
27 January 1981

fliilio ma ti c C;o o rd i na t i on
aS.d Processing of Electronic' Forms in TLA

(3?. Intelligent Office' Information System)

oy

Oscar M. Mierstrasz

A thesis suomittei
in conformity with the requirements

for the degree of Master of Science.

Department of Computer Science
University of Toronto

Toronto, Ontario
Canada
M5S 1A7

Copyright (c) 1961 Oscar M. skiers trasz

Abstract

Many procedures for processing paper forms in offices are

well-defined, regular and mundane. This thesis discusses the

design and implementation of a facility for specifying automatic

procedures in an electronic office forms system, called TLA. A

high-level description of a working set oi orms is used to

trigger the automatic procedures. The algorithm which estab

lishes the triggering is presented in detail.

- 1 1 -

k £Kli2iiI ? d&ements

I wish to express gratitude to my supervisor, Dr. Denis Tsi-

chritzis, for his foresight, insight and hindsight, and for

inspiring an congenial atmosphere within the research group. I

also thank Dr. Fred Lochovsky for pointing out many improvements

to the manuscript.

Tweedledum, my research partner John Hogg, I thank for his

patience, cooperation and intelligence.

Christine Cheung and Simon Cibbs I thank for producing modu

lar software tnat required minimal changes to accomodate TLA.

Finally, I thank Bob Hudyma, Ivor Ladi, Fausto Rabitti and

Marc Graham for their comments and suggestions.

Financial support was gratefully received from the Natural

Sciences and Engineering Council of Canada.

- 1 1 1 -

T§.ole of Contents

1. Introduction 1

2. Automation in an Electronic Office 3
2.1. Motivation 4
2.2. Office Systems Today 7
2.3. Design Considerations 12
2.4. TLA 1?
2.1.1. OFS: An Office Forms System 20
2.4.2. OFS Operations 21
2.4.3. OB'S Configuration and Implementation 24
3. TLA Design 26
3.1. Design Specifications 27
3.2. User Interface 3Z
3.2.1. Preconditions 32
3.2.2. Actions • 35
3.3. Summary 40

4. TLA Implementation 43
4.1. Translation 44.
4.2. Triggering and Graph-chasing 5%
4.2.1. Form Images 51
4.2.2. Sketch and Instance Graphs 54
4.2.3. Grapn-chasing 60
4.3. Actions 57

5. Conclusions 68

5. Bibliography 72

- 1 v -

Table of Figures

1
p

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure 9
Figure 10
Figure 11
ff'igure 12
Figure 13
Figure 14

4
5
6
7
8

Form blanks and instances 22
A precondition sketch 33
A global (join) precondition 34
An origin pseudo-sketch 35
An action sketch 37
Local matching 46
Ordering of actions 46
Duplicate form types in a procedure 49
Precondition sketches of a procedure 55
A sketch graph for a single procedure 55
Tne instance graph for a procedure 5?
A disconnected sketch graph 59
Sample sketch and instance graphs 61
Finding a working set of forms S3

•lv-

TLA 27/January/l981

1. Intrpductipn

Traditionally computer applications in business have been

approached with large machines in mind. Since technology made it

possiole to purchase more than twice the raw computing power for

less tnan twice the money, it was most economical to invest in

the largest machine possible and to solve problems given the

knowledge that many applications rright be sharing one system.

Advances in computer technology, however, have produced

small, cheap machines with computing power equivalent to their

larger, older and more expensive predecessors. This increased

availability of computing power has opened the field to many

applications for which the cost was formerly too prohibitive.

Furthermore a great deal of interest has been spurred in distri

buting large applications across many small machines. Although

there will always be problems which are best (i.e. most cheaply)

solved in batch mode on a single machine, the growing demand for

widely distriDUted, real-time systems has initiated a great deal

of research into developing computer systems running on networks

of small machines.

The regularity of many of the more mundane office tasks and

the regular structure of paper forms makes the office an ideal

environment to model OP. such a network. This thesis assumes that

the office functions which would be useful to model concern

modification of forms and their routing through the system in

some coordinated way. It assumes furthermore that these func

tions deoend on information found on a collection of related

•1-

1. Introduction >?T rLA 27/January/1961

forms, ana that this notion of a working set of forms is cru

cial to tha design of forms procedures.

The office is modelled as a number of workstations capable

of creating and modifying forms and mailing them to one another.

Automatic forms procedures running at any given station watch the

forms being routed through that station, and when a working set

of forms is recognized, the forms are locked, processed and

rerouted according to the specification of the procedure.

Chapter 2 attempts to motivate this particular view of the

office and describes a prototype office forms system into which

this notion of automation was built. Chaoter 3 discusses the

design specifications, user requirements and the user interface

to the automated forms system. The powers and limitations of

this approach to automation are discussed in terms of a "good

office design" and how various automatic procedures running at

different workstations should cooperate.

Chapter 4 surveys some of the implementation concerns, in

particular the form-gathering problem, and how a set of working

forms can be recognized. Chapter 5 outlines possible useful

extensions ani some unsolved problems, and attempts to draw some

conclusions from the implementation and research.

2. Office Automation TLA 27/January/1981

2. Automation in an Electronic Office

Much work das been done in the last few years in the field

of office automation. Some systems provide a facility for some

user-specifiable, non-procedural automation, but these are not

form-oriented systems. Electronic forms systems with any degree

of automation are very application-dependent, not very flexible,

and are based on "intelligent forms" rather than intelligent pro

grams that manipulate stupid forms. This chapter will motivate

TLA it in the context of previous work.

-6-

2. Office Automation TLA 27/January/1981

£.1. Motivation

In recent years computers have demonstrated their usefulness

in tne fields of information processing and data management.

xeguiarity of information and regularity of processing are

characteristics that lend themselves well to computer applica

tions. The greatest experience with data processing, however, is

oaten processing on large machines. Interactive systems on net

works of small macnines have only recently begun to gain popular

ity, now tnat computer technology has been able to reverse the

rule of "the bigger the better".

Furthermore, many applications are real-time dependent, and

cannot benefit from the simplicity and efficiency of batch pro

cessing. Tnose which io not depend on data being centrally

situated can take advantage of networks with distributed data

bases. The office car: be such an application: the most familiar

object in the office for storing data, generating work and com

municating information is the form. Forms which are being pro

cessed sit on a worker's de_sk, not in a filing cabinet in the

basement. One may model form files using private databases which

oelong to workstations distributed across a network.

As data objects, forms are very regular and tnus ideal for

representation. in a data base. The filling in cf a form can

imply many side effects, some of wnich can be easily handled by

corputers. Even on the face of a form, data constraint checking

and simple calculations are more conveniently performed by a

macnine tnan oy a human. Furthermore, a newly created form often

•'i-

2. Office Automation TLA 27/January/1981

has immediate implications for which a computer can provide a

real-time response. If a shiuping form is filled in, for exam-

oie, a customer's account should be debitted.

The demand for distributed systems capable of supporting

real-time applications will grow as more business functions

cecome computerized and as the desire for comoatibility of infor

mation and ready availability of computing power increases.

Manually entering data from a -japer form into a calculator or

computer in order to perform some trivial calculation is very

expensive if the information must be entered more than once. If

the form is entered initially into an electronic forms system,

then the computer can perform the trivial calculations without

raving to be driven by a human.

Reducing the quantity of printed paper is just one benefit

of an electronic forms system: computers cannot (or should not)

lose' forms or accidentally bury them under a pile of paperwork,"

electronic forms can be quickly retrieved? the computational

powers of a computer can be exploited to provide "intelligent"

forms or forms systems? communication is fast — forms can be

mailed" quickly between workstations? and information about

forms in the system can be more quickly compiled than by visiting

office workers' desks to determine the state of an office.

Even a manual electronic forms system — one with no built-

in intelligence, in which the system merely performs user

requests to manipulate forns — has great value, but there is

mucn potential for automation of many aspects of a paper office.

-o-

2. Office Automation TLA 27/January/1981

Reminders concerning work to be done and checks on the relative

speed of forrr flow throughout the system can improve office effi

ciency or aid in the analysis of tne distribution of work in the

office. The system can easily detect whether a form is "stuck"

in the system if tne time spent sc far at a particular worksta

tion is considerably greater than its usual turnover time, and

then take steps to get it "unstuck". More sophisticated analysis

can be done given some detailed knowledge of how the system is

expected to run. Legality assertions on fields, automatic fil

ling in of fields, automatic creation of accompanying forms and

side effects such as notification can also be performed when a

form is createi. Automatic routing of a form through the system

can be achieved by providing mail worxstations that scan forms

and decide whom to distribute the work to.

The corresponding research problem is not to develop a sys

tem which will provide these facilities as "features', but rather

to generate a framework in which most offices may be modelled. A

useful system must be able to capture a wide variety of office

activities in a way that allows one to examine the interaction

oetwaen them. The problem, then, is one of reduction — tc model

simply and elegantly the interesting aspects of the office within

a uniform framework — not to provide an overblown system with

enouga features to satisfy every request but that of manageabil

ity.

-o-

2. Office Automation TLA 27/January/19ei

£•£• Office Systems. Today

Computer applications in business have traditionally been

exactly that: applications to particular problems. Even systems

tnat are developed are usually oriented towards a particular

proolem. Businesses interested in mechanizing or automating some

asoect of their operation are not so concerned with developing a

system which could also be used by the company across the hall or

down the street. The best example of a general business-oriented

jroduct is COBOL, not because it is a system, but because it is a

language which is actually readable, that is, it may be (rela

tively) easily understood by non-computer specialists (assuming

that programmers do not purposely undermine its readability).

The prospect of providing a system which everyone can use is

discouraging: attempts to provide general systems often result in

cries from users for added features. Attempts to satisfy those

cries can result in large systems with more "bells and. whistles"

than generally useful software.

Granted that it be difficult to abstractly capture business

operations or even office operations in a single system, there

nave nevertheless been several attempts in the past few years to

model them. A short survey of the approaches used will help

Jlacs this t.nesis in perspective.

Office talk-Zero [ELLI79, METC76] is a form-based computer

system which incorporates the notions of workstations., in/put

i?-?ys, dossiers and p_rivate databases implemented on a network of

small computers.

Office Automation TLA 27/January/19£l

The most attractive feature of Officetalk is its interface,

ivery effort was made to make a workstation resemble an office

worker's desk: "...the user can shuffle paper, read mail, or read

previously filed documents without touching the keyboard."

[ELLI79, p.7]

Officetalk is an attempt at mechanizing office functions

rather than automating them, however. Some intelligence may be

built into individual forms, but there is no way of specifying a

jrocedure which operates automatically upon identifying some col

lection of forms, nor is there any way of describing a "normal"

oassage of forms through the network of workstations.

At MIT [ATTA80J a form-based system resembling Officetalk in

many ways has been implemented. Here forms can have a great deal

of intelligence, but no procedure specification facility exists.

Fields which are functionally dependent upon other fields may,

for example, be automatically filled in.

OFS [CKEU79, CHEU&0, GIBB79, GIBB80], the Odfice Forms Sys

tem developed at the University of Toronto bears much resembler.ee

to Officetalk. It is also form-based, incorporates workstations

cis abstractions of desks, ani allows users to manipulate elec

tronic forms much as they would paper forms through a simple

interface. Since OFS was used as the underlying forms manipula-

J-ipn system uoon which TLA, a form procedure automation system,

*as Duilt, much more will be said about it in a later section.

OIL (Query ~uy Example, [2L0075]) , OEE (Office Procedures I-y

Example), and SBA (System for Business Automation, [DEJ090]} are

http://resembler.ee

2. Office Automation TLA 27/January/1981

related Products and projects at IBM which inspired some of the

superficial ir.&erface decisions in TLA.

QBE is an elegant non-Jrocedural interface to a relational

database. Relations are represented as tables, and queries to

the system are presented def.initipnally. If one wishes to find

all tuples in a database, for example corresponding to employees

who make more than $32,000, one simply enters ">30O00" in the

salary column and "?." (for print) in the name column of the

"employee" table.

To accomplish joins, one Places an example (variable) in the

corresponding columns of two tables. Smith, for example, would

appear in tne name columns of both the employee and manager

tables to express that one is interested in employees (making

more than $30,000) who are also managers. This non-procedural

approach to database queries is extended in natural ways to many

more operations than those mentioned here. Some unconventional

queries, it is admitted, are extremely difficult to express in

this way, but for most purposes the approach yields queries which

are intuitively easier to grasp than those expressed in terns of

more traditional database manipulation languages.

OBE and SBA both extend the principles used in QBE to the

area of procedure specification. One is aole to have procedures

iILig.£e.red automatically upon some condition holding true over the

database. Triggers may also include time conditions. Further

more, a hierarchy of triggers may be defined so as to capture a

flow of actions witnin a procedure given that certain conditions

-9-

2. Office Automation TLA 27/January/19Sl

hold under specific circumstances.

Although OBE and SBA deal with tables more than with indivi

dual tuples, it was felt that vany of the principles apparent in

these systems could be applied to forms, which are encoded as

tuples.

SCOOP (System for Computerization of Office Processing,

[KLLI79, 2ISM77]) was an actual attempt to specify automatic

office procedures using augmented Petri nets [PFTE77] . The

approach models form flow in tne context of the entire system and

so must in general capture an enormous amount of detail. The

kind of information captured by Zisman's model is at the level of

interest rore appropriate to an office analyst than to an office

worker. Tne semantics of an office procedure are described

within a single model, however, and the interaction of tasks and

events is captured rigorously, rather than inferred from a col

lection of related but physically independent application rou

tines .

OSL (Office Specification Language, [HAMM79]) also is an

approach tc modelling office procedures, but is not intended as

an i-nplementaole computer system. It is instead to be thought of

as a management and design tool used for description, specifica

tion and analysis of office procedures.

Finally, EpL (Business Definition Language, [ELLI79,

HAMM77]) is a form-based office automation language. Although it

is well-suited to office applications, it is a specialist's tool

that is used for defiling office procedures at a very high level.

-10-

2. Office Automation TLA 27/January/1981

It i s again not appropriate for the day-to-day operations of an

office worker.

- 1 1 -

2. Office Automation TLA 27/January/1981

2.«3. Design Considerations

This section discusses a number cf issues one must consider

in developing a system which will support automation. These

issues include (i) the interface, (ii) the problem of dynamically

altering tne nature of the automation, and (iii) the degree of

automation (or the allowable complexity of triggering pro

cedures) .

Any computer system which is to gain acceptance by non

technical workers must provide an interface which neither intimi

dates new users nor frustrates experienced ones. If the system

is extremely complicated, then it must be intelligent enough to

ail and instruct new users when necessary without interfering

with those users who are already familiar with its intricacies

and thus require no sooon-feeding. Otherwise it should have an

interface which is simple enough for a new user to learn quickly,

yet expressive enough for a useful range of application. In the

latter case, an extremely high-level, non-procedural language

with simple, intuitive semantics would be required, and if the

range of functions to be captured is small enough, such a

language is even feasible.

Automation in an electronic office can be static or dynamic:

in a static system, software packages are written for each appli

cation, and new applications must be written to be compatible

vdtn existing modules. It is "fixed" in the sense that features

cannot be arbitrarily enabled or disabled. The behaviour of a

static system is predictable if the office it models is well-

-12-

2. Office Automation TLA 27/January/1961

understood and the model is accurate. Modifications to the

design and flow of the office model may well be painful, but

there is no built-in restriction to the "fanciness" of features

that may be built into a new application.

A dynamic system would provide a single software package

whicn interprets a high-level language tailored to the operations

and features available in the electronic office. The office is

modelled by the high-level description. If the menu of opera

tions and features is small and the nature of the automated func

tions is nighly modular, then the specification of automation in

the high-level language becomes very simple. In addition,

changes to tne design and flow of the model require only small

changes to the high-level specification, not to the software

package. Of course, additions and modifications to the set of

available features and operations on the data objects is again

Gainful, but now a wide range of variation is possible at little

cost, where before there was none.

The meaning of an "automatic procedure" depends on the gen

erality of what one wishes to model, or wishes to be able to

model. At some point it beco-nes too difficult or expensive to

Lave computers do the work, and that is where the human interface

appears. How much can be automated depends on how much intelli

gence should be built-in, and how much intelligence can be bought

tnrough some Kind cf interface to library routines or application

programs.

-1 3-

2. Office Automation TLA 27/January/1981

whatever the degree of automation be, all activity is ulti

mately initiated from outside tne system. Automation must be

user-driven at some stage, and hence some manual activity must

take place. If those activities Khich may be automated duplicate

some or all of the manual activities, then questions pf conflict

end control must be answered. If a manual and an automatic Pro

cedure conflict, a decision must be made about which is to be

given control. Certain activities must be locked, and facilities

for araceful recovery must be provided in case an executing pro

cedure must be aborted because of such a conflict. What consti

tutes an "error" determines what sort of recovery must take

place. In case of errors or partial (user-assisted) automation,

users must be able to interact with automatic procedures to

enable tnem to run to completion. One must identify the data

objects, the security restrictions on them, the range of opera-

| tions which may be performed on them, and the degree to which

manual and automatic Procedures may conflict with respect to

them.

If the specification of automatic procedures is in any way

complicated or subtle, there should be some way of debugging the

procedures, or else tne system should be able to detect anomalies

arising from any badly-written ones. Determining what are to be

considered "anomalies" is no simple task. One may choose to

accept anything as being valid, but if not, then the detection of

anomalies is divided between op.tential ones — t^ose which right

arise given a particular flow of iata — and thus require some

analysis for their detection, and the actual ones, which ray be

-14-

2. Office Automation TLA 27/January/1981

detected by observing tne performance of the system. In the

second case, the symptoms rather than the causes are reported.

If anomalies are detected at run-ti-ne, some facility for halting

the system or parts of it should be available.

The domain of automation determines the modularity of pro

cedures. One must decide what limit to place uoon the generality

of those conditions which may trigger an automatic Procedure. If

the complexity of those conditions is too great, triggering may

be either too expensive or too difficult to implement. The state

upon which an automatic Procedure is triggered may range from the

field values of a single form, to the set of forms belonging to a

workstation, to all sets of forms at the workstations in the

entire network. Intelligent forms are easy to implement if the

intelligence is restricted to the information found on the form

and possibly some readily accessible repository of related infor

mation. If intelligence is restricted to a workstation, automa

tion is still feasible, but management of the data objects, be

they forms, tables, relations or whatever, becomes more compli

cated, since transfer of data between workstations affects the

state of the workstation in an unpredictable way. If the intel

ligence applies to the state of the system as a whole, automated

procedures can be very expensive, esoecially if the system is

implemented as a network of small machines, and any transaction

°̂ any machine, or any communication between workstations or the

same pr different machines alters the state of the system.

If office '.vorkers restricted their attention only to their

desks and nobody paid attention to what was happening at the

-15-

2. Office Automation TLA 27/January/1981

global (managerial) level, then worit might get shuffled around

from desk to desk forever without anyone noticing. If the domain

cf automatic procedures includes only a small part of the system,

the resulting modularity of automation could cause the system to

behave unpredictably in the event of an unfortunate configuration

cf automatic procedures throughout the system. In such a case

wnere automatic procedures do not "know about one another", but

can produce output which may be consumed by other automatic oro-

jeiures, analysis guaranteeing any form of "correctness" may be

very expensive to do on-the-fly by the system whenever a new pro

cedure is written. It would otherwise be the responsibility cf

the users or some administrator to ensure that the configuration

"correctly" node Is the real office. An ideal system for automa

tion should provide a facility for observing or controlling

activity on a global scale.

Furtnermore, one must decide who is to write the automatic

procedures. If a single person can be trained to manage the

automation, then the interface can be fairly rich and compli

cated. If individual users are permitted to write procedures

running on their own workstations, then the interface must be

simple enough that users can feel as confident writing the pro

cedures as they do using the system. One could argue that con

trol over the office design and form flow is lost once users are

sole to specify the automation — a badly-written procedure or an

•unfortunate combination of cooperating procedures may destroy

balance in trie system -- but it may be possible for the system to

oe able to detect such anomalies, and, more importantly, it may

I -16-

Office Automation TLA 27 / January /19£ l

be p re fe rab le to l e t the con t ro l of automation l i e where the

local i m p l i c a t i o n s a re oest unde r s tood .

Many of the i s s u e s pointed out in t h i s s e c t i o n have no c l e a r

s o l u t i o n . Some a re obvious cases of s i t u a t i o n s tha t would be

approached d i f f e r e n t l y depending on the kinds of a p p l i c a t i o n s one

wished to run on a system suppor t ing au tomat ion . Others are

research t op i c s (" c o r r e c t n e s s " , for example) which w i l l be

created more in the years to come. The approach t h a t was chosen

for TLA wi l l be d iscussed in the next c h a p t e r .

- 1 7 -

2. Office Automation TLA 27/January/1981

2.4. TLA

The TLA project was conceived as an effort to introduce

automation into a prototype office forms system (OFS) rather than

as an attempt to build a fully automated system from scratch.

OFS allows its users to perform a small set of operations on one

tyoe of object: the electronic form. TLA concentrates on ore

aspect upon which to base automation — that of communication.

Actions are associated with the flow of forms through the system,

and so can be triggered automatically when forms or combinations

of forms arrive at particular nodes in the network.

Office workers are expected to make decisions and do work en

the basis of the condition of their desk rather than upon that of

the whole office. Thus automatic procedures are triggered upon

conditions local to the workstation, such as the arrival of mail,

rather than upon the state of the system. This restriction con

siderably lessens the cost and complexity of the most general

triggering condition, whose domain includes not only the user's

machine but the entire network, yet leaves those conditions gen

eral enough to solve interesting problems. Trie restriction, is

also in keeping with the 0?S principle of insulation of private

workstations: users cannot produce side effects outside their own

workstation. Tne only information available to them concerning

the state of the system is the trace of a form's massage through

the system.

Only by releasing control of a form ar.i mailing it to

another station may one indirectly affect the rest of the system,

--R-

2. Office Automation TLA 27/January/19Sl

given that the form's arrival and content have a meaning under

stood by the receiving station. If the form is not "understood",

it is never processed by an automatic procedure and waits for

ever. The specification of an automatic forms procedure should

capture this meaning in terms of preconditions and actions.

-19-

2. Office Automation TLA 27/January/1981

2.4.1. OFS: An Office Forms System

OFS [CHEU79, CHECbtf, GIBB79, GIBB80] is an electronic forms

management system written in the C programming Language [KERM78].

OFS provides an interface to MRS [HODY78, K0RU79, LADD79] , a

small relational database system also written in C. OFS

translates its data objects, which are images of paper forms,

into tuples of an MRS relation.

An OFS system consists of a set of stations distributed over

a :.umoer of machines in a network. Each user has a private data

base in which the form tuples are created, stored and modified.

A user may only manipulate those forms which he "owns" in the

sense that they reside in his database. Communication and

interaction between stations is achieved by allowing users to

mail forms to one another.

The only automatic form processing that OFS will do occurs

if a form is mailed to a special automatic station — a station

which periodically reads its mail and submits the forms as input

to an application program written in C. Such application pro

grams must be compiled since there is no facility in OFS for

interpreting files of commands. The programs must also be writ

ten so as to preserve compatibility with OFS or else unpredict

able an-i undesirable side effects may be discovered. Conse

quently, an OFS programmer must oe equipped with a great deal of

knowledge cf the inner workings of OFS (as was required for the

transformation of OFS into TLA).

-22-

2. Office Automation TLA 27/January/1981

2.4.2. OFS Operations

A distinction is made between form types, form blanks and

form instances. A form blank is simply the form template used to

display a form instance. A form instance corresponds to an

actual tuple in the database. Its fields may have values

assigned to it, and it always has a unique key assigned at crea

tion ^y the system. A form type is the specification of field

lengths and security types corresponding to the form blank and

its associated relation. A f?_rm file is the relation used to

store all forms of the same type belonging to a station. The

collection of form files for a station is a form database. Fig

ure 1 shows a form blank and form instance for the form type

-ailed "ORDER PQRM". Note that some fields of the form instance

need not have values associated with them, although the key field

must.

Form fields may be of 6 different security types. Manual

fields of type (l) may be inserted or modified at any time, (2)

nay be inserted at any time but not modified, or (3) must be

inserted at form creation and never modified. Automatic fields

are (1) >ej fields, always the first field of a form, (2) date

fields, and (3) signature fields bearing the station's name if

tne preceding field is filled in. Tnere is no facility for res

tricting the range of values a field may accept, other than t*e

field lengtn.

Form files may be accessed by MRS, with the feature that

field securities and the unique Key condition may be ignored. As

-21-

2. Office Automation TLA 27/January/1981

ORDER FORM

Customer number:
Item:
Price :
Quantity:
Total:

KEY
Customer name:

Description:

An order form blank

ORDER FORM

Customer number: 5184
Item: 0001
Frice: 2^0
Quant i ty : 1_
To t a l :

KEY: 40001.00000
Customer name: Denis the Menace_

D e s c r i p t i o n : Off ice Forms System^

An order form instance

Fig re 1 Form blanks and instances

a result, tne MRS nterface is not meant to be available except

to privileged user .

Form operations are creation, selection, and modification.

Forms may also be attached to dossiers: lists of forns which are

not necessarily of the same form type, but which have something

in common that the user wishes to capture.

Forms may POT be destroyed, although they may be mailed to a

garbage station" which conceptually shreds the electronic form,

ana nay in fact either archive or erase it depending on the needs

of a particular application. Instances are unique, and must

-??-

2. Office Automation TLA 27/January/1981

always exist at exactly one location in the system either in some

form file or waiting in a mail tray. Forms may be mailed from

one station to another, but they must wait in a mail tray and be

explicitly retrieved in order to be placed in the receiving

station's form file. Copies may be made of forms, but they are

assigned a unique key consisting of the key of the original form

together with a system-generated copy number distinguishing it

from the original. Copies may be modified so that they no longer

resemble the original.

- p . s -

2. Office Automation TLA 27/January/1981

2.4.3. OFS Cpnfiguration and Implementation

The OFS network consists of one host machine connected to a

number of satellite machines. Communications managers running on

each machine oass messages between the host control node and its

satellites when a form instance is either created or relocated.

The host manages all information related to form keys, copy

numbers, account names and passwords, and mail trays. Forms, for

example, may not be created by a satellite station unless the

host sends it a unique form key, so the host must be running for

any useful work to be done at a satellite station. The communi

cations manager of the host machine passes messages to a "HOST"

urogram, which processes the messages and sends information back

when required.

For a form to be mailed from any station to any other sta

tion, the form tuple must be deleted from the sending station's

form file, and sent to the HOST Program which inserts the tuple

in a mail tray relation. The receiving station must also send a

message to the HOST in order to read its mail. Each form reloca

tion is logged on the host machine so that forms may be traced or

1 o c a t e d .

Users nray mail forms anyw h e r e , but they are not inserted in

the receivivj station's form file until the owner requests it.

The nOST holds the mail in the -neap-time, thus g u a r a n t e e i n g the

u s e r s ' control over their form d a t a b a s e s . C o m m u n i c a t i o n with the

HOST is therefore necessary even when both the sending and

re;elving stations are situated on the same m a c h i n e . Mail must

-•>&.-

2. Office Automation TLA 27/January/l981

be retrieved before any further action is performed with it, even

if it is to be immediately shipped away again.

OFS is implemented as a collection of overlay modules, each

of which handles a different set of actions. Mail-retrieval,

tracing and form-creating, for example, are each implemented as

independent modules. Although it is necessary to switch modules

in order to perform different operations, this is fairly fast and

painless. The individual modules are guaranteed to fit on a

small machine, whereas the entire collection together might not.

The form databases are implemented as UNIX directories

[RITC78] owned by a privileged form administrator. Users may

only manipulate their databases by executing the OFS program,

thereby gaining access rights to the directories which OFS recog

nizes as belonging to them. Privacy of form files and con

sistency within the system may thereby be ensured.

The only interface OFS provides with application programs is

through the mechanism of an automatic station which regularly

reads its mailbox and interprets the form tuples as input to some

locally-written program. Examples are the print station, which

produces a hard copy cf the form, and the garbage station, which

conceptually snreis or archives the form.

-?R-

3. Design ?LA 27/January/1981

3. TLA Design

Since TLA was built on top of an existing forms management

system, the range of Possible features for specifying automation

was fortunately limited, but still so large that only a tiny sub

set of conceivable features could be considered. Restricting

this range to a useful but inplementable subset was motivated

largely by what was currently possible in OFS.

Compatibility with OFS was also an important concern, partly

to avoid major changes to the existing code, but also to simplify

conversion of any existing OFS system to one that supported TLA.

The user interface had to be very simple, and the facilities

available had to be easily understood since, as described in an

earlier section, our object was to provide a dynamic, high-level

automatic forms procedure specification tool, rather than a

static system for a particular set of applications. TLA had to

be as easy to use as OFS.

The sections in this chapter discuss the motivation behind

some nf the design decisions and some of the consequences. The

last section covers some of the implications concerning "good

office design" in terms of TLA, and addresses some problems not

solved by the system.

Design TLA 27/January/1931

3.1. Des i g n S Pe c if i cations

Compatibility with OFS was maintained in TLA. Changes to

code and the internal representation of an OFS system were mostly

additions of modules and UNIX file directories. *here existing

files and code were modified, compatibility was maintained, so

that OFS would simply ignore the added TLA features. Conversion

costs from an 0?S system to one that supports TLA are negligible,

and any TLA system could be run with the OFS subset.

A set of features was chosen to study the design and imple

mentation issues of a reasonably useful but unembellished

autonatic forms system. A number of assumptions were made about

the meaning of a "forms procedure", especially within the context

jf 0?S, and some features were discarded as being beyond the

scope of such a small scale oroject.

Simplicity cf design for the sake of programming and appli-

catiPn was a major consideration. The user interface is

presented in terms of objects the OFS user is already familiar

«ith: specifying operations within a procedure corresponds

closely to their manual counterparts in OFS. A user who is ed.it-

ing an automatic forms procedure manipulates "sketches" of forms

— form-like onjects that represent the forms that the procedure

rfill eventually manipulate. The same form template which OF?

uses to display form instances is used quite differently in ^LA

to describe preconditions and actions in office procedures. The

specifications are non-procedural and are virtually syntax-free,

except for pattern matching and field-referencing conventions.

-97-

http://ed.it

3. Design TLA 27/January/ie?l

Since the language is presented in terms of form-litce objects

that the user is presumably already familiar with, there is not

much the OFS user needs to learn in order to use TLA.

TLA does not assume any knowledge of tne system other than

what is available to the user in his form file or his mail tray.

Tnis ccrresoonds to the notion in 0F5 that users can only manipu

late tne forms that they "own". Anything happening outside their

cwn workstation does not concern them. This motivated restrict

ing the domain of automation to that of individual workstations.

If urocedures are allowed to know only about the state of a

workstation and the forms in its form file or mail tray, then the

state of the system is a variable that does not concern it. The

complexity of determining when to trigger a procedure is thereby

considerably reduced.

An automatic procedure is meant to capture the notion of an

office worker collecting forms at his (or her) desk until a "com

plete set" is compiled, processing those forms, and then filing

taem or sending them on their «ray. Processing of the collection

cf forms may cause forms to be modified or new forms to be added

to the set. Reference tables and calculating tools are made

available through an interface to so^e local library of applica

tion programs.

The other aspect of automation supplied by TLA is that of

smart forms" which automatically fill in certain fields of a

form with previously filled-in fields as arguments. The domain

here is that of the form alone, so triggering takes place when-

-O'A-

3. Design TLA 27/January/1981

ever a form is created or modified. "Smarter forms" with fields

taat change value depending upon time conditions, the state cf

the system, or any other variable, were not tackled, although

sore "smarter form problems" can be solved witn TLA's automatic

procedures.

Automatic procedures have preconditions and actions, but ro

postconditions in the usual sense. Satisfying all preconditions

guarantees the successful completion of all actions. There is

only a very limited sense in which a procedure may "fail" — if

it is never triggered, for example, because missing forms do not

arrive. Postconditions may be interpreted either in terms of

which actions are performed dependent on earlier actions, or in

terms of the Preconditions of another automatic procedure to

which control of the forms is passed.

Lastly, since automatic procedures presumably run con

currently with the manual functions of the users, conflicts could

arise over the form manipulations. Forms being collected by an

automatic procedure could be modified or shipped away manually,

or even "stolen" by another automatic procedure. When a complete

set of forms is gathered for some procedure, then, it has to be

grabbed and temporarily "removed" from the system until it is

processed, but there must be no possibility cf the forms disap

pearing forever.

~oo-

o. resign TLA 27/January/1961

3.2. User In t erf ape

The specification of an automatic procedure in TLA bears

some resemblence to 3BA/03F [cJOiOEl] . The precondition segment

of a procedure is like a OBE query with forms instead of tables

as the data objects. The action segment is similarly intuitively

natural. The appearance of a value in a field indicates, for a

precondition that that value is to be matched, or for an action

that that value to be inserted in the field.

A TLA procedure is a collection of "sketches", where a

sketch resembles a form, but is to be distinguished from form

blanks, form tyoes or forrr instances. A form sketch, or a

'sketch of a form", indicates either a request to the system to

find "a form that looks like this", or indicates a request to

modify a form that has already been retrieved. A form sketch,

then describes a form instance before or after processing by the

procedure, and does so in the medium of the same form blank which

is tne template for tne form instance being described. Actions

and Preconditions which do not refer to information found on the

face of a form are specified Qy sketches of "pseudo-forms": for

example, the condition that a procedure process only forms coming

from user "joan" must be indicated on a special "source sketch",

a pseudo-form that describes another form.

There is no facility for specifying the order in which forms

in the wording set should arrive, or the order in which actions

be performed. TLA merely ensures tnat the procedure be logically

consistent. Tie specification is non-procedural, in the sense

— '4 .} -

3. Design TLA 27/January/19Bl

that the user indicates what forms are to be collected, and whet

is to Pa done with, them, but not how they are to be collected or

how the actions are to be performed.

3. Design TLA 2?/January/1981

0.2.1. Precppiitions

Preconditions in TLA are wnat, when and where. The working

set of forms is Perhaps the most obvious thing one would wish to

specify. Furthermore, one may wish to refer to forms that come

only from certain workstations, forms created or modified only by

oneself (i.e. they already reside in the user's workstation

rather than in the mail-tray), or forms that have just been pro

cessed by another automatic procedure running at the same works

tation. Lastly, one may wish to run a procedure only at certain

times or ranges of times.

Obviously the last two conditions refer to external informa

tion not found on the surface of any of the forms in the working

set of forms defined for tne procedure. As such they require

pseudo-forms (forms that have no meaning outside of automatic

procedures) to capture the restriction if uniformity of the

interface is to De maintained. The source restriction of a form

is then specified by filling in the source sketch pseudo-form

logically linked to that form's precondition sketch.

Form sketches are used to capture the restrictions referring

ic values tnat appear on the face of the forms in the working

set. Local restrictions are constant field values, sets or

ranges of values, and relations between values of the fields on a

;ivep form. The local restrictions refer only to the values

appearing or the face of a single form in the working set. If

TLA determines that a given form satisfies the local restrictions

(including the source condition) for some sketch in some

-?.?-

3. Design TT A
X Jit

27/January/19Bl

automatic procedure, then it notes that information and attempts

to match that form with other forms to obtain a complete worxing

set for that procedure.

Figure 2 is an example of a precondition sketch instructing

TLA to watch for order forms requesting "Tin tear-drops". Since

this information can be found right on the order form, it is a

l.P.̂ sl precondition. A sample procedure including such a sketch

might, perform the single action of returning a form that says "fe'e

stopped making those things years ago!".

ORDER FORM

Customer number:
Item:
Price: _..
Quantity:
Total:

KEY:
Customer name: ._

Description: Tin tear-drops

Figure 2 A Precondition sketch

Global restrictions on the working set of an automatic pro

cedure are the join conditions between values of fields appearing

on. different forms. lu general one expects all the forms in a

jrocedure's working set to be linked by certain common field

values, such as account numbers. Equality joins, therefore, are

-jrpbably adequate to model most applications of automatic pro

cedures .

--*,%-

3. Design TLA 27/January/1981

Figure 3 snows how a link is made to find an inventory form

for the item requested on an order form. Each sketch in a pro

cedure has a name assigned oy the user, and this name ("order" in

the example) is appended to the field name if the field is to be

referenced within a sketch for a different form in the working

set [1]. Mote that one could equivalently have Placed the res

triction "=item.inv" in the item number field of the precondition

sketch for the order form.

INVENTORY RECORD

Item: =Ite
Price:
Quantity in stock

KEY :
Deseriotion:

= 1 te-K. order

Figure 3 A g lobal (j o i n) P r e c o n d i t i o n

One may wish to r e s t r i c t the source of mail being processed

by one ' s automatic p r o c e d u r e s . If the accoun t ing department

r ece ives an order form from the o rde r ing depa r tmen t , t h a t may be

i n t e r p r e t e d as a r eques t to forward a c u s t o m e r ' s c r e d i t - r a t i n g

and balance tc the warehouse so t ha t the order -nay be approved.

If, hc-vvever, tne order form a r r i v e s from the warehouse, t h a t may

i n d i c a t e tha t the order has gone through, and t h a t the cus tomer ' s

.1] Since tne p recondi t ion i s longer than the space a v a i l
able for tne c o r r e s p o n l i n g f i e l d , i t appears on the
screen in an overflow r e g i o n . In f u t u r e examples,
overflows w i l l appear on the form to improve r e a d a b i l -
i t y .

-:\&-

3 . Design TLA 27/January /1391

account should be d e b i t t e d and an i n v o i c e mailed o u t . (The

au thor makes no c laim tha t the c i t e d example be r e a l i s t i c —

merely t ha t i t i l l u s t r a t e a p o i n t .) Figure 4 shows an o r i g i n

pseudo-form sketch for such an a p p l i c a t i o n . Forms may thus be

processed d i f f e r e n t l y depending upon t h e i r p o i n t of o r i g i n .

ORISI.V PSEUDO-SKETCH
'\iOT:..

STATIONS:
o rder ing

F igure 4: An o r i g i n pseudo-ske tch

- 3 5 -

3. Design TLA 27/January/l981

3.2.2. A c t ions

Actions which do rot concern, themselves with field values

must similarly be expressed via pseudo-forms, but all form-

modification actions are indicated on form-sketches. In general,

every form manipulated by a forms Procedure has a precondition

form sketch, an action form sketch, and one each of precondition

and action pseudo-form sketches.

The action form sketch indicates all insertions and updates

to tne form. The values to be inserted may be constant values

(eg. an authorization), copied field values (presumably from

another forn" in the working set), or Possibly function calls

(calls to application programs). Since security type 3 fields in

OFS may be modified at any time, one needs to be able to distin

guish between the original and the updated value of any field. A

field which must be copied to another form may itself be modi

fied, and the wrong value must not be used. Furthermore, the

function calls may access both the original and updated values of

fields, and, in fact, the original value of a field will often be

cue of the arguments to a function call update to that field.

Tne action sketch of figure 5 illustrates several features:

the price of an item is filled in by copying it from an inventory

form; a jrogram called "mult" is called to calculate the total;

and the original value cf Quantity is accessed whereas the

updated value of Price is used. Note that the symbols "#", "?"

end " l" are used to access functions, original and updated field

values. If none of these is used, a constant string value is

•T-.K-

Design 'LA 27 /January /1981

in se r t ed

ORDfiR FORM

Customer number:
Item:
P r i c e : ? P r i c e . i n v
Quant i ty :
Total :#mult (P r i ce ?Ouant i ty

Customer name:
D e s c r i p t i o n :

KEY

Figure 5 An action sketch

Some analysis needs to be done to ensure that every updated

field ultimately depends only uoon values originally available on

the working set of forms — it is clearly incorrect to update

each of two fields by copying over the updated value of the

other. If the Price field of the order form were updated to

"!Price.inv" and the Price field of the inventory form were

updated to !Price.order", then clearly no order cf execution

• ould make sense of the request.

Field securities must be obeyed: procedures that create

forms must fill in certain fields, and Procedures that modify

forms must only modify fields with an appropriate security type.

If a Procedure modifies a field of type 2, ther. by implication

the Tioiificatior. is an insertion since to value inserted into a

field of tnat type may oe modified, and so there is an implied

precondition tnat that field be empty in the retrieved form. Of

-.ourse imnlied actions must, also be evaluated if a procedure

modifies or inserts a field which is ai argument to an automatic

— ~< '7 —

3. Design TLA 27/January/1981

field.

Follow-up actions performed after all forms are modified

include copying of forms, attaching forms to dossiers and ship

ping forms to other workstations. Each of these is expressed on

a pseudo-form sketch. A weak sort of postcondition is available

by employing a function call to decide the shipping destination,

the numoer of copies to be made, and so on, but branching within

a procedure, and other general postconditions can only be

achieved by cooperating forms procedures which accept different

cases of the working set of forms.

If tne processing of an order causes the quantity of an item

in stock to dip below a certain acceptable level, for example,

then one may wish to send a memo to a manager advising him (or

her) that production on the item should be increased. The pro

cedure which processes orders, however, is incapable of condi

tionally producing this memo as a postcondition to inventory

update. It could unconditionally produce such a memo and then

functionally decide to mail it either to the manager or to a gar

bage collection station. A cleaner approach, though, is to have

a separate procedure which searches for low inventory items, and

then fires off the memo.

The advantage of this approach is that individual tasks are

clearly identified — automatic Procedures are uncomplicated and

completely devoid of any control flow requiring careful analysis

or debugging. Furthermore, the implementation suffers no added.

complexity because of the interpretation of postconditions as

-'A-

3. Design TLA 27/January/19Sl

separate procedures. The low inventory checker, for example, is

only invoked when an inventory form i s updated.

- 7 . C J -

3. Design TLA 27/January/1981

3.3. Summary

The description of an office modelled by TLA includes the

workstations, the set of all forms, the work which is to be done

on the forms at each workstation, the coordination of forms as

they flow through the office in some organized fashion, decision

points where different actions take place, and seme notion of the

possible set of "correct" life histories of any form, we have

assumed that this description may be modularized to such an

extent tnat some collection of small, localized procedures run

ning at the various workstations captures enough detail that pro

cedures need not "know" about one another nor about the state of

the system at any time. Deciding whether this collection does in

fact model what we wish it to model, however, requires an

analysis in context, and some understanding of the possible ways

in which procedures interact. At present we assume that the

owner of each workstation understands the local implications of

any of his automatic procedures given its preconditions and

actions, and that some manager understands the global properties

pf the system implied by the local properties captured at each

works tati on.

Tne local properties necessary to guarantee global correct

ness [which we at this point leave undefined] must be simple

-pnoufjh to he captured at any workstation by automatic procedures

wliich are small, comprehensible, simple to write and trivial to

debug. The system, as a consequence, should be configured so

that desk functions can be easily localized. Multiple procedures

each with slightly different sets of working forms should be

-171-

.. Design TLA 27/January/19£l

written to handle decision Points. A single procedure can easily

handle functional dependence such as modifying or inserting

fields based on values of fields on forms retreived, or shipping

a form to a station whose name is functionally determined from

the form instances. Multiple procedures, though, are necessary

if a decision is made, for example, whether to create a new form

of type A or type B, since a different action sketch would have

to be included in either case.

TLA provides facilities for specifying automation at two

levels of granularity: that of the workstation and that of the

individual form. The highest level of granularity which one

would be interested in is that of form flow in the system. That

form flow is in fact defined by the collection of TLA procedures

in the system is a side effect. One has no real control in TLA

over the flow, nor is there a simple, intuitive way of analysing

the procedures to determine what possible histories a form may

have in flowing through the network. Ideally one would like to

ne aole to specify for a given form or collection of forms some

notion of correctness that encapsulates legal histories, side

effects, and so on. Such a specification would be used not as a

procedure which describes what must be done with a form, but

rather as a guideline which either (i) is applied heuristically

to form instances to warn an administrator when a form strays

from its patn, or (ii) is applied analytically to form procedures

to warn an aiminstrator when a combination cf automatic pro

cedures implies a .potential anomaly or deviation from correct

ness.

-11-

3. Design TLA 27/January/1931

There is no attempt in the implementation of TLA to deal

with this topic. It is seen as a subject of considerable depth

ani complexity which may not necessarily have an ideal solution,

but should be approached as a rich area for further research.

•4?-

4. Implementation TLA 2?/January/19Fl

4. TLA Implementation

Because the working set of forms for an automatic procedure

must be gathered over a period of time, the information contained

in that procedure's specification is not all needed at once. The

results of any analysis done during the form-gathering process

must be recorded for later use. One is not interested in the

actions of a procedure, say, until a working set of forms is

identified. Translation of the non-procedural sketch specifica

tion must therefore be analysed and translated so that the infor

mation needed at various stages in the interpretation of the pro

cedure can be retrieved as painlessly as possible.

Bookkeeping during the form-gathering phase is outlined, and

the algorithm for identifying a complete working set of forms is

described in some detail.

/*, T=

=. Implementation TLA 27/January/19El

4.1. Trans1ation

An automatic forms procedure in TLA is specified by a col

lection cf sketches, and as sucn describes what is to be done

rather than how to do it. Although the sketch representation is

very convenient for the user as an aid to understanding a pro

cedure and capturing the amount of detail which is of interest to

a non-programmer, the format is wholly unsuitable for implementa

tion. The specification must be analysed and translated for

greater run-time efficiency. As much analysis as possible is

done in the translation Phase in order to reduce the execution

time.

Since one cannot predict when the forms required to trigger

an automatic forms procedure may arrive, the processing must of

necessity be broken into distinct parts. The specification in

terms of sketches contains information of four basic kinds: local

fforn;) constraints, global (working set) constraints, duplicate

form types, and actions. The execution of a forms procedure

makes use of these four at different stages. For that reason it

is convenient to distil this information from the sketch specifi

cation once at procedure definition time, and translate it into

formats that require nc further run-time analysis.

i-nen TLA is notified of the availability of a form for

automatic processing, it first checks whether the form matches

the l^cal conditions of any precondition sketch for that form

type in any automatic procedure running on the workstation. The

local conditions are comprised of the source restriction (where

-4.4.-

4. Inolementation TLA 27/January/19Sl

the form is expected to come from) and the field constraints that

depend only on information found on the face of the form. If a

form does not match the local constraints of any precondition

sketch, then TLA can confidently assume that no automatic pro

cedure is prepared to handle it. Conversely, if a form does

match the local constraints of one or more precondition sketches,

then, whether or not a working set including that form is com

plete, there is always the possibility that at some time that

form may become part of a working set for some procedure, given

the arrival of the missing forms.

The form instance in figure 6 matches the local condition of

the precondition sketcn, namely that Quantity>0, but there may

not necessarily be a global match if there is no order form with

the same item number, of course, even if there is an order form

with the same item number, it may not satisfy the other con

straints of its precondition sketch, whatever they might be.

'Nevertheless TLA notes that a local match has been made and

patiently waits for the rest of the working set to arrive.

Usually, TLA will check the local constraints of a form,

record its findings, determine that the form does not complete a

working set, and then interrupt the precondition portion of the

jrocedure until more forms arrive. Further processing may not

occur for some time. For that reason, all local constraints (and

source conditions) for for^s of tne same type are extracted from

all automatic procedures running at a given workstation and

stored in a common file. Only a single file need then be opened

to check the local constraints of a given form for all

•4b-

. implementation 'LA 27/January /19Bl

INVENTORY RECORD

I tem: =1 tern, o r d e r
Price:
Quantity in""s'tbsk: >i)

:<EY:
Descriotion:

Precondition sketch

INVENTORY RECORD

Item: #002
Price: 8520„._.. _..
Quantity in stock: 12.

KEY: 00301.83000
Description: Three Letter Acronym^

Form instance matching local preconditions

Figure 5 Local matching

procedures. Information which is not yet of interest rests else

where.

Even if a complete working set of forms conceptually arrives

together, the processing of the forms is sequential, and TLA

learns about each form individually. A locking algorithm guaran

tees that two forms cannot be prpcessed at once at a given works

tation. Generally forms will not arrive simultaneously. Thus

one can expect a considerable delay between the establishment of

local constraints and the evaluation of links between forms.

Aden the local constraints have been matched for a form, TLA

-hecks whether any link conditions between the corresponding

sketch and any other sketch of the procedure are satisfied by

that form and forms for which TLA has already found local

-dfi-

4. Implementation TLA 27/January/1961

ma tones. Even if no new links are found, links may yet De found

with forms that have not arrived. The link conditions are stored

in files by procedure, since TLA will reference the single pro

cedure for which local conditions have been matched at any one

time.

If, in tne previous example, TLA found an order for item

•?'002, it would note that the link between the inventory and order

form 'Precondition sketches were satisfied by these two form

instances. If the working set consisted of only these two forms,

then the procedure actions would be Performed. Otherwise TLA

will wait until forms are found to match the remaining links of

the procedure for these two form instances.

Actions are performed only once a working set of forns has

been compiled — something which need never occur, in fact — and

so actions are also stored in a separate file. TLA prepmcesses

procedures to check the legality of actions and to determine a

legal order of execution if one exist. Ho further run-time

analysis is required — actions are guaranteed to run to comple

tion.

The example in figure 7 implicitly requires that Price must

first be copied from the inventory form before its value may be

multiplied by tne Quantity. This establishes a legal order of

actions for that sketch.

Finally, a list of which sketches refer to forms of the same

ty.je is stored in another file for the purpose of checking at run

time that forms matching the sketch in a procedure's working set

— 11 —

4. Implementation TLA 27/January/1981

ORDER FORM
K EY:

Customer number:
Item:
Price:"?Price.inv
Quantity:
Total :#mult IPrice ?Qu.antity

Customer name:
Descri stion:

Figure 7 Ordering of actions

are, ir fact, distinct. A form may match two precondition

sketches of a procedure, but only if those two sketches are of

tne same form type. Therefore, comparison of form keys is done

only between forms of the same type rather than between all forms

in the working set. The comparison of all form types in the

working set with each other is ione before the procedure is

allowed to run.

An admittedly unlikely example is captured in figure 9 which

is triggered if TLA detects two inventory forms for a single

item. Since there are two precondition sketches in the pro-

ceiure, TLA assumes that they refer to two different forms in the

wording set. Otherwise any inventory form would trivially

satisfy both precondition sketches and thus trigger the procedure

.vith presumably undesireable side effects. i'hen the procedure is

written, TLA "otes immediately taat two precondition sketches

describe forms of tne same type, and thereafter performs a ~'^ey

comparison of those forms in avf working set identified, to

guarantee that they are not one and the same.

-48-

Implementation TLA 27/January/1961

INVENTORY RECORD

Item: _ _
Pri ce:
Quantity'in stock

KEY :
Description:

Precondition sketch invl

INVENTORY RECORD

Item: =Item.iavl
Price: __ _
Juantity in stock:

KEY
Descri ?tion:

Precondition sketch inv2

Figure S Duplicate form types in a procedure

These various files drive an interpreting routine which is

triggered whenever a Possibility exist that a form be required

for automatic processing, that is, at form creation, form modifi

cation or mail delivery. Under certain circumstances, one may

also require the output of a procedure to be available as input

to other procedures, or even as input to the same procedure.

Eowaver, one must take care not to inadvertently cause an infin

ite loou, with one procedure continuously reprocessing its out

put, or worse, constantly spewing put new forms and clogging up

the system.

- d . 3 -

4. Implementation TLA 27/January/1981

1.2. Triggering and Oraph-chasing

The most difficult part of running automatic procedures is

the form-gathering. When a form is mailed or created, TLA must

decide whether the form is needed in some working set. Matching

local constraints of sketches is easily lone, but the relation

ships between actual form instances may be much more complicated

than those of the sketches in the working set. The graphs which

describe the working set are discussed, and the algorithm which

identifies a collection of forms satisfying the working set is

given.

-<\?.-

Implementation TLA 27/January/1991

•r.2.1. Form Images

Tne TLA automatic procedure interpreter is triggered upon

receipt of mail, form creation and form modification. Since the

last two are the responsibility of the user, triggering in these

cases involves only the spawning of a new interpreting process.

In. the first case, however, the interpreting process is initiated

by the user who sent the mail. Typically, mail will be sent from

a station on a satellite machine to another, also on a satellite

(assuming one host node and many satellites on the network).

Kail is routed to the host machine where the form is saved and an

entry in a mail tray is made. The receiving station may at any

point tnereafter retrieve any or all forms from the host which

are listed in its mail tray.

Automatic procedures are meant to run regardless of whether

the user to whom the corresponding station presumably belongs

ever signs on after the Procedure is written, whether or not any

automatic procedures exist at a station receiving mail, the fol

lowing steps are taken: if the sending station is on a satellite

machine, it sends a message to the host consisting of the con

tacts of tne form tuple and the name of the station which is to

receive the mail. The host then stores the tuple, updates the

receiving station's mail tray (and the form relocation log) and,

if the recipient is not on the host machine, the host sends a

message tc the recipient's machine, consisting of the name of the

receiving station.

_C,1 _

4. Implementation TLA 27/January/19Bl

At the recipient's machine, the interpreting process is

started. It then communicates with the host, asking for images

of each new form in the recipient's mail-tray. The interpreter

maintains files of form images for each form available for

automatic processing, and deletes the images when the forms have

been processed either automatically or by the user. The images

are copies of the contents of each form for use by the inter

preter alone, and are stored just as forms are stored. The user,

however, has no access to the images as forms — they may not be

modified, shipped away, or otherwise manipulated, and so they are

not properly forms or copies of forms, but merely images of

forms. [The author apologizes for the proliferation of such

terms as form blanks, types, instances, files, sketches and

images, but hopes that the reader appreciates the need for a

semantic distinction.]

Since mail may arrive while the interpreter is running, it

continues to Process all mail until it discovers an empty tray.

Only one interpreter may run at any time for a given station, in

order to eliminate the obvious problems which would arise if two

interpreters began to process forms *»hich "belonged together" in

one automatic procedure. A lock is therefore placed on the run

ning of tne interpreter for a given station.

If an crier form and an account form nelonging together

arrived simultaneously at a station, and two interpreters were

allowed to Process then; concurrently, then each would discover

that the lo^al preconditions were matched. However, the link

between the two would be missed since neither interpreter could

1. Implementation TLA 27/January/1981

yet be aware of the form being processed by the other. Alterna

tively, each interpreter might discover the link, but an attempt

by each to lock the working set could result in deadlock.

•53-

4. Implementation 'LA 27/January/19Bl

3.2.2. Sketch and Instance Graphs

It is useful to abstract the working set of a form procedure

in terms of a graph with the sketches as coloured vertices, and

the loin conditions, whatever they might be, as edges in the

graph. The graph corresponding to the procedure specification is

the sketch graph for which the form-gathering algorithm must find

corresponding forms and satisfy .ioin conditions. A corresponding

graph for form instances attempts to match forms to sketches in

the sketch ^raph with the join conditions of the working set

holding between the actual forms. The instance graph generated

by the forms retrieved may, in the worst case, not look very much

like the sketch graph, and the correspondence must be established

carefully.

Consider the precondition sketches in figure 9. A link

between the account and order forms is established across the

customer number, and a link between the order and inventory forms

is captured by two global conditions, one by item number and the

ether by quantity.

The corresponding sketch graph is shown in figure \Q . Each

sketch is represented by a labelled/coloured node, and each col

lection of global conditions between a pair of sketches is

represented by a single ed^e.

* he:) a form is passed to the interpreter, it first reads the

file of local constraints for the forms of that type. Whenever a

match is found, the interpreter notes which sketch of which pro

cedure is matched by the form, and it enters a tuple consisting

-nd.-

<i. Implementation TLA 27/January/1981

CUSTOMER ACCOUNT

Customer number: =number.order
Credit rating:
Balance:

SCEY:

ORDER FORM

Customer number:
Item:
Price :
q u a n t i t y : <=Quant i ty . inv
To ta l :

KEY:
Customer name:

D e s c r i p t i o n :

INVENTORY RECORD

Item: =I tem.order
P r i c e :
Q u a n t i t y ' i n s t o c k :

Descri p t ion :
KEY

Figure 9 Precondition sketches of a Procedure

account ord = inventory

Figure 10 A sketch graph for a single procedure

of the form type, the form key, the procedure and the sketch

matched into an M3S relation (called "NODE").

-55-

4. Implementation TLA 27/January/ig£l

The file of global constraints for the procedure matched is

then read. ?or every link concerning the matched sketch, TLA

establishes whether the current form satisfies the join condi

tions with any of the forms previously recorded in the NODE rela

tion.

For every new link found, TLA inserts a tuple into another

MRS relation, called EDGE. ED3F records the form keys, types,

snatch names and Procedure name of every link established.

The ^ODE and EDG-E relations describe an instance graph with

forms as vertices or nodes and links between them as edges. The

vertices are coloured according to which sketch the form matches.

If a form matches two or more distinct sketches in one or more

procedures, it is multiply represented, once for each sketch.

T-rocedure names partition the instance graph, since there can be

no links between sketches of different procedures. For each par

tition we wish to match the sketch graph that describes the work

ing set of forms for that procedure, with sketches as nodes, and

join cppiitioqs as edges. Nodes are assigned a unique colour for

each sketch, and the corresponding colours are used in the

instance graph. An instance of the sketch graph, then, must be

found witnin the instance graph.

Figure 11 shows the instance graph for the procedures of

figure 9. ?nrms have been found to match each of the precondi

tion sketches of the procedure, but there is no complete working

set. The moment a working set is found, though, it is processed

3nd thus disappears from the instance graph. Note that most of

4. Implementation TLA 27/January/1981

the disconnected subgraphs of the instance graph are in fact sub

graphs of the sketch graph. In the last case, however, there are

two orders for a single item, and the relationship is not that

simple. The first account form to complete either working set

will complete the "copy" of the sketch graph to be found in the

instance graph.

account order inventory

i

i

Figure 11 The instance graph for a procedure

The relationships between the forms in the working set cf a

form procedure are expected to be best expressed in terms of the

join conditions, so the sketch graph will generally be connected.

The instance graph, however, will more often consist of several

partially complete working sets of forms, and so will be discon

nected. The only likely situation in which the sketch graoh will

be disconnected occurs if one or more of the forms in the working

set are uniquely identifiable within the svstem, independent cf

the other forms in the worsting set. A "total" form for a sta

tion, for example, is updated every time the automatic procedure

which accesses it is run.

- c , 7 -

4. Implementation TLA 27/January/1981

If tne join, conditions imposed on the working set of forms

are "nice" then each connected subgraph of the instance graph

will also be a subgraph of the sketch graph. It is conceivable,

however, that two forms satisfying a particular precondition

sketch for a procedure may each satisfy a join condition with a

third form which satisfies the local conditions for a second

sketch in that procedure. This anomaly will occur either if the

imposed join conditions are "not nice enough", or if duplicate

forms are inadvertently created and passed through the system.

In this case, the connected subgraphs of the instance graph are

not as simply related to th° sketch ^raph as before. Thus,

establishing when a complete working set of forms has been com

piled requires careful analysis. (See the last example above.)

One may assume that, whenever a working set is found, it is

processed and leaves the domain of our station's collection of

automatic procedures. At any given time, then, when TLA has fin

ished Processing a form and has not yet begun to process the next

form, we know that the instance graph contains no copies of the

sketch graph. If a copy of the sketch graph is identified, then

a A'OTK:in.,' set has been found, the Procedure is executed, and the

:orresponding nodes and edges are purged from the instance graph

so that no more working sets remain. When a new form arrives, a

working set o? forms may be "ompletei only if that new form is

included. Tne analysis of the instance graph, then, need only

-o^cern t.ie connected subgraphs which include nodes representing

the new form.

-sa-

Implementation TLA 27/January/1981

One would expect join conditions giving rise to sketch trees

to be most common, since the "cheapest" description of the rela

tionships between sketches would contain no cycles. If A is

related to P. and B is related to C, then one would hope not to

find any other relationship holding between A and C other than

the transitive one. In practice, however, things may not be that

simple. Join conditions might give rise to cycles, or even

disconnected sketch graphs, as mentioned earlier.

If the warehouse has a single "Value" form at its worksta

tion keeping track of the total dollar value of its stock, then

procedures which uodate it would include a blank precondition

sketch for a "Value" form. Since there is no confusion about

which Value form is needed, there are no local or global condi

tions to be specified for it. The corresponding sketch graph in

figure 12 is therefore disconnected.

ace ou r. t order inventory value

Figure 12 A disconnectel sketch graph

Furthermore, if customers had separate accounts for each

item they order (granted, a preposterous example under most cir

cumstances), then a link between account and inventory accross

item number would create a cycle in this sketch graph.

- C , P -

4. Implementation TLA 27/January/1981

4.2,3. C r a oh - c ha s i_g

The algorithm which searches the instance graph for a copy

of the sketch grao employs a list of Potential working dossiers.

Initially there ex .sts a single such dossier containing only the

key of the newly aided form. Edges are traversed in the instance

graph and keys are added to each dossier until all the edges and

nodes in the sketch graph have been checked.

Conceptually, we start at the node of the sketch graph

corresponding to the new form, rfe traverse edges leading out

from that node, and check off any new nodes that we reach. We

may follow any previously untraversed edges leading from any node

we have thus far reached. Edges will lead back, to old nodes

wherever cycles occur. If the sketch graph is disconnected, then

tne subgraph containing the first node will be traversed first.

Edges not in that subgraph, of course, cannot lead from old nodes

until an edge is traversed which checks off two new nodes.

The sketch and instance graphs in figure 13 will be used to

illustrate the graph-chasing algorithm. The example contains

both cycles and disjoint subgraphs, but is not intended to neces

sarily correspond to a particular real-life example.

Sketches 3 and 5 are sketches for the same form type but

represent distinct forms in the procedure. {a, b, c, . ..o] are

kevs belonging to forns that match the local conditions of the

sketch graph. ?orm a, for example, matches sketch 1. Edges in

the instance graph represent joins. Forms c and f, for example,

satisfy the global conditions between sketches 2 and 3.

—««—

4. Implementation TLA 27/January/19Bl

Sketch graph (type(3) = type(5))

p m i

Instance graph (? is the most recently added node)

Figure 13 Samjale. sketch and instance graghs

The addition of form p results in the completion of the

working dossier (a,c,f,h,p) where previously no complete working

dossier existed. The algorithm presented here will identify this

set of forms.

As we trace a path through the sketch graph, we try to mimic

cur actions non-deterministically in the instance graph. If we

-61-

4. Implementation 27/January/19Sl

follow an edge in the sketch graph, we attempt to follow that

edge in the instance graph for each dossier in our list. For

each success we aid a new key to some dossier, and for each

failure, we delete a dossier. Whenever several edges may be

traversed in the instance graph for a given edge of the sketch

graoh, we split the current dossier and add a new node for each

copy of that dossier. The closing of a cycle in the sketch graph

corresponds conceptually to a select on the dossier list, ensur

ing that links actually exist in the instance graph for the two

relevent forms represented in each dossier.

Figure 14 describes the steos followed in locating the work

ing dossier in our example. If at any point we lost all our

working dossiers, the algorithm would halt with no working set of

forms identified.

The sketch and instance graphs are described as follows: The

sketch graoh is S'(N'.E') where N' = {1, ... n] is the set of

colours and E' is a subset of N ' X N' containing no (i, j) where

i = j. F is the set of form keys. The instance graoh is 0(N,E)

where ,M is a subset of N" X F and 5 is a subset of N X N. Furth

ermore, we adopt the convention that if x = (i, k) belongs to N,

then x' - i arid x" = k, and if e = (x, y) belongs to E, then e' =

(>•', y').

Ir the example,

.M' = {1,2,3,4,5},

£' = {',1,2), (2,3). (3.5), (2,5)>,

F = {a,h,c,d,f,g,h,l,m,pj,

-£,?•

Implementation TLA 27/January/19£l

potential
working
dossiers
1 2 3 4 5

p.
o

c f
d f

b d f
b d g

a c

p
p
P

p
P
P

p

t n p

a c f h o

p is a new form matching sketch 5.

From node 5 in the sketch graph we can
reach node 3 along edge (3,5).
We follow ((3,f),(5,u)) and ((3,g),(5,pi)
in the instance graph and "split our
potential working dossier.

•fie now follow edge (2,3), splitting the
first dossier of the previous step.

Follow edge (1,2)

Edge (2,5) completes a cycle. We perform
a select on the dossiers resulting from
the last step. Since ((2,d),(5,p)) is
not in tne instance graph, we lose two
potential working dossiers.

;//e have traversed all the edges in the
sketch graph and need to add a form
that matches node 4.

Check that form f differs from form p.

Figure 14 Finding a working set of forms

M = {(l,a), (l,b), ...(5,p)}, and

E - {((l,a),(2,c)). (<l,b),(2,d)), ...((2,c),(5,o>)}.

We note, then, that for each x in M, x' must belong to M',

•nd fcr each e in E, e' must belong to E' — i.e. nodes and edges

.r. tne instance graph correspond to nodes and edges of the sketch

*r?ph.

;^_

4. Implementation TLA 2?/January/19Sl

If finding a complete set of forms is equivalent to locating

an instance of the sketch graph within the instance graph, we can

express this as follows: We seek all subsets H" of N such that

il) -TX'IK in O = N' and (2) for each (i, j) in E', there exists

x and y in !\i" such that x' - i, y' = j and (x, y) belongs to E —

i.e. for each node and edge of the sketch graph there exist

unique corresponding nodes and edges in the spanning graph

G'[.\f] .

In the example

K" = {(l,a), (2,c), (3,f), (4,fc), (5,P)}.

The algorithm for finding all such subsets H" makes use of

the knowledge that any working set of forms must include the most

recently added node, say x. Furthermore, there are two check

lists, node and edge, with slots for each element of N' and E'

respectively, all initially set to false, and a dossier list, D,

initially empty. Each dossier has n slots to hold all the keys

of any working set of forms found by the algorithm:

Suppose x in $ represents the newly aided form.

Add a dossier to J, with slot x' set to x": x must belong to

t he w c r <i ng set.

Set •,pie{x'J to true: chesK off node x' of the sketch graph.

For each ? = [i, j) in E' such that edge[e'l is false do

if both nodefi] and node'.jl are false

t h e r.

make one copy of each dossier in 0 for each

-64-

4. Implementation TLA 27/January/19Bl

(y, z) in E where y' = i and z' = j,

setting slots i and j to y" and z".

else if exactly one of node[i] and node[j] is false

(without loss of generality, node[i])

then

for each dossier in D make one copy for

each (y, z) in E where y' = i, z' = j, and

:/" is already in slot i of the dossier,

setting slot j to z".

e l s e i f node[i] and node[j] are t rue

then

for each dossier in D delete the dossier

if (y, z) is not in E where y" and z" are

in slots i and j of the dossier.

endif.

set edge [e'] to true

set r.oie[i] to true

set node[j] to true

)

Check that forms of the same type are different.

In the above algorithm, wherever the words 'make one cony

for each..." occur, the concerned dossiers are deleted if no

copies cac be made. If D is empty when the algorithm is fin

ished, then no working dossiers were found. If I; is not empty,

then the "first" dossier containing no diiplicate keys is chosen

as the working dossier.

«=,

4. Implementation TLA 37/January/I981

Since the station's owner may have moved some of the forms

in the working set while the interpreter was running, each of the

forms must be grabbed before the actions may be performed. Each

form in the working set is deleted from the system so that the

only copy is the interpreter's image of the form. If any of the

forms cannot be found, then the interpreter restores all the

forms grabbed thus far, and aborts the forms procedure.

4. Implementation TLA 27/January/1961

4.3. Actions

Only if all the forms are successfully grabbed does the

interpreter perform the set of actions. In the translation

phase, the legality of actions, implied actions and a legal order

of actions have already been determined.

Actions may "fail" if a string is too long to be inserted in

a given field, or if a form is mailed to a non-existent station.

In the former case, TLA chooses to insert the null string by

default, with the understanding that both humans and procedures

are intelligent enough to interpret this not as a value, but as a

non-value. In the latter case, OFS (and consequently TLA)

returns the mail to the sending workstation. Since TLA Pro

cedures are capable of recognizing the source of mail, it is

presumed that this anomaly could be appropriately dealt with if a

user felt it necessary.

- S 7 -

5. Conclusions TLA 27/January/1981

5. Conclusions

TLA captures a very limited sense of what is meant by an

"automatic forms procedure". The context of OFS limits tne range

of possible actions upon forms, but there are still many things

that humans can do in OFS which have not been modelled in TLA.

Automatic Procedures, for example, are not smart enough to expect

the return of a form which has been shipped away, and subse

quently take some action if a response is not received within

seme desired turnaround time.

form flow is determined by tne particular configuration of

•procedures across the system, cut neither analytic nor heuristic

tools are available for determining any notion of "correctness" .

It is the responsibility of tne users and a form administrator to

guarantee that there are no undesirable side effects resulting

from some particular combination of automatic procedures.

•.•/'nether such analysis could be performed within any reasonable

complexity oound, or even if it could be performed mechanically

at all is not known, since the meaning and domain of "correct

ness" is rot lefined in the general case, and perhaps not even

for any given application.

Tne complexity cf interpreting automatic Procedures and

fPrm-gathering clearly depends on (l) the size of the working set

for a procedure, (2) the number cf automatic procedures running

at workstations, and (3) the number of fcrm images "waiting" in

the instance graphs of a workstation. £s pointed out in an ear

lier section, the complexity of identifying an instance of the

-«D_

5. C o n c l u s i o n s TLA 27/January/19Si

sketch graph within the instance graph grows if the join condi

tions are so peculiar that the instance graph is not merely a

suograph of the sketch graph. Obviously, whatever factors con

tribute to this complexity must be considered in any "good office

aesign". Performance in an electronic office will be degraded by

poor distribution, of automation, but exactly what constitutes

"good design', and to what extent it is feasible for a given

application is not yet known.

Partly completed working sets of forms may or may not have a

particular meaning in terms o* exceptions and errors. If forms

are "missing" from a working set, the forms that are there may

also be part of another working set. The missing forms would

determine which procedure is to be activated. As such, there is

no way of telling which procedure forms are missing until they

arrive. Also, missing forms may or may not eventually arrive,

and there is no way of interpreting their absence as an error,

except by placing some arbitrary time limit upon form-gathering.

Since forms may satisfy partly completed working sets for a

-,umb?r of procedures, there would be a need for some convenient

*ay of displaying these sets so that users could interpret what

is missing' and possibly a^t on this information. Instance

raons could be quite complicated in general, and several partly

completed sets may overlap in a single instance graph. It seerrs

tnat a graphic aisolay would he better suited to presenting this

information than lists of form keys, since the splitting cannot

be presented linearly.

-->p-

o. Conclusions TLA 27/January/l?Fl

A simple feature that would increase user interaction with

automatic procedures would be a function whose value is deter

mined by the user. 'When the interpreter sees this function

assigned to a field in an action sketch, it holds all the forms

in the working set, notifies the user when he next signs on, and

waits until the user makes a request to inspect the working set.

.At tr.at point the user is allowed to assign a value to the field

(or possibly abort the procedure), end then execution will

resume.

Form flow in TLA is determined by the configuration of

automatic procedures, and triggering of procedures takes place

when combinations cf forms arrive at a workstation. Flow of exe

cution cculd be made more explicit by passing control between

procedures, n'ithin a single workstation, then, one could pass

vorking sets of forms and subsets thereof between procedures,

thus explicitly determining the order of operations without hav

ing to over-distribute desk activity within the office. Pro

cedures could then be called from other procedures without the

reed for form-gatnering, since the calling procedure would pass

the fcrrns already gathered. Decision points could be modelled by

branching rather than, by a variety of similar working sets of

forms, thus reducing some of the wcrk involved in form-gathering,

v.b.ich procedure is tc be called could be decided by evaluating a

function whose arguments are field values from the working set.

Ve have not answered what degree of generality is required

for procedure specification in the electronic office, out a small

prototype has been presented which solves some of the problems,

-72-

enclusions TLA 27/January/1981

and suggests approaches for providing other useful features. A

framework is needed for describing form flow and automatable pro

cedures in an office so that notions of correctness may be

analysed for a given model.

-71-

A . Bibliography TLA 27/January/1931

Biplipgraphy

Attardi, &., Barber, G. and Simi, M., "Towards an Integrated
Office u'ork Station" , MIT, 1933.

CHFU79
Cheung, C , "OFS — A Distributed Office Form System with a
Micro Relational System , M.Sc. thesis, Department of
puter Science, University of Toronto, 1979.

om-

Cheung, C. and Kcrnatowski, J., The OFS User's. Manual, Com
puter Systems Research Group, University of Toronto, 1980.

DEJO60
de Jong, P., "The System for Business Automation (SBA): A
Unified Application Development System", I.nfprmatipn Pro
cessing Bw, Lavington, S.H. (ed.)t North-Holland, The Hague,
19607'

ELLI79
Ellis, C.A. and Mutt, G.J., "Computer Science and Office
Information Systems", Computing Surveys, March 1982*.

GIBB79
Gibbs, S., "OFS: An Office Form System for a Network Archi
tecture", M.Sc. thesis, Department of Computer Science,
University of Toronto, 1979.

0IBB93
Gibbs, S., The OFS Programmer's Manual, Computer Systems
Research Group, University of Toronto, i982.

HAMM77
Hammer, M., Howe, W.G., Kruskal, V.J. and 'Wladawsky. I., A
Very High Level Programming Language for Data Processing
Applications", Comm ACM 23, 11 (1977), pp. £32-84.0.

HAMM79
Hammer, M. and Kunin, K.S., Design Principles of an Office
Specification Language", MIT paper, 1979.

-7?-

6. Bibliography TLA 27/January/19fl

HOGGS1
Hogg, J . , "TLA: A System f o r A u t o m a t i n g Form P r o c e d u r e s
M.Sc. t h e s i s , Depar tmen t of Computer S c i e n c e , U n i v e r s i t y o
T o r o n t o , 19fal.

HUDY78
Hudyma, R., "Architecture cf Microcomputer Distributed Data
base Systems", M.Sc. thesis, Department of Computer Science,
University of Toronto, 1978.

HUDl^
Hudyma, R., ,."The Hardware Design of Distriouted Office
Workstations" in A Panache of DBMS Ideas III, Technical
Report 111, Computer Syitems Research Group," University of
Toronto, 1^88.

KERN78
Kernighan, B.w. and R i t c h i e , D.M., The C Programming
Languaee, P r e n t i c e - H a l l , H,ngle*rood C l i f f s , New J e r s e y , USA,
l9?87'"~'

K0RN79
Kornatowski , J . Z . , The MRS U s e r ' s Manual, Computer Systems
Research Group, u n i v e r s i t y of Toronto , 1979.

LADD79
Ladd, I., "A Distributed Database Management System Based on
Microcomputers", M.Sc. thesis, Department of Computer Sci
ence, University of Toronto, 1979.

LADDS^
Ladd, I. and Tsichritzis, P.,
1980 NCC proceedings.

An Office Form Flow Model" in

METC75
M e t c a l f e , R.M. and E-oggs, U . K . , " E t h e r n e t : D i s t r i b u t e d
Packe t S w i t c n i n g fo r Local Computer N e t w o r k s " , Comm. ACM 1 £ ,
7 (1 9 7 5) , PP. 364-42 4 .

MOaGstf
,n, ,L., Researcn and Practice in Office Automation",

Department of Decision Sciences, The A'harton School, Univer
sity of Pennsylvania, Philadelphia, PA, USP , 1962.

-7.'*.-

5. Bibliography TLA 27/January/19S1

PETE?7
Peterson, J.L., "Petri inlets , ACM Computing Surveys 9, 3
(1977), pp. 223-252.

RITC76
Ritchie, D.M. and Thompson, K., The UNIX Time-Sharing Sys
tem", The Bell System Technical Journal, Vol. 57, S6 (July-
August 1978), pp. 1905-1929.

ZISM77
Zisman, M.D., "Representation, Specification and Automation
of Office Procedures", PhD dissertation, Wharton School,
University of Pennsylvania, 1977.

ZL0075
Zloof. M.M., "Ouery by Example", AFIPS Conference Proceed
ings, Vol. 44, 1975 NiCC.

ZLOO80
Zloof, M.M., "A Language for Office and Business Automa
tion", IBM Research Report, IBM Thomas J. a'atson Research
Centre, Yorktown Heights, ;>!ew York, USA, 1980.

- 7 4 -

