1) {x’|x in N} = N’ and (2) for each (i, j) in E’, there exists
x and y in N" such that x’ = i, y' = j and {x, y) belongs to E -- i.e. for cach node and
edge of the sketch graph there exist unique corresponding nodes and edges in the

spanning graph G'[N"].

In the example

N" = {(1,a), (2,c), (3.6), (4.h), (5.p)}.

The algorithm for finding all such subsets N makcs usc of the knowledge that any

working set of forms must include the most recently added node, say x. Furthermore,

-127-

there are two checklists, node and edge, with slots for each slement of N' and F'
respectively. These record whether or not the edges and nodes have been inspected.
All are initially set to false, and a set list, D, is set initially to empty. Each set has n

slots to hold all the keys of any working set of forms found by the algorithm:

Let X in N represent the newly added form. .
Add a set to D, with slot ¥’ set to x": x must belong to the working set.

Set nodefx'] to true: check off node X' of the sketch graph.
for each e = (i, j) in E' such that edge[e’] is false do
if both node(i] and node{j] are false then
‘for each set in D do
for each (y,z) in Ewherey' = iand z’ = jda
copy the set
set slot i to y"”, slotj to 2"
delete the original set
else if exactly one of node{i] and nodefj] is false then
/* without loss of generality, nodef{i] */
for each set in D do
for each (y.z) in E where y' =iand 2' = j and
y" is already in slot i of the set do
copy the set
set slot j to 2"
delete the original set
else if node[i] and node{j] are true then
for each set in D where (y,2) is not in E and
Y" = i' zu =j do
deiete the set
set edgele’] ta true
set nodsfi] to true
set node[j] to true
Check that forms of the same type are different.

i D is empty when the algorithm is tinished, then no working sets were found. if D
is not empty, then the "first" set containing no duplicatc kcys is choscn as the working

set.

The station's owner may attempt to move some of the forms in the working set
while the interpreter is running. Each of the forms must therefore be set aside. Kach
form in the working set is deleted from the system so that the only copy is the

interpreter’s image of the form. If any of the forms cannol be found, then the inter-

-128-

preter restores all the forms retained thus far, and aborts the forms procedure.

If «ll the forms are successfully obtained, then the interpreter performs the set of
actions. In the translation phase, the legality of actions, implied actions and a legal

order of actions have already been determined.

Aclions may "fail” il a string is tov long Lo be inserted in a given field, or if & form
is mailed to a non-existent station. In the former case, TLA chooses to insert the null
string by default, with the understanding that both humans and procedures are intelli-
gent enough to interpret this not as a value, but as a non-value. In the latter case, OFS
{and consequently TLA) returns the mail to the sending workstation. Since TLA pro-
cedures are capable of recognizing the source of maltl, it is presumed that this anomaly

could be appropriately dealt with if a user felt it necessary.

8. Concluding remarks

TLA captures, in some sense, what is meant by an "automatic forms procedure”.
The context of OFS limits the range of possible actions upon forms. There are also
many things that persons can do with OFS which have not been modelled in TLA.
Automatic procedures, for exampie, are not smart enough to expect the timely return

of a form which has been shipped away.

Form flow is determined by the particular configuration of procedures across the
system. Analytic tools are needed for determining some notion of "correctness” [Tsi-
chritzis 1981]. 1t is the responsibility of the users and a form administrator to model
and analyse that there are no undesirable side eflects resulting from some particular
combination of automatic procedures. Such analysis should be performed within a rea-

sonable complexity bound and it should be performed mechanically if al all possible.

-129-

The complexity of interpreting automatic procedures and form-gathering clearly
depends on (1) the size of the working set for a procedure, (2) the number of automatic
procedures running at workstations, and (3) the number of form images "waiting” in
the instance graphs of a workslation. The vomplexily of identifying a sketch graph
within the graph grows if the sketch graph is not merely a subgraph of the instance
graph. Obviously, whatever factors contribute to this complexity must be considered
in any "good office design". However, exactly what constitutes “good design”, and to

what extent iﬁ. is feagible, is not easily established.

Partly completed working sets of forms may or may not have a particular meaning
in terms of exceptions ‘and errors. If forms are "missing” from a working set, the
present forms may also be part of another working set. The missing forms would
determine which procedure is to be activated. Therc is no way of tclling whiéh pro-
cedure forms are missing until they arrive. Missing forms may never arrive. There is
no way of interpreting their absence as an error, except by placing some arbitrary

time limit upon form-gathering.

Forms may satisfy partly completed working sets for 2 number of procedures.
There is a need for some convenient way of displaying these sets. Users could inter-
pret what is "missing” and possibly act on this information. Instance graphs could be
qu_it.e'{complica.ted. Several partly completed sets may overlap in a single instance
graph. A graphic display would present this information in a much better fashion than

lists of form keys.

A simple feature thal would invrease user interaclion with automatic procedures
would be a function whose value is determined by the user. When the interpreter sees
this function assigned to a field in an action sketch, it holds all the forms in the work-
ing set. It then notifies the user when he next signs on, and waits until the user makes

a request to inspect the working set. At that point the user is allowed to assign a value

-130-

to the field (or possibly abort the procedure), and then execution will resume.

Form flow between stations in TLA is determined by the interplay of automatic
procedures. Flow of execution could be made more explicit by passing control between
procedures in different stations. One could then pass working sets of forms between
procedures. ln this way we could explicitly determine the order of operations. Pro-
cedures could then be called from other procedures without the need for form-
gathering. Decision points could be modelled by branching rather than by a variety of
similar working sets of forms. Which proeedure is to be called could be decided by

evaluating a function whose arguments are field values from the working set.

Many office automation systems have been strongly influenced by the SBA {defong
1980] and OBE [Zloof 1980] systems and Officetalk [Ellis & Nutt 1980}. The most notica-
ble exceptibn are SCOOP [Zisman 1979} and BDL [Hammer et al. 1977], which are, how-
ever, more office systems programming languages than office worker's languages. TLA
follows Lbis Lrend. I uses forms that are manipulated at workstations, like Officetalk,
and the non-procedural interface for defining procedures was in large part inspired by
the work of dedJong and Zloof. However, TLA takes a somewhat different approach from

either.

A major goal of the TLA project was to provide a facility for automating office pro-
cedures that could be used by office workers, as opposed to computer professionals,
with a minimum of training. As a resuit, there was an emphasis on providing familiar

concepts and a highly uniform interface.

The form is a very familiar concept to all office workers. Therefore, the idea of a

sketch is an easy one to tcach. By contrast. the SBA notion of boxes is both useful and
powerful. However, it has no analog in the office of today, and therefore requires a

more expert office worker to use.

-131-

In QBE, conditions appear in a separaie box frowm Lhe lebles of an application. By
Ct;ntrast.‘ TLA "conditions" {constraints) appear within a form itseli. This difference is
not quite as minor as it seems; it reﬂécts an underlying phiiosophy in the TLA project
that the user interface should be as uniform as possibie. There are no separate condi-
~ tion boxes attached to fofms within the underlying manual system, ar;d therefore there
are no separate conditions attacheci to sketches. Information that absclutely cannot
be obtained fl;om ti‘ze form fields {such as the source of the form) is specified using

pseudo-sketches that resemble forms as closely as possible.

Another difference between TLA and the IBM systems is that TLA, like its ancestors
OFS and MRS, runs on very small computers. Most of the development was done on an
1S1-11/23; the remainder was done on a "big machine”, a PDP-11/45. This means that
the hardware required for TLA is aflordable by any office large enough to benefit from
automation. At the samé time, incremental growth can be easily achieved by adding

additional machines of a- wide range of sizes to a local net. -

Both OFS and TLA have been implemented on PDP-11's and LSI 11/23's running
under UNIX. Compatibility with OFS was maintained in TLA. Changes to code and the
internal representation of an OFS system were mostly additions of modules and UNIX
file directories. Where existing files and code were modified, compatibility was main-
tained, so that OFS would simply ignore the added TLA features. Conversion costs from
an OFS systemn to one that supports TLA are negligible, and any TLA system could be
run with the OFS subset.. |

7. References

Attardi, G., Barber, G. and Simi, M., "Tawards an Integrated Office Work Station”,
MIT, 1980.

-132-

Cheung, C.. "OFS -- A Distributed Office Form System with a Micro Reletional Sys-
tem”, M.Sc. thesis, Department of Computer Science, University of Toronto,
1879,

Cheung, C. and Kornatowski, J., The OFS User's Manual, Computer Systems
Rescarch Group, University of Toronto, 1980.

de Jong, P., "The System for Business Automation (SBA): A Unified Application
Development System”, Information Processing 80, Lavington, S.H. (ed.}, North-
Holland, The Hague, 1880.

Ellis, C.A. and Nutt, G.J,, "Computer Science and Office Information Systems”,
Computing Surveys, March 1880.

Gibbs, S., "OFS: An Office Form System for a Network Architecture”, M.Sc. thesis,
Department of Computer Science, University of Toronto, 1979,

Gibbs, S.. The OFS Programmer's Manual, Computer Systems Research Group,
University of Toronto, 1980.

Hammer, M., Howe, W.G., Kruskal, V.J. and Wiadawsky, I., "A Very High Level Pro-
gramming Language for Data Processing Applications”, Comm ACM 20, 11 (1977),
pp. B32-840.

Hammer, M. and Kunin, K.S., "Design DPrinciples of an Office Specification
Language", MIT paper, 1979.

Hogg, 1., "TLA: A System for Automating Form Procedures", M.Sc. thesis, Depart-
meant of Computer Science, University of Toronto, 1981.

Hudyma, R., "Architecture of Microcomputcer Distributed Database Systems”,
M.Sc. thesis, Department of Computer Science, University of Toronto, 1978.

Hudyma, R., "'he Hardware Design of Distribuled Uffice Workstations” in 4
Panache of BBMS Ideas iif, Technical Report 111, Compuier Systems Research
Group. University of Toronto, 1980,

Kernmghan, B.W. and Ritchie, D.M., The C Programming Language. Prentice-Hall,
Buglewuvod Cliffs, New Jersey, USA, 1878.

-133-

Kornatowski, J.Z., The MRS User's Manual, Computer 3ystems Research Group.
University of Toronto, 1979.

Ladd, I., "A Distributed Database Management System Based on Microcomput-
ers”, M.Sc. thesis, Department of Computer Science, University of Toronto, 1979.

Ladd, 1. and Tsichritzis, D., "An Office Form Flow Model" in 1980 NCC proce=dings.

Metcalfe, R.M. and Boggs, D.K,, "Ethernet: Distributed Packet Switching for Local
Computer Networks", Comm. ACM 19, 7 {1978). pp. 384-404,

Morgan, H.L., "Research and Practice in Office Automation", Department of Deci-
sion Sciences, The Wharton School, University of Pennsylvania, Philadelphia. PA,
UBSA, 1980.

Nierstrasz, 0.M., "Automatic Coordination and Processing of Electronic Forms in
TLA", M.Sc. thesis, Department of Computer Science, University of Toronto,
1981,

Peterson, J.L., "Petri Nets", ACM Computing Surveys 9, 3 (1977), pp. 323-252.

Ritchie, D.M. and Thompson, K.. “The UNIX Time-Sharing System", The Beli Sys-
tem Technical Journal, Vol. 57, #6 (July-August 1978), pp. 1905-1528.

Zisman, M.D., "Representation, Specification and Automation of Office Pro-
cedures”, PhD dissertation, Wharton School, University of Pennsylvania, 1977.

Zloof, M.M., "Query by Example", "I'S Conferznce Mroceedings, Vol. 44, 1975
NCC.

Zioof, M.M., "A Language for Office and Business Automation”, IBM Research
Report, IBM Thomas J. Watson Hesearch Centre, Yorktown Heights, New York,
USA, 1980.

