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ABSTRACT

A message management system provides users with a facility for automatically
handling messages. This paper describes a technique for characterizing the behaviour of
such a system in terms of message flow. Messages may be conveniently classed accord-
ing to what path or sequences of stations they visit. Complicated or unpredictable behav-
iour may be modeled non-deterministically, and the resulting message paths are shown to
be regular expressions.

1. Introduction

Until recently messages have been treated as a passive means of communication. Users or programs could

exchange information by passing a message to an electronic mail system, which would guarantee delivery of the

message to the intended recipient. Such messages typically consist of a header and a body. The message system

would examine the header to determine the target and deliver the body of the message intact without interpretion.

The contents of a message would be of no concern to the message system. In addition, a message system provides

users with some editing capability and some way to file arriving messages. The requirements of an Office Informa-

tion System [ElNu79], however, imply that a much more powerful message handling facility is needed in an office

environment. Office behaviour tends to be event-driven [AtBD79, FiHe80, Morg80]. The arrival of a message may,

for example, cause one or more procedures to be invoked. Workstations should be able to perform some of these

procedures.

A message management system provides users with a means for automatically processing messages. Most

office procedures are semi-structured [HaSi80], so such a system would enable users to describe tasks which follow

some pattern, but may turn to the user at critical points for help. Tasks would, for example, coordinate messages,

perform routine transformations (evaluate calculations or database queries), send reminders, answer queries about

the messages it has seen, and draw the user’s attention when unusual situations arise. Tasks may be expressed in

terms of SBA boxes [deJo80], actors [Hewi77], data frames [Embl80], automatic procedures [TRGH81] or

Smalltalk objects [BYTE81].

One way of incorporating these features is to assume that messages have a deep structure, not necessarily

fixed, but certainly something richer than the usual amorphous body of text. Tasks may interpret messages by iden-

tifying significant ranges of numeric fields or finding patterns in text fields. The interpretation may result in a
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transformation of the message, routing of the message to another station, or some local operation.

Since tasks may be triggered without user intervention, it is important to be sure that they are doing what is

expected of them. An unfortunate configuration of independent tasks may result in anomalous behaviour or poor

performance. Consider the case of a task that simply forwards mail for a worker on holidays. Tw o such tasks may

exchange messages all day without anyone noticing. We may expect a sophisticated message management system to

perform message flow analysis, task analysis and system instrumentation [Ruli79]. A model which supports such

analysis must be capable of representing task inputs and outputs, sources and destinations, timing constraints, the

amount of effort spent during each stage, etc. [SSKH81].

In this paper we will consider the simple case of a network of stations that communicate by sending messages.

Each station may scan an incoming message, interpret it by initiating any number of actions, possibly modifying its

contents, and then either discard it or forward it to some other station. It is, of course, possible to model more com-

plicated tasks by defining substations within a station.

In order to relieve ourselves of as much detail as possible, we relate correct behaviour to flow. Messages can

be separated into classes according to what sequences of stations they may visit. These sequences tell us not only

what routing takes place but also the tranformations that are performed and the order of the actions that take place.

The model presented provides a technique for determining what these sequences are, deciding whether or not they

may terminate, and establishing what end-conditions hold if and when they do terminate.

2. The message flow model

A message flow model F =< S, X , A, P > consists of a set S = {s1, s2, . . . , sm} of stations, a set X of messages,

and relations A: S × X → X and P: S × X → S. A and P are the action and routing relations. They need neither be

well- nor totally-defined, but they are often assumed to be functions.

A message x ∈X starting at some station s∈S will trace a path through S by repeated applications of A and P.

If we define Q(s, x) = P(s, A(s, x)) and N (s, x) = (Q(s, x), A(s, x)), then we follow the path

s, Q(s, x), Q(N (s, x)), Q(N 2(s, x)), . . .. We can recursively define the path of a message x ∈X starting in station

s∈S to be the string in S* obtained by φ (s, x) = sφ (N (s, x)). If A and P are functions, or at least totally defined,

then this path will clearly never terminate. This is also true of a message’s history, Φ(s, x) = (s, x)Φ(N (s, x)) in

(S × X)*. A history records not only the sequence of stations that a message visits, but also the contents that it had at

the time.

For a giv en message we must designate certain stations as initial or final. To this end we augment our set S

with the special stations α and ω . A station s is an initial station for x if P(α , x) = s, and s is a final station for x if

P(s, x) = ω . x is created by a user or a procedure at s if s is initial, and is discarded or archived if s is final. Now A

and P may be totally defined and our message paths may terminate when a message reaches its corresponding final

station, by letting φ (ω , x) = Φ(ω , x) = ε , the empty string. Certain obvious conditions must hold: A(α , x) = x,

A(ω , x) = x, P(ω , x) = ω and V-s∈S P(s, x) ≠ α .

Determining which paths a message may take is complicated by the changes of its contents. A message reach-

ing some final station may contain contents different from the original contents. Nevertheless we attempt to

approach message flow by considering classes of messages which may follow the same paths, rather than by solving

these paths individually.

At this point, we will make the assumption that messages are of the form, at least for routing purposes, of a

cross product X =
n

i=1
Π Xi where each Xi is an attribute. Messages whose body have no structure would have a

header (X1, X2, . . . , Xn−1) and body Xn. We assume for the moment that messages are of fixed type with no repeat-

ing fields. Attributes which directly and indirectly affect routing are called routing and control attributes respec-

tively. If the routing relation can be expressed in terms of only simple conditions involving the routing attributes,
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and if actions set control attributes to constants after checking only simple conditions, then the collection of simple

conditions provides a partition of each control attribute in a natural way [Tsic81].

If ——
—

x, x′∈X , s∈S.⊃—. x = (x1, x2, . . . , xk , . . . , xn), x′ = (x1, x2, . . . , x′k , . . . , xn), and P(s, x) ≠ P(s, x′), then Xk

is a routing attribute. Xk may also affect routing only after one or more applications of A and P. This is possible if

Xk is used to set the value of some routing attribute. We call Xk a control attribute if

——
—

s∈S, i∈N.⊃—.Q(N i(s, x)) ≠ Q(N i(s, x′).

We let Pij be the predicate P(si , x) = s j . Consider such predicates of the form Pij = \\ //{C1// \\C2// \\ . . . Cn} where

each Ck is a conjunction of simple conditions xk < op > u, < op > ∈{ = , ≠ , <  , ≤ , >  , ≥ } and u∈Xk . Consider also

the action As at station s which sets x to A(s, x). If the component of As which modifies a control attribute Xk can

be encoded as if \\ //{C1// \\ . . . Cn} then set xk = constant where the Ck’s are again simple conditions, then the u’s of

those simple conditions induce a natural partition Πk of any control attribute Xk into ranges. If Xi is not a control

attribute, we simply let Πi = {Xi}. Note that we may choose not to model such Xi’s, since they contribute no infor-

mation about message flow. We thus obtain a partition Π =
n

i=1
Π Πi of X . If there are Mi − 1 distinct simple condi-

tions on Xi to be found in all the As’s and Pij’s, then Πi partitions Xi into Mi ranges. So, |Πi | = Mi and

|Π| = M =
n

i=1
Π Mi .

We denote the block π i of Π = {π1, . . . , π M } containing a message x ∈X by the equivalence class x or [x]. If

A and P are functions as described with the above restrictions, then the extensions A(s, x) = [A(s, x)] and

P(s, x) = P(s, x) are well-defined since all messages in the class x satisfy the same simple conditions on routing or

control attributes.

Let S × Π be the set of states of F with respect to the partition Π. We then obtain N : S × Π  → S × Π. This

means that all messages in a particular class x visit precisely the same stations, and furthermore are all mapped to

the same new class by any transformation they undergo.

This is still true if the Ck’s are more general, (eg . search for a pattern in text), but now the partitions may be as

large as 2Mi−1 since we may no longer have mutually exclusive sub-ranges. If either A or P does not satisfy the set

of restrictions listed above, if they are not functions, or if an arbitrary partition Π is used, then the extensions of A, P

and N are, in general, not well-defined. They can, however, always be totally-defined by adding the states

αα x = (α , x) and ωω x = (ω , x).

Whenever we do not need to distinguish between the M α -states or ω -states, we will use

αα = (α , {x}) = (α , Π) and ωω = (ω , Π). Notice that we have implicitly extended the notion of a message’s state to

include sets of states, i.e. loosely,

(s, {xi |i∈I}) = {(s, xi)|i∈I}.

The following example will be used to explain the model: a message system supports a number of stations.

Tw o in particular are of interest. One is used by a graduate student, and the other is a completely automatic station.

It maintains a repository of problems, some solved and some unsolved. The student may ask for solved or unsolved

problems of varying degrees of difficulty and he (or she) may submit solutions to problems. A typical message from

the student, s1, might be

(GET , A HARD PROBLEM , < problem > , < solution >).

The < problem > and < solution > field would be blank initially, but would be filled in by s2 and s1 respectively.

If the student asks for a simple problem and solves it, he may ask for a new one. If he asks for a difficult or

unsolved problem, then s2, the automatic station, indicates that it would like a solution submitted by changing GET

to SUBMIT . If he finds a solution, then A HARD PROBLEM is changed to A SOLVED PROBLEM (automatically,

if the system can check the correctness of solutions), and the message is sent back to s2. When s2 receives this
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message, it saves the solution to the problem and lets the message die.

The control attributes are the first two fields, since these are the only ones which affect routing. (We assume

that the student is smart and always finds a solution to any problem, so < problem > and < solution > do not affect

the flow).

For our purposes, then,

X = X1 × X2,

Π1 = {{GET , RETRIEVE, . . . }, {SAVE, STORE, . . . }}

Π2 = {{ SOLVED PROBLEM , . . . }, {HARD PROBLEM , . . . }}.

A message can therefore be in eight states depending on which of the four classes it is in and which station it is at.

There are two more states, αα and ωω , corresponding to message creation at s1 and message termination at s2.

2.1. Bit vectors

Whenever the partition Π of X is of the form Π = Π Πi where Πi partitions Xi , we can express certain collec-

tions of message classes by bit vectors. Consider a message x = (x1, x2, . . . , xn). Each Πi = {π i1, . . . , π iMi
}. Conse-

quently each xi belongs to some π iji
∈Πi . We therefore have x =

n

i=1
Π π iji

∈Π. The bit vector b = (b1, . . . , bn) repre-

senting x is obtained by setting bi = 2 ji−1.

For example, if x = (GET , A HARD PROBLEM , , ), then x = π11 × π22 and b = (1, 2).

If we wish to consider xi belonging to any of several π ij’s, then we add their respective bi’s. In particular, if

we want to allow xi ∈π ij for any j ∈Ji⊆{1, 2, . . . , Mi} then bi =
j ∈Ji

Σ 2 j−1. bi therefore ranges from 0 to 2Mi − 1. If

each bi is written in base 2, so that b is a vector of strings over {0, 1}, then we can easily "read" the represented

blocks of Π. In the above example, b = (01, 10). b = (10, 11) would represent (10, 10) ∪(10, 01), and so on. The

"on" bits stand for π ij’s: if the jth bit (reading from the left) of bi is on, then we are allowing xi ∈π ij . The total set of

"allowable" message classes x ∈Π is the cross product of the π ij’s represented by the bit strings, i.e.
n

i=1
Π {π ij | j ∈Ji}.

Note that if each bi = 2Mi−1, eg . b = (11, 11), then all the bits are on, and x is allowed to range over all of Π.

Conversely, if any bi = 0, eg . b = (10, 00), then the cross product is empty, and no x ∈Π is represented.

A message flow model F under a partition Π =
n

i=1
Π Πi may be represented by a directed graph D = (V , E)

where V = S ∪ {α , ω } and a (directed) edge (si , s j) exists for every non-empty Pij . Every edge is labelled by a set

of bit vectors representing all the message classes which are allowed to flow along that arc. If the Pij’s consist solely

of simple conditions, then a single bit vector will often suffice to label each arc. We also label each vertex by those

bit vectors representing messages that may undergo a change of class. Furthermore, the change of class is explicitly

indicated by marking with an asterisk the bit in bi corresponding to the new block in Πi of the image of xi in

A(s, x). For example, s1 only submits SOLVED problems. Mapping SUBMIT messages into SUBMIT SOLVED

messages is encoded by (10, 11*), i.e. message classes (10, 10) and (10, 01) are mapped into (10, 01). We call the

labelled graph a message flow graph (see figure 1). Note that not every bit string in b need be marked.

To determine what paths are followed by all message classes, we "push" the bit vector representing all of Π
through the message flow graph. When the bit vector encounters an action, it "splits" into the component affected

and the one which is unaffected. Furthermore, the affected bit vector acquires the marking of the action. A marked

bit vector is remarked upon encountering an action. The bit strings marked in the action are those remarked in the

bit vector of the message. In this way we maintain both the original message class and the current message class.

For the purpose of applying the action and routing relations, only the current class (or set of classes) is relevant.

- 4 -



Message flow modeling

Figure 1: A message flow graph

Suppose, for example, that the set of messages represented by the bit vector b = (11*, 11) encounters the

action represented by (0*1, 10). b started its life as (11, 11) but is currently (01, 11). Only the current value is of

importance in evaluating the effect of the action, but we must also keep track of the original value. The action

causes b to be split into (11*, 10) and (11*, 01), i.e. the component affected by the action and the one unaffected.

Applying the action causes the bit vectors to be remarked, and we obtain (1*1, 10) and (11*, 01).

Bit vectors are also split according to routing. When the (current) message classes represented by a bit vector

must follow different arcs, that bit vector must be split into the appropriate components. There may be several ways

to do this: Suppose (11, 11) is routed in two directions. If one of the arcs is labelled (10, 01) and all other message

classes follow the other arc, then the second component of (11, 11) can be represented by (11, 10) ∪(01, 01) or

(10, 10) ∪(01, 11) or (10, 10) ∪(01, 10) ∪(01, 01). For illustration see figure 1 and for a more detailed account see

[Tsic81].

2.2. Non-determinism in the MFM

Although A and P are defined as relations, we have, up till now, more or less assumed them to be functions.

We hav e also placed some ostensibly unreasonable restrictions on the nature of the actions and routing predicates. It

is unlikely, in practice, to only have actions that set attributes to constants. It is also unreasonable to expect that sim-

ple conditions will suffice to express all desired routing predicates. Finally, it is possible that A and P depend on

some external information (such as user input), thus rendering them non-deterministic within the framework of the

message flow model.

It is clear that this case prevents A or P from being well-defined. Furthermore, if actions do not set attributes

to constants, or if arbitrary conditions are used in routing predicates, then A and P may be well-defined over S × X ,

but not always over S × Π. An arbitrary action may map one message class into any number of other message

classes. ES×Π induced by the partition S × Π, is necessarily an equivalence relation, but may not be a congruence

relation for N . By the same token, arbitrary routing functions applied to a state (s, x) may not map neatly to a single

station for each x ∈x. It may be possible to choose Π so that A and P are well-defined over states, but, in the worst

case, Π = {{ x}|x ∈X}. We must therefore be prepared to handle non-determinism if we expect to obtain any worth-

while reduction of message classes in some situations.

A non-deterministic message flow graph differs from its deterministic counterpart only in that the bit vectors

labelling out-edges from a station (i.e. routing predicates) may not be mutually exclusive, and that the bit-vectors

labelling stations (i.e. actions) may have sev eral marked bits in a given bit string. The multiple marking of an
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action’s bit vector indicates the image of that action when applied to messages represented by the bit vector.

The non-determinism introduced into the model now prevents each message class from being associated with

a particular path. The collection of possible message paths taken by messages in a block of Π can, however, be

expressed by regular expressions [Ginz68]. We first extend the notion of a message’s history Φ(s, x) over (S × X)*

to message states. We hav e, therefore, Φ(s, x) = (s, x)Φ(N (s, x)) yielding a string or a choice of strings in (S × Π)*.

Theorem 1: Message histories in a non-deterministic message flow model F =< S, X , A, P > can be expressed by

regular expressions.

Proof: Let Π be a partition of X . Consider the finite automaton A =<V ′, V ′, ξ , αα , {ωω } >. The states V ′ of the autom-

aton are the states of the message flow model, S × Π ∪ {αα , ωω }, together with the special α - and ω -states The inputs

are also V ′. The next-state relation ξ (v1, v2) holds

(i) if v1 = αα and v2 is initial

(ii) if N (v1) = v2

(iii) if v1 is final and v2 = ωω .

Note that N (s1, x1) = (s2, x2) if——
—

x1 ∈x1, x2 ∈x2 .⊃—.N (s1, x1) = (s2, x2). Neither N nor ξ need be well-defined.

Since the input strings accepted by A are precisely the valid histories in F of message classes in Π, those histories

may be expressed by regular expressions .

Corollary 2: Message paths in F may be expressed by regular expressions.

Proof: The message paths are obtained from the regular expressions in theorem 1 by the mapping ν1(s, x) = s

extended to strings in (S × Π)*. Alternatively, consider the automaton A′ =< V ′, S′, ξ ′, αα , ωω >, where ξ ′(v1, s2) holds

if ——
—

v2 = (s2, x2).⊃—.ξ (v1, v2) holds. The strings accepted by A′ are the valid message paths taken by message classes

in Π, and are therefore regular expressions .

The transition graph [Ginz68] of A is the directed graph D′(V ′, E′) where E′ = {(v1, v2)|ξ (v1, v2)}. D′ may be

thought of as an inefficient representation of the message flow graph, D. We call D′ the state-graph of F . (See fig-

ure 2.)

Figure 2: A state graph

Any state not reachable from αα is unattainable. Any state from which ωω is reachable is terminating. If D′
has no unattainable states, then it has exactly one vertex αα with zero indegree and one vertex ωω with zero outdegree.

If F is a deterministic message flow model with respect to Π, then every vertex v∈V ′\{αα , ωω } = S × Π has outdegree

δ +(v) = 1.
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Tw o vertices in a directed graph are diconnected if each is reachable from the other. Diconnection is an equiv-

alence relation whose resultant partition induces subdigraphs called dicomponents [BoMu76]. If F is deterministic,

then the non-trivial dicomponents of D′ are cycles: if a message encounters a state twice in its history, it must, ipso

facto, cycle indefinitely. (Not so if F is non-deterministic.) We hav e, therefore, the following classification:

Proposition 3: If a message flow model F is deterministic with respect to Π, then the history of an initial message

class is either vi1
vi2

. . . vik
or

vi1
vi2

. . . vil
(vil+1

. . . vik
)∞.

Furthermore, the state graph D′ of F has the property that the connected subgraphs of D′[S × Π] are either

(i) directed trees with a single final state as a root node; the root node is reachable from every vertex;

there may be dead branches of unattainable states; all attainable states are terminating

(ii) directed graphs with a single directed cycle; the cycle is reachable from every vertex; there may be

dead branches; all states are non-terminating .

We may describe non-deterministic message flow models by considering dicomponents:

Proposition 4: Let D′ be the state graph of a message flow model F with respect to Π. The condensation, C(D′), of

D′, obtained by collapsing dicomponents into vertices, is characterized as follows:

(i) attainable, terminating dicomponents form a lattice under meet and join induced by reachability

(ii) unattainable dicomponents may lead into the lattice

(iii) critical dicomponents may lead out of the lattice to non-terminating dicomponents .

One immediate consequence of this is that once a message has left a dicomponent it may never return to it.

Since a condensation, or dicomponent-graph, is acyclic, a message may never return to a state once it has entered a

new dicomponent. This may lead us to regular expression for message paths which are simply the concatenations of

the regular expressions for dicomponents.

We may use classical techniques for deriving the regular expressions, but we may save some effort by using

D, the message flow graph, instead of D′, the state-graph, as our representation of F and of our finite automaton.

Regular expressions are obtained by solving T = BT + E where T and E are column vectors and B is a matrix. Each

Ti is the regular expression we seek for state i of the automaton. Ei is // \\ (the empty string) if i is a final state and ∅
otherwise. The entries Bij are the inputs required to advance from state i to state j. The solution to T is B*E, where

B* = I + B + B2 + B3 . . ., but this format is useless to us for determining the individual Ti’s. Regular expression are

non-commutative, so conventional matrix equation solving techniques are also useless here. (They are useful, how-

ev er, for solving the generating functions for each regular expression, since those do commute.) The laborious

method of substitution and elimination is therefore used to solve these equations.

We may save some effort, however, if we conglomerate message states using bit vectors. Instead of deriving

regular expressions for each (s, x) in S × Π, we attempt to do so for (s, b) where b initially represents all of Π, and is

split only when necessary. It is not possible to write a matrix equation for this, since we do not initially know how

the bit vectors will be split. We therefore do not know the size of T until we have already solved it.

We let kb represent the regular expression for (k, b). We wish to represent message paths so our inputs are

stations. Our input in state (k, b) is k. If the next station is any one of k1, . . . , kt , then we write

kb = kk1b1 + . . . + kktbt . If k is a final station, then kt is ω . If t > 1 then there is a possibility of termination or con-

tinuation. If t = 1, then all messages terminate. Each bi is the remarked component of b which is routed to ki . If F

is non-deterministic, then the bi’s need not be mutually exclusive.

Consider the previous example with stations {α , 1, 2, ω } and Π = (11, 11): A1 = (10, 11*), A2 = (0*1, 10),

Pα 1 = (11, 11), P12 = (11, 11), P21 = (11, 10) ∪(01, 01) and P2ω = (10, 01). Messages enter the system at station 1,
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get passed to station 2 and back, and possibly leave the system at station 2. Messages may be modified at either sta-

tion depending on their contents.

We write:

α (11, 11) = α 1(11, 11)

1(11, 11) = 1(10, 11) + 1(01, 11)

= 12(10, 11*) + 12(01, 11)

2(10, 01) = 2ω (10, 01)

2(01, 11) = 2(01, 10) + 2(01, 01)

= 21(0*1, 10) + 21(01, 01)

1(10, 10) = 12(10, 10*)

= 12ω (10, 10*)

1(01, 01) = 12(01, 01)

= (12)∞(01, 01)

Substituting back we obtain:

α (11, 11) = α 12ω (10, 11*)

+α 1212ω (0*1, 10*)

+α (12)∞(01, 01).

We may now "read" the message paths as being the strings preceding the message classes in the above expres-

sion. In this example there are two terminating message paths. All terminating messages end in the class (10, 01).

Only messages in the class (01, 01) do not terminate. (Note that (2, (10, 10)) is an unattainable state and, as such,

2(10, 10) appears nowhere in the above equations. 2(10, 11*) is really 2(10, 01) since we are interested only in cur-

rent states.) The only non-trivial dicomponent is {1(01, 01), 2(01, 01)}. A terminating dicomponent would make a

contribution to the regular expression of the form (expression)*. We hav e saved a small amount of work by using bit

vectors, since we would have otherwise used 16 equations for 4 stations times 4 message classes.

Figure 3: A non-deterministic message flow graph

The next example illustrates how non-determinism is handled by the model: we have stations {α , 1, 2, ω } and

Π = (11, 11) as before. Furthermore, A1 = (10, 1*0*), A2 = (11, 11), Pα 1 = (11, 11), P12 = (11, 11), P1ω = (01, 10),

P21 = (11, 10) ∪(01, 01) and P2ω = (10, 01) (see figure 3). We hav e introduced two kinds of non-determinism: A1

either depends on some external parameter, or our partition Π is not fine enough to give us congruence classes over

X2. In our example the student is allowed to submit "solutions" to problems which he decides to classify as

SOLVED or UNSOLVED. In the latter case he may be submitting a tentative solution and asking for a hint. We
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have a similar situation with P12 and P1ω . Since they are not disjoint, our routing is non-deterministic: The student

now has a choice of requesting a fresh HARD PROBLEM or giving up. s2 no longer insists on getting a solution.

Nevertheless we may proceed as before:

α (11, 11) = α 1(11, 11)

1(11, 11) = 1(10, 10) + 1(01, 10) + 1(11, 01)

= 12(10, 1*0*) + 1ω (01, 10) + 12(01, 10) + 12(11, 01)

2(10, 11) = 21(10, 10) + 2ω (10, 01)

= 212(10, 1*0*) + 2ω (10, 01)

= 2(12)*ω (10, 11*)

2(01, 10) = 21(01, 10)

= 212(01, 10) + 21ω (01, 10)

= 21(21)*ω (01, 10)

2(11, 01) = 2ω (10, 01) + 21(01, 01)

1(01, 01) = 12(01, 01)

= (12)∞(01, 01)

Substituting back we obtain:

α (11, 11) = α 12(12)*ω (10, 10*)

+α 1ω (01, 10)

+α 121(21)*ω (01, 10)

+α 12ω (10, 01)

+α (12)∞(01, 01) .

Notice that the second and third terms simplify to α 1(21)*ω (01, 10). As before we can read off the terminating mes-

sage paths: α 12(12)*ω , α 1(21)*ω and α 12ω . The new dicomponents are {1(10, 10), 2(10, 10)} and

{1(01, 10), 2(01, 10)}. There are no unattainable states. Messages that terminate end up in classes (10, 01) or

(01, 10). Messages in class (10, 01) are guaranteed to terminate. Messages in class (01, 01) will never terminate.

Message classes (10, 10) and (01, 10) may or may not terminate depending on the true nature of A1 and P1ω (see fig-

ure 4).

If a finer partition Π would eliminate the non-determinism then those paths will also terminate. Similarly, if

A1 and P1ω depend on some external variable, then we most show that a provably finite number of iterations will

enable our messages to exit their loops. Finally, if A1 and P1ω are "genuinely non-deterministic" (i.e. random), then

we have only a probablistic guarantee of termination.

3. Concluding remarks

The message flow model presented in this paper provides us with a way to characterize tasks in a message

management system. The regular expressions which describe the paths taken by classes of messages may be used in

the analysis of a given system for correct behaviour. We will continue to extend and develop the model. Coordina-

tion of messages, for example, is not yet represented. The power of hierarchical decomposition of stations into sub-

stations corresponding to tasks and subtasks has not been explored. We also hope to incorporate the model within a

working message management system capable of specification of automatic message handling procedures

[TRGH81].

The area of regular expressions also suggests many possible applications of the model, in particular, the

assignment of weights to stations will yield generation functions for costs associated with classes of messages. The

amount of work taken to process a particular message, or the probability of arriving at a particular state may be

determined using generating functions. This, in turn, may suggest ways of improving performance by redistributing

workloads or restructuring the system.

- 9 -
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Figure 4: A non-deterministic state graph
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