
FORM PROCEDURES

by

J. Hogg
0. M. Nierstrasz

D. TsicLiritzis

Computer Systems Research Group
University of Toronto

121 St. .Joseph St.
Toronto, Ontario

Canada
M5S 1A4

-102 -

Abstract

This paper outlines an effort to introduce automation into an office forms system

(OFS). OFS allows its users to perform a set of operations on electronic forms. Actions

are triggered automatically when forms or combinations of forms arrive at particular

nodes in the network of stations. The actions deal with operations on forms. This

paper discusses the facilities provided for the specification of form-oriented automatic

procedures and sketches their implementation.

1
- 1 0 3 -

Form Procedures

1. Introduction

OFS is an electronic forms management system [Tsichritzis 1980, 1981, Cheung

1979, 1980, Gibbs 1979, 1980]. it provides an interface to MRS, a smalt relational data

base system [Hudyma 1978, Kornatowski 1979, Ladd 1979]. OFS and MRS were written

in C within the UNIX operating system [Kernighan 197B. Ritchie and Thomson 1978].

They have both been distributed widely to organizations.

An OFS system consists of a set of stations distributed over a number of machines

in a network. Each user has a private set of forms residing in his station. A user may

only manipulate those forms which he temporarily "owns" in the sense that they are

part of his database. Communication and interaction between stations is achieved by

allowing users to mail forms to one another.

A distinction is made in OFS between form types, form blanks and form instances.

A farm, blank is simply the form template used to display a form instance. A form

instance corresponds to an actual filled form represented as a tuple in the database of

forms. Its fields may have values assigned: to it, and it always has a unique key-

assigned at creation time by the system. A form type is the specification of a form

blank and a set of Geld types (see below). A form file is a relation used to store all

forms of the same type belonging to a station; The collection of form files for a station

is a form database. Figure 1 shows a form blank and form instance for the form type

called order. Note that some fields of the form instance need not have values associ

ated with them. The key field must have a value which is automatically assigned by the

system.

Form fields may be of six different types.- Manual fields of type 1 may be inserted

or modified at any time, type 3 may be inserted at any time but not modified, and type

-104-

ORDER FORM

Customer number:

Item: . . . _
Price:

Quantity:
Total:

Clislom^r narriH:

Description:. „ .

KEY:

An order form blank

ORDER FORM

Customer number: 354_

Item: 254_

KEY: 00001.00000

Customer name: CSRG.

Price: 200.00_
Quantity: 2

Total:

Description: Office Forms System.

An order form instance

Figure 1 Form blanks and instances

3 must be inserted at form creation and never modified.. Automatic fields of type 1 are

key fields, always the first field of a form, type 2 date fields, and type 3 signature fields

bearing the station's name if the preceding field is filled in.

Form operations are creation, selection, and modification. Forms may also be

attached to dossiers. Dossiers are lists of forms which are not necessarily of the same

form type, but which have something in common that the user wishes to capture.

Forms may not be destroyed, although they may be mailed to a "wastebasket sta

tion" which conceptually shreds thn electronic form. The wastebasket station may in

fact archive rather than erase a form depending upon the needs of a particular appli-

-105-

cation. Form instances are unique, and must always exist at exactly one location in the

system. They are either in some form file or waiting in a mail tray. Forms may be

mailed from one station to another. They must wait in a mail tray and be explicitly

retrieved in order to be placed in the receiving station's form file. Copies may be made

of forms, but they arc assigned a unique key consisting of the key of the original form

together with a system-generated copy number distinguishing it from the original.

Form files may be accessed as a whole using an MRS interface. However, in this

case no protection is provided against illegal operations such as destroying a form or

creating a form with a key that is already in use. Therefore, the MRS interface is not

meant to be used except by privileged users.

OFS is basically a passive system, i.e., the user has to initiate every action. The

only automatic form processing that OFS will do occurs if a form is mailed to a special

automatic station. Such a station periodically reads Its mail and submits the forms as

input to an application program. These programs must be written so as to preserve

compatibility with OFS. Consequently, the specification of an OFS automatic procedure

requires a great deal of knowledge of the inner workings of OFS. The TLA project was

conceived as a tool to introduce automatic form processing into OFS [Hogg 1981. Nier

strasz 1981].

A set of features was chosen to study the design and implementation issues of a

reasonably useful but unembellished automatic forms system. A number of assump

tions were made about the meaning of a "forms procedure", especially within the con

text of OFS.

The user interface is presented in terms of objects with which the OFS user is

already familiar. Specifying operations within a procedure corresponds closely to per

forming those operations within a manual system. A user who is editing an automatic

M

-106-

forms procedure manipulates "sketches" of forms. Sketches are form-like objects that

represent the forms that the procedure will eventually manipulate. The same form

template which OFS uses to display form instances is used quite differently in TLA to

describe preconditions and actions in office procedures. The specifications are non

procedural and have a simple syntax.

TLA does not assume any knowledge of the system state other than what is avail

able to the user in his form file or his mail tray. This corresponds to the notion in OFS

that users can only manipulate the forms that they "own". Anything happening outside

a user's own workstation does not concern him. The domain of automation is that of

the individual workstation. The complexity of determining when to trigger a procedure

is thereby considerably reduced.

An automatic procedure is meant to capture the notion of an office worker collect

ing forms al his or her desk until a "complete set" is compiled. He can then process

the forms and fUn them or send them on their way. on their way. Processing of the

collection of forms may cause forms to be modified or new forms to be added to the

set. Reference tables and calculating tools are made available through an interface to

a local library of application programs.

The other aspect of automation supplied by TLA is that of "smart forms" which

automatically fill in certain fields using previously filled-in fields as arguments. The

domain here is that of the farm alone, so triggering takes place whenever a form is

created or modified.

There are two types of automatic fields- The first type is filled in only if all its

argument fields have values. The other type accepts null values, and is filled in even if

some argument fileds are missing. Fields are initially filled in sequence. When an

automatic field is reached, an application program written in a conventional program-

-107-

ming language (usually C or the UNDC Shell) is executed. The output from this program

is assigned to that field. If any argument fields are subsequently modified, the

automatic fields which use it are also updated. Typical applications are arithmetic

operations such as sales taii calculations, or database queries such as filling in a

customer's address.

"Smarter forms" with fields that change value depending upon time conditions, the

state of the system, or any other variable, were not implemented. Some "smarter

form" problems can be solved with TLA's automatic procedures.

Automatic procedures have preconditions and actions, but no postconditions in

the usual sense. Satisfying all preconditions guarantees the successful completion of

all actions. There is only a very limited sense in which a procedure may "fail". For

example, it may never be triggered because missing forms do not arrive. Postcondi

tions may be interpreted in terms of the preconditions of another automatic procedure

to which control of the forms is passed.

Automatic procedures run concurrently with the manual functions of the users.

Conflicts can arise over the form manipulations. Forms being collected by en

automatic procedure could be modified or shipped away manually. They can even be

"stolen" by another competing automatic procedure. This implies that when a com

plete set of forms is gathered for some procedure, it has to be temporarily "removed"

from the system. This operation safeguards the forms until they are processed.

2. Interface

The specification of an automatic procedure in TT.A bears some resemblence to

SBA and OBE [De Jong 1980. Zloof 1980]. The precondition spgment of a procedure

bears a resemblance to a QBE query with forms instead of tables as the data objects.

In the simplest form of a TLA precondition, putting a value in a field of a precondition

•108-

indicates that a form is to be found with a field matching that value. The action seg

ment of the procedure is similar. The simplest operation is to assign to a field the

value specified in an action.

The order in which: forms needed by a procedure arrive is not important. The

order in which actions are performed is not specified in detail. TLA merely ensures

that the procedure be logically consistent. The specification is non-procedural. The

user indicates what forms are to he coJlectpd. and what is to be done with them. He

does not specify how they are to be collected or how the actions are to be performed.

Preconditions in TLA describe what, when and where. For each procedure there is

a working sel of forms. The working set may include Terms that come only from cer

tain workstations, forms local to the station specifying the procedure, or forms that

have just been processed by another automatic procedure. One may also specify a pro

cedure to run only at certain times or ranges of times.

A TT,A procedure is a collection of "sketches". A sketch resembles a form, but is to

be distinguished from form blanks, form types or form instances. A precondition

sketch indicates a request to the system to find "a form that looks like this". An action

sketch indicates a request to modify a form that has already been obtained. In either

case a sketch describes a form instance before or after processing by the procedure.

The medium of specification of a sketch is the same form blank which is the template

for the form instance being described. Actions and preconditions which do not refer to

information found on a form are specified by pseudo-sketches of "pseudo-forms". For

example, the condition that a procedure process only forms coming from user "John"

must be indicated on a special source pseudo-sketch.

Sketches are used to capture the restrictions referring to values that appear on

the face of the forms in the working set. Local restrictions are constant field values.

-109-

sets or ranges of values, and relat ions between values of the fields on a given form. The

local res t r ic t ions refer only to the values appearing on a single form in the working set.

TLA tr ies to de termine whether a given form satisfies the local res t r ic t ions (including

the source condition) for some sketch in some au tomat ic p rocedure . If it does, TLA

notes tha t information and a t t emp t s to m a t c h tha t form with o ther forms to obtain a

complete working set for t h a t procedure .

Figure 2 is an example of a precondit ion ske tch instructing TLA to watch for order

forms requesting "Tin tear-drops". Since this information can be found right on the

order form, it is a local precondition. A sample p rocedure including such a sketch

might perform the single action of re turning a form tha t says "We stopped making

those things years ago!".

ORDER FORM

Customer number:

I tem:
Price:

Quantity:
Total:

KEY:

Customer name:

Description: Three Let te r Acronym-

Figure 2 A precondition sketch

Global res t r ic t ions on the working set of an automat ic p rocedure a re the join con-

ditions between values of fields appearing on different forms. One expects all the forms

in a procedure ' s working se t to be linked by cer ta in common field values. Matching

field values are therefore probably adequate to model many applications of automatic

procedures . However, simple inequality res t r ic t ions m a y also be specified.

-110 -

Figure 3 shows how a link i? made to find an inv form for the i tem reques ted on an

order form. Each sketch in a p rocedure has a name assigned by the user . This name is

prepended to the field name. In this way a field of a different ske tch can be referenced

within a sketch. Note t h a t one could cquivolently have placed the restr ic t ion

"=inv.item" in the i t em number field of the order precondi t ion sketch.

INVENTORY RECORD KEY:

Item: =ord. i tem Description:
Price:

Quantity in stock:

Figure 3 A global (join) precondition

We can also restrict the source of mail being processed by an automatic pro

cedure. Suppose, for example, that the accounting department receives an order form

from the ordering department. This may be interpreted as a request to forward a

customer's address to the warehouse so t h a t t h e order may be filled. If, however, the

order form arrives from the warehouse, that may indicate that the order has gone

through, and that an invoice should be mailed out. Figure 4 shows an origin pseudo-

form sketch for such an application. Forms may thus be processed differently depend

ing upon their point of origin. Alternatively, the special field not may be filled in to

indicate that only forms coming from stations not listed in the pseudo-sketch should

bs processed by the procedure. The pseudo-station me is also available to indicate

that forms must (or must not) come from within the station's own files.

All form modification actions are indicated on action sketches. Every form mani

pulated by a forms procedure has a precondition sketch and an action sketch. Actions

- 1

111-

0RIG1N PSEUDO-SKETCH
NO!

Stations:
ordering

Figure 4 An origin pseudo-sketch

which do not concern themselves with field values must be expressed via pseudo-forms.

The action form sketch indicates all insertions and updates to the form. The

values to be inserted may be constant values, eg., an authorization, copied field values,

or possibly function calls to application programs. We distinguish, therefore, between

the original and the updated value of any field. A field which must be copied to another

form may itself be modified, and the wrong value must not be used. Furthermore, the

function calls, may access both the original and updated values of fields. In fact, the

original value of a field will often be one of the arguments to a function call update to

that field.

The action sketch of figure 5 illustrates several features. The price of an item is

filled in by copying it from an inv form. A program called "mult" is called to calculate

the total. Finally, the original value of quantity is accessed whereas the updated value

of price is used. Note that the symbols "#", "?" and "!" are used to respectively access

functions, original and updated field values. If none of these symbols are used, a con

stant string value is inserted.

-112-

ORDER FORM KEY:

Customer number : Customer name:

Item: Description:.
Price: ?inv.price

Quantity:
Total: #mult Iprice ?quanti ty

Figure 5 An action sketch

Some analysis is needed to ensure tha t every upda t ed field ult imately depends

only upon values originally available on the working 9et of forms. It is clearly incorrec t

to update each of two fields by copying over the upda ted value of the other. Suppose

that the pr ice field of the o rder form were upda ted to *'!inv.price" and the pr ice field of

the inventory form were upda ted to "lorder.price". No order of execution could make

sense of the request .

Field constra ints m u s t be obeyed. Procedures tha t c r ea t e forms mus t fill in cer

tain fields. Procedures tha t modify forms m u s t only modify fields with an appropriate

type. Implied actions m u s t also be evaluated if a p rocedure modifies or inser ts a field

which is an a rgument to an automat ic field.

After all form modifications are completed, zero or more copies of each form are

made. Each form or copy may then be left in the u se r ' s files, inse r ted into a dossier or

snapped to another station. The mechanism used to specify these operat ions is the des

t inat ion pseudo-sketch: an example is shown as figure 8. Copy 0 is t he form manipu

lated by a procedure, and one additional dest inat ion pseudo-sketch is filled in for each

copy of tha t form. The operat ions available a re leave, ship and dossier. The first of

these requires no where argument , but the others requi re the name of a station or a

- 1 1 3 -

dossier respectively. This may be given as a simple constant or a field or function

value, just as in act ion sketches .

DESTINATION PSEUDO-SKETCH COPY: 0_

Operation: ship.
Where: accounting-

Figure G Destination pseudo-sketch

A weak sort of postcondition is available by employing a function call to decide the

operation, dossier name or shipping destination. General postconditions can only be

acheived by cooperat ing form procedures which accep t different cases of the working

set of forms. Suppose, for example, t h a t t h e processing of an order causes the quan

tity of an i tem in stock to dip below a cer tain acceptable level. We may wish, at this

point, to send a m e m o to the manager initiating an increase in the production of the

item. The procedure which processes orders is incapable of conditionally producing

this m e m o as a postcondit ion to inventory update . It could unconditionally produce

such a m e m o and then functionally decide to mail it either, to the manager or to a gar

bage collection stat ion. A c leaner approach, though, is to have a separa te procedure

which sea rches for low inventory i tems, and then sends t h e m e m o .

With this approach individual tasks are clearly identified. Automatic procedures

are simple and completely devoid of any control flow. Fu r the rmore , the implementa

tion is s impler because postcondit ions correspond to s epa ra t e procedures . The low

inventory checker, for example, is only invoked when an inventory form is updated.

-114-

3. Implementation

An automatic forms procedure in TLA is specified by a collection of sketches, and

as such describes what is to be done rather than how to do it. The sketch representa

tion is very convenient for the user. This format, however, is wholly unsuitable for

implementation. The specification must be analysed and translated for greater run

time efficiency.

We cannot predict when the forms required to trigger a forms procedure may

arrive. The processing must, therefore, of necessity be broken into distinct parts. The

specification in terms of sketches contains information of four basic kinds: local (form)

constraints, global (working set) constraints, duplicate form types (so that one form is

not used to match two sketches within a single working dossier), and actions. The exe

cution of a forms procedure makes use of these four specifications at different stages.

It is convenient to process these specifications at procedure definition time, and

translate them into formats that require no further run-time analysis.

Suppose that TLA is notified of the availability of a form for automatic processing.

It first checks whether the form matches the local conditions of any precondition

sketch for that form type. The local conditions are comprised of the source restriction

and the field constraints. If n form docs not match the local constraints of any precon

dition sketch, then TLA assumes that no procedure is prepared to handle it. Suppose

that a form does match the local constraints of one or more precondition sketches.

That form is then a candidate for a working set for some procedure(s). It is immaterial

whether or not a working set including that form is complete. There is always the pos

sibility that at some time the missing forms of the working set could arrive.

The form instance in figure 7 matches the local condition of the precondition

sketch, i e . quantity>0. There may not necessarily be a global match if there is no

-115 -

order form with the same i tem number . Even if t h e r e is an o rder form with the same

i tem number, it may not satisfy the other cons t ra in ts of i ts precondit ion sketch.

Nevertheless, TLA notes tha t a local m a t c h has been m a d e and waits for the res t of the

working set to arrive.

INVENTORY RECORD

Item: =ord. i tem.
Price:

KEY:

Description:

Quantity in stock: >0_

Precondit ion sketch

INVENTORY RECORD

Item: 485_
Price: 16000.00_

Quantity in stock: 12-

KEY: 00001.00000

Description: Workstation

Form instance matching local precondit ions

Figure 7 Local matching

TLA checks the local cons t ra in ts of a form, r ecords its findings, usually de te rmines

tha t the form does not complete a working set , and then wails for more forms to

arrive. Fur ther processing may not occur for some t ime. All local constra ints for

forms of the same type are ex t rac ted from ail p rocedures and s tored in a common file.

This file is opened to check the local cons t ra in t s of a given form for all procedures .

After the local constra ints have been m a t c h e d for a form, TLA checks link condi

tions between the corresponding ske tches of the p rocedure . The link conditions are

stored in files by procedure . Suppose that , in the previous example, TLA found an

-116-

order for item 0002. It would note.that the link between the inventory and order form

precondition sketches were satisfied by these two form instances. If the working set

consisted of only these two forms, then the procedure actions would be performed.

Otherwise, TLA will wait until forms are found to match the remaining links of the pro

cedure.

Even if forms arrive together, the processing of the forms is sequential. TLA treats

each form individually. A locking algorithm guarantees that two forms cannot be pro

cessed at once at a given workstation. Generally forms will not arrive simultaneously.

One can expect a considerable delay between the establishment of local constraints

and the evaluation of links between forms.

Actions ore performed only once a working set of forms has been compiled.

Actions are stored in a separate file. TT.A preprocesses procedures to check the legal

ity of actions and to determine a legal order of execution if one exist. No further run

time analysis is performed. Actions run to completion.

The example in figure 8 implicitly requires that price must first be copied from

the inventory form before its value may be multiplied by the quantity. This establishes

a legal order of actions for that sketch.

An admittedly unlikely case is captured in figure 9 which is triggered if T1.A

detects two inventory forms for a single item. Since there are two precondition

sketches in the procedure, TLA assumes that they refer to two different forms in the

working set. Otherwise, any inventory form would trivially satisfy both precondition

sketches and thus trigger the procedure. When the procedure is vrrittcn, TLA notes

immediately that two precondition sketches describe forms of the same type. It per

forms a key comparison of those forms in any working set identified to guarantee that

they are not one and the same.

-117-

ORDERFORM

Customer number:

Item:

Customer name:

Description:
Price: ?inv.price

Quantity:
Total: #mult Jprice ?quantity

KEY:_.

Figure 8 Ordering of actions

INVENTORY RECORD

Item:
Price:

Quantity in stock:

KKY:

Description:

Precondition sketch invl

INVENTORY RECORD

Item: =inv Litem!
Price:

Quantity in stock:

KEY: _ .

Description:

Precondit ion sketch inv?

Figure 9 Duplicate form types in a procedure

The TLA automatic procedure interpreter is triggered upon receipt of mail, form

creation and form modification. Since the last two are the responsibility of the user,

triggering in these cases involves enly the spawning of a new interpreting process. In

the first case, however, the interpreting process is initiated by the user who sent the

-118-

maii.

Automatic procedures are meant to run regardless of whether the user to whom

the corresponding station belongs ever signs on after the procedure is xvritten. Mail in

the system is routed through a host control node. The sending station sends a message

to the host consisting of the contents of the form tuple and the name of the station

which is to receive the mail. The host then stores the form, updates the receiving

station's mail tray and sends a message to the recipient's station. At the recipient's

station machine, the interpreting process is started. It communicates with the host,

asking for images of each new form in the recipient's mail-tray. The interpreter main

tains files of form images for each form available for automatic processing. It deletes

the images when the forms have been processed either automatically or by the user.

Trie images are copies of the contents of each form for use by the interpreter alone,

and are stored just as forms are stored. The user, however, has no access to the

images as forms. They may not be modified, shipped away, or otherwise manipulated.

They are not properly forms or copies of forms, but merely im.ages of forms.

Mail may arrive while the interpreter is running. It therefore continues to process

all mail until it discovers an empty tray in a manner similar to that of the line printer

daemon in UNIX. Only one interpreter may run at any time for a given station. In this

way we eliminate interference problems between interpreters. A lock is placed on the

running of the interpreter for a given station.

4. Sketch and Instance Graphs

The working set of a form procedure is abstracted in terms of a sketch graph with

the sketches as coloured vertices, and the matching conditions as edges in the graph.

The form gathering algorithm must find corresponding forms and satisfy matching con

ditions of the sketch graph. An instance graph is generated associated with the forms

k

-119-

retrieved. The interpreter tries to match the sketch graph in the instance graph.

Consider the precondition sketches in figure 10. A link between the account and

order forms is established across the customer number. A link between the order and

inventory forms is captured by two global conditions, one by item number and the

other by quantity.

CUSTOMER ACCOUNT KEY:

Customer number: =order.number
Credit rating:

Balance:

ORDER FORM KEY:

Customer number: Customer name:

Item: Description:
Price:

Quantity: <=inv.quantity
Total:

INVENTORY RECORD KEY:

Item: =sorder.item Description:
Price:

Quantity in stock:

Figure 10 Precondition sketches of a procedure

The corresponding sketch graph is shown in figure 11. Each sketch is represented

by a labelled/coloured node. Each collection of global conditions between a pair of

-1 20-

sketches is represented by a single edge.

When a form is passed to the interpreter* it first reads the file of local constraints

for the forms of that type. Whenever a match is found, the interpreter notes which

sketch of which procedure is matched by the form, and it enters a tuple consisting of

the form type, the form key, the procedure and the sketch matched into a relation

(called "NODE").

The file of global constraints for the procedure matched is then read. For every

link concerning the matched sketch. TLA establishes whether the current form satisfies

the join conditions with any of the forms previously recorded in the NODE relation. For

every new link found, TLA inserts a tuple into another relation called EDGE. EDGE

records the form keys, types, sketch names and procedure name of every link esta

blished.

a c c o u n t o r d e r i n v e n t o r y

Figure 11 A sketch graph for a single procedure

The NODE and EDGE relations describe an instance graph with forms as vertices or

nodes and links between them as edges. The vertices are coloured according to which

sketch the form matches. If a form matches two or more distinct sketches in one or

more procedures, it is multiply represented, once for each sketch. Procedure names

partition the instance graph, since there can be no links between sketches of different

procedures. For each partition we wish to match the sketch graph that describes the

working set of forms for that procedure. Nodes are assigned a unique colour for each

sketch, and the corresponding colours are used in the instance graph. An instance of

I

- 1 2 1 -

the sketch graph, then, must be found within the instance graph.

Figure 12 shows the instance graph for the procedures of figure 9. Forms have

been found to match each of the precondition sketches of the procedure, but there it?

no complete working set. When a working set is found, it is processed and it disappears

from the instance graph. Note that most of the disconnected subgraphs of the

instance graph are in fact subgraphs of the sketch graph. In the last case, however,

there are two orders for a single item, and the relationship is not that simple. The first

account form to complete either working set will complete the "copy" of the sketch

graph to be found in the instance graph.

1

account order inventory

Figure 12 The instance graph for a procedure

The relationships between the forms in the working set of a form procedure are

usually best expressed in terms of the join conditions. The sketch graph will generally

be connected. The instance graph, however, will more often consist of several partially

complete working sets of forms, and so will usually be disconnected.

If the join conditions imposed on the working set of forms are "nice" then each

connected subgraph of the instance graph will also be a subgraph of the sketch graph.

It is conceivable, however, that two forms satisfying a precondition sketch may each

-122-

satisfy a join condition with a third form satisfying a second sketch in the same pro

cedure. This anomaly will occur if the imposed join conditions are "not nice enough".

In this case, the connected subgraphs of the instance graph are not as simply related

to the sketch graph. Thus, establishing when a complete working set of forms has been

compiled requires careful analysis.

When TLA has finished processing a form we know that the instance graph contains

no copies of the sketch graph. If a copy of the sketch graph is identified, then a work

ing set has been found, the procedure is executed, and the corresponding nodes and

edges arc purged from the instance graph. No more working sets remain. When a new

form arrives, a working set of forms may be completed only if that new form is

included. The analysis of the instance graph, then, need only concern the connected

subgraphs which include nodes representing the new form.

Join conditions giving rise to sketch trees seem natural, since the "cheapest"

description of the relationships between sketches would contain no cycles. If A is

related to B and B is related to C, then one would hope not to find any other relation

ship holding between A and C. In practice, however, things may not be that simple.

Join conditions might give rise to cycles, or even disconnected sketch graphs. Suppose

that the warehouse, for example, has a single value form at its workstation keeping

track of the total dollar value of its stock. The procedures which update it would

include a blank precondition sketch for a value form. Since there is no confusion

about which value form is needed, there are no local or global conditions to be

specified for it. The corresponding sketch graph in figure 13 is therefore disconnected.

5. Graph-chasing

The algorithm which searches the instance graph for a copy of the sketch graph

employs a list ol potential working sets. Initially there exists a single such set contain-

-123-

account

*

order

*

inventory

*

value

*

Figure 13 A disconnected sketch graph

ing only the key of the newly added form. Edges are traversed in the instance graph

and keys are added to each set until all the edges and nodes in the sketch graph have

been checked.

We start at the node of the sketch graph corresponding to the new form. We

traverse edges leading out from that node, and check off any new nodes that we reach.

We may follow any previously untraversed edges leading from any node we have thus

far reached. Edges will lead back to old nodes wherever cycles occur. If the sketch

graph is disconnected, then the subgraph containing the first node will be traversed

first. Edges not in that subgraph cannot lead from old nodes until an edge is traversed

which checks off two new nodes.

The sketch and instance graphs in figure 14 will be used to illustrate the graph-

chasing algorithm. The example contains both cycles and disjoint subgraphs.

Sketches 3 and 5 are sketches for the same form type but represent distinct

forms in the procedure. The terms fa, b, c, ...pj are keys belonging to forms that

match the local conditions of the sketch graph. Form a, for example, matches sketch

1. Edges in the instance graph represent joins. Forms c and f. for example, satisfy the

global conditions between sketches 2 and 3.

The addition of form p results in the completion of the working set (a,c,f,h,p)

where previously no complete working set existed. The algorithm presented here will

identify this set of forms.

•124-

4

Sketch graph (type(3) = type(5))

h
*

Instance graph (p is the most recently added node)

Figure] 4 Sample sketch and instance graphs

As we trace a path through the sketch graph, we try to mimic our actions non-

deterministic ally in the instance graph. If we follow an edge in the sketch graph, we

attempt to follow that edge in the instance graph for each set in our fist. For each suc

cess we add a new key to some set. and for each failure, we deleto a set. Suppose that

several edges may be traversed in the instance graph for a given edge of the sketch

graph. We then split the current set and add a new node for each copy. The closing of

-12'y

a cycle in the sketch graph corresponds conceptually to a select on the set list. In this

way we ensure that links actually exist in the instance graph for the two relevent forms

represented in each set.

Figure 15 describes the steps followed in locating the working set in our example.

If at any point all working sets are lost, the algorithm halts with no working set of form"

identified.

potential
working
sets
1 2 3 4 5

P

f P
g P

c f p
d f p
d E p

a c f p
b d f p
b d g p
a c f p

a c f h p

a c f h p

p is a new form matching ske tch
5.
From node 5 in the ske tch graph
we can r each node 3 along edge
(3,5). The edges ((3,f).(5,p~)) and
((3,g),(5.p)) in the ins tance graph
are followed and the potent ia l
working set is "sollt".
The edge (2,3) is now followed,
splitting the first se t of the previ
ous s tep .
Follow edge (1,2).

Edge (2,5) comple tes a cycle.
Perform a select on the sets
result ing from t h e las t s tep .
Since ((2,d),(5,p)) is not in the
ins tance graph, two potent ia l
working sets a re lost.
All the edges in the ske tch graph
have been t raversed. A form tha t
ma tches sketch 4 mus t be added.
Check that form f differs from
form p.

Figure 15 Finding a working set of forms

-126-

The sketch and instance graphs are descr ibed as follows: The sketch graph is

G'(N',E') where N' = [1, ... zx\ is the set of colours and E* is a subse t of N' x N' containing

no (i, j) where i = j . F is t h e set of form keys. The ins tance graph is G(N,E) where N is a

subset of N' x F and E is a subset of N x N. Fu r the rmore , we adopt the convention tha t

if x = (i, k) belongs to N, then x' = i and x" = k, and if e = (x, y) belongs to E, then e' =

In the example,

N' = J 1.2.3.4.5).

£ ' = \(l,a), (2,3). (3,5). (2,5)),

F = fa.b.c.d.f.g.h.l.m.p).

N = KLaL (Lb)(5.p)i. and

E = | ((l ,a) . (2 j C)) . ((l ,b),(2,d)), . . .((2,c),(5,p))j .

We note, then, tha t for each x in N, x' mus t belong to N \ and for each e in K, e'

mus t belong to E' — i.e. nodes and edges in the ins tance g raph correspond to nodes and

edges of the ske tch graph.

Suppose tha t rinding a complete set of forms is equivalent to locating an instance

of the sketch graph within t h e instance graph. We can express this as follows: We seek

all subsets N" of N such t h a t (1) {x'jx in N"j = N' and (2) for each (i. j) in E \ there exists

x and y in N" such tha t x' = i, y* = j and (x, y) belongs to E — l.e. for each node and

edge of the ske tch graph the re exist unique corresponding nodes and edges in the

spanning graph G'[N"].

in the example

N" = KLa) . (2,c), (3,f), (4,h), (5.p)J.

The algorithm for finding all such subsets N" makes use of the knowledge t h a t any

working set of forms m u s t include the mos t recent ly added node, say x. Fur thermore ,

1
-127-

there are two checklists, node and edge, with slots for each element of N' and F'

respectively. These record whether or not the edges and nodes have been inspected.

All are initially set to false, and a set list, D, is set initially to empty. Each set has n

slots to hold all the keys of any working set of forms found by the algorithm:

Let x in N represent the newly added form.
Add a set to D, with slot x' set to x": x must belong to the working set.
Set node[x'] to true: check off node x* of the sketch graph.
for each e = (i, j) in E" such that edgejV] is false do

if both node[i] and nodef j] are false then
for each set in D do

for each (y.z) in E where y' = i and z' = j do
copy the set
set slot i to y", slot j to z"

delete the original set
else if exactly one of nodefi] and nodefj] is false then

/ * without loss of generality, node[i] */
for each set in D do

for each (y.z) in E where y" = i and z' = j and
y" is already in slot i of the set do
copy the set
set slot j to z"

delete the original set
else if nodefi] and node[j] are true then

for each set in D where (y.z) is not in E and
y" = i. z" = j do
delete the set

set edgefe'] to true
set nodefi] to true
set nodefj] to true

Check that forms of the same type are different.

If D is empty when the algorithm is finished, then no working sets were found. If D

is not empty, then the "first" set containing no duplicate keys is chosen as the working

set.

The station's owner may attempt to move some of the forms in the working set

while the interpreter is running. Each of the forms must therefore be set aside. Each

form in the working set is deleted from the system so that the only copy is the

interpreter's image of the form. If any of the forms cannot be found, then the inter-

-128-

preter restores all the forms retained thus far. and aborts the forms procedure.

If all the forms are successfully obtained, then the interpreter performs the set of

actions. In the translation phase, the legality of actions, implied actions and a legal

order of actions have already been determined.

Actions may "fail" if a string is too long to be inserted in a given field, or if a form

is mailed to a non-existent station. In the former case, TLA chooses to insert the null

string by default, with the understanding that both humans and procedures are intelli

gent enough to interpret this not as a value, but as a non-value. In the latter case, OFS

(and consequently TLA) returns the mail to the sending workstation. Since TLA pro

cedures are capable of recognizing the source of mail, it is presumed that this anomaly

could be appropriately dealt with if a user felt it necessary.

6. Concluding remarks

TLA captures, in some sense, what is meant by an "automatic forms procedure".

The context of OFS limits the range of possible actions upon forms. There are also

many things that persons can do with OFS which have not been modelled in TLA

Automatic procedures, for example, are not smart enough to expect the timely return

of a form which has been shipped away.

Form flow is determined by the particular configuration of procedures across the

system. Analytic tools are needed for determining some notion of "correctness" [Tsi

chritzis 1981]. It is the responsibility of the users and a form administrator to model

and analyse that there are no undesirable side effects resulting from some particular

combination of automatic procedures. Such analysis should be performed within a rea

sonable complexity bound and it should be performed mechanically if al all possible.

I

-129-

The complexity of interpreting automatic procedures and form-gathering clearly

depends on (1) the size of the working set for a procedure, (2) the number of automatic

procedures running at workstations, and (3) the number of form images "waiting" in

the instance graphs of a workstation. The complexity of identifying a sketch graph

within the graph grows if the sketch graph is not merely a subgraph of the instance

graph. Obviously, whatever factors contribute to this complexity must be considered

in any "good office design". However, exactly what constitutes "good design", and to

what extent it is feasible, is pot easily established.

Partly completed working ?etg of forms may or may not have a particular meaning

in terms of exceptions and errprs. If forms are "missing" from a working set, the

present forms may also be part of another working set. The missing forms would

determine which procedure is to be activated. There is no way of telling which pro

cedure forms are missing until they arrive. Missing forms may never arrive. There is

no way of interpreting their absence as an error, except by placing some arbitrary

time liniit upon form-gathering.

Forms may satisfy partly completed working sets for a number of procedures.

There is a need for some convenient way of displaying these sets. Users could inter

pret what is "missing" and possibly act on this information. Instance graphs could be

quite complicated. Several partly completed sets may overlap in a single instance

graph. A graphic display would present this information in a much better fashion than

lists of form keys.

A simple feature thai would increase user interaction with automatic procedures

would be a function whose value is determined by the user. When the interpreter sees

this function assigned to a field in an action sketch, it holds all the forms in the work

ing set. It then notifies the user when he next signs on. and waits until the user makes

a request to inspect the working set. At that point the user is allowed to assign a value

-130-

to the field (or possibly abort the procedure), and then execution will resume.

Form flow between stations in TLA is determined by the interplay of automatic

procedures. Flow of execution could be made more explicit by passing control between

procedures in different stations. One could then pass working sets of forms between

procedures. In this way we could explicitly determine the order of operations. Pro

cedures could then be called from other procedures without the need for form-

gathering. Decision points could be modelled by branching rather than by a variety of

similar working sets of forms. Which procedure is to be called could be decided by

evaluating a function whose arguments are field values from the working set.

Many office automation systems have been strongly influenced by the SBA [deJong

1980] and OBE fZloof I960] systems and Officetalk [Ellis & Nutt 1980]. The most notica-

ble exception are SCOOP [Zisman 1979] and DDL [Hammer et al. 1977], which are, how

ever, more office systems programming languages than office worker's languages. TLA

follows this trend. It uses forms that are manipulated at workstations, like Officetalk,

and the non-procedural interface for defining procedures was in large part inspired by

the work of deJong and Zloof. However, TLA takes a somewhat different approach from

either.

A major goal of the TLA project was to provide a facility for automating office pro

cedures that could be used by office workers, as opposed to computer professionals,

with a minimum of training. As a result, there was an emphasis on providing familiar

concepts and a highly uniform interface.

The form is a very familiar concept to all office workers. Therefore, the idea of a

sketch is an easy one to teach. By contrast, the SBA notion of boxes is both useful and

powerful. However, it has no analog in the office of today, and therefore requires a

more expert office worker to use.

- 1 3 1 -

In QBE, conditions appear in a separate box from the tables of an application. By

contrast, TLA "conditions" (constraints) appear within a form itself. This difference is

not quite as minor as it seems; it reflects an underlying philosophy in the TLA project

that the user interface should be as uniform as possible. There are no separate condi

tion boxes attached to forms within the underlying manual system, and therefore there

are no separate conditions attached to sketches. Information that absolutely cannot

be obtained from the form fields (such as the source of the form) is specified using

pseudo-sketches that resemble forms as closely as possible.

Another difference between TLA and the IBM systems is that TLA like its ancestors

OFS and MRS, runs on very small computers. Most of the development was done on an

LSI-11/23: the remainder was done on a "big machine", a PDP-11/45. This means that

the hardware required for TLA is affordable by any office large enough to benefit from

automation. At the same time, incremental growth can be easily achieved by adding

additional machines of a wide range of sizes to a local net.

Both OFS and TLA have been implemented on PDP-ll 's and LSI 11/23's running

under UNDC. Compatibility with OFS was maintained in TLA Changes to code and the

internal representation of an OFS system were mostly additions of modules and UNEC

file directories. Where existing files and code were modified, compatibility was main

tained, so that OFS would simply ignore the added TLA features. Conversion costs from

an OFS system to one that supports TLA are negligible, and any TLA system could be

run with the OFS subset.

7. References

Attardi, G.. Barber, G. and Simi. M., "Towards an Integrated Office Work Station",
MIT. 1980.

A

-132 -

Cheung, C . "OFS - A Distributed Office Form Sys tem with a Micro Relational Sys
tem", M.Sc. thesis, Depar tment of Computer Science, University of Toronto,
1979.

Cheung. C. and Kornatowski, J., The OFS User's Manual, Computer Systems
Research Croup, Uni%'crsity of Toronto, 1980.

de Jong, P., "The System for Business Automation (SBA): A Unified Application
Development System", Information Processing 80, Lavington, S.H. (ed.), North-
Holland, The Hague, 1980.

Ellis, CA. and Nutt, G.J., "Computer Science and Office Information Systems",
Computing Surveys, March 1980.

Gibbs, S., "OFS: An Office Form System for a Network Archi tecture" . M.Sc. thesis.
Depar tment of Computer Science, University of Toronto, 1979.

Gibbs, S., 77ie OFS Programmer's Manual, Computer Systems Research Group,
University of Toronto. 1980.

Hammer. M., Howe, W.G., Kruskal. V.J. and Wladawsky, I., "A Very High Level Pro
gramming Language for Data Processing Applications", Comm ACM 20, 11 (1977).
pp. 832-840.

Hammer, M. and Kunin. K.S.. "Design Principles of an Office Specification
Language", MIT paper , 1979.

Hogg, J., "TLA: A System for Automating Form Procedures" , M.Sc. thesis, Depart
m e n t of Computer Science, University of Toronto, 1981.

Hudyma, R., "Architecture of Microcomputer Distr ibuted Database Systems",
M.Sc. thesis. Depar tment of Computer Science, University of Toronto, 1978.

Hudyma, R., "The Hardware Design of Distr ibuted Office Workstations" in A
Panache of DBMS Ideas III, Technical Report 111, Computer Sys tems Research
Group. University of Toronto, 1980.

Kernighan. B.W. and Ritchie, D.M.. The C Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey, USA, 1973.

133-

Kornatowski, J.Z.. The MRS User's Manual, Computer Systems Research Group.
University of Toronto. 1979.

Ladd, I., "A Distributed Database Management System Based on Microcomput
ers". M.Sc. thesis, Department of Computer Science, University of Toronto, 1979.

Ladd. I. and Tsichritzis, D., "An Office Form Flow Model" in 1980 NCC proceedings.

Metcalfe, R.M. and Boggs, D.K., "Ethernet: Distributed Packet Switching for Local
Computer Networks", Comm. ACM 19. 7 (1976). pp. 364-404.

Morgan, H.L.. "Research and Practice in Office Automation". Department of Deci
sion Sciences. The Wharton School. University of Pennsylvania. Philadelphia. PA
USA. I960.

Nierstrasz, 0-M- "Automatic Coordination and Processing of Electronic Forms in
TLA", M.Sc. thesis, Department of Computer Science, University of Toronto,
1981.

Peterson. J.L,, "Petri Nets", ACM Computing Surveys 9, 3 (1977). pp. 223-252.

Ritchie. D.M. and Thompson, K. "The UNIX Time-Sharing System", The Bell Sys
tem Technical Journal, Vol. 57, #G (July-August 1978), pp. 1905-1929.

Zisman, M.D., "Representation, Specification and Automation of Office Pro
cedures", PhD dissertation. Wharton School, University of Pennsylvania. 1977.

Zloof. M.M., "Query by Example". AFIPS Conference Proceedings, Vol. 44, 1975
NCC.

Zloof. M.M., "A Language for Office and Business Automation". IBM Research
Report, IBM Thomas J. Watson Research Centre. Yorktown Heights, New York,
USA, 1980.

