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ABSTRACT

Office information systems provide facilities for automatically triggering procedures when cer-
tain conditions become true or particular events take place such as receipt of mail. When these proce-
dures operate concurrently and independently in a common environment, the overall behaviour of the
system may be unexpected. Firing expressions are proposed as a tool for describing global behaviour
and for detecting unusual properties of the system.

1. Introduction

An office information system is a computer system that models the activities of an office. One would
expect to find that the objects defined in an OIS parallel the real objects in a physical office such as desks or
workstations, memos, telephones, calculators, tables, mail trays and so on. An OIS presents a uniform
medium in which to represent the objects in an office thus permitting the automation or partial automation
of routine activities and providing the advantage of increased speed of communication.

The messages passed between workstations in an OIS may be intelligent forms, procedures, or any
appropriate office object. Automation in such systems is enabled by permitting events to trigger other
events. The receipt of a certain kind of message, for example, may trigger a procedure which automatically
reads the message and responds to it. The creation or modification of any object may also trigger an event.
By specifying exactly what circumstances may trigger an event a user passes the responsibility of firing it to
the system.

The firing of an event may create a situation in which some other event is triggered. All such new
events are then also fired. This process continues until the system "stabilizes" and no more events can be
fired. Since an event may be triggered implicitly rather than called explicitly, the net effect of firing an
event may be far from obvious, in fact, the system may never stabilize if events trigger one another in a
cycle or generate new events. This highly parallel activity can be difficult to understand and evaluate unless
there is a view of global behaviour available.

The task of describing global behaviour is a general one, independent of the specific OIS application
being studied. A model is needed to capture this behaviour without being bound to a particular class of
applications. We cannot enumerate and anticipate all possible applications. We approach the problem at a
different level by providing the primitives needed to define such systems. Any results obtained from our
analysis of global behaviour could then be embedded in a system based upon such a model.

2. Objects

Objects in an OIS can be memos, forms, records, messages or anything else that may be manipulated
by a user. The objects that are of greatest interest here are those that are fairly regular in their appearance
and in their usage. Such objects may be automatically processed by procedures associated with user work-
stations that await their arrival, creation or modification. These procedures may look for objects that satisfy
certain conditions, or they may coordinate objects that belong together. Different applications and different
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implementations may have different characteristics. There is still enough regularity of information and
common triggering of procedures. It is possible to describe these systems with a model. "Objects" are a
construct that can be used to model or to program such systems. An electronic form together with its char-
acteristic behaviour could be coded as an object, as could messages, procedures, mail trays and even parts
of the user interface. An "object" [BYTES81, DeJo80, NiMT83] is an entity with a set of properties and a
behaviour that describes how the object may be used and modified. An object "knows" its behaviour and is
responsible for it, in a sense.

An object-based system enables one to represent objects within a computer. It allows users to define
classes of objects with contents resembling database relations and behaviours resembling bodies of associ-
ated code. A behaviour consists of rules for the creation, transformation and destruction of objects. An
object’s rules may be triggered implicitly rather than having to be called explicitly. An object behaves as
though it is always watching for a triggering condition to become true.

An object-based system enforces the behaviour by detecting conditions that will trigger events. This
is the task of managing a set of objects. The state of the world is characterized by the states of the objects
in it. A particular object may take on a number of values in its lifetime, but the changes happen in a
restricted way.

Objects interact by "doing things" to each other that "make sense™. Certain actions may only make
sense for objects in a particular state. One can only fix a chair, for example, if it is in a "broken" state.
When two or more objects interact, something "happens”, that is, the properties of some of the objects may
change.

Objects have both contents and behaviour. Contents consist of instance variables which distinguish
objects in the same class somewhat like attributes distinguish tuples in the same relation. They may also be
compared to the static variables of a module. Throughout an object’s lifetime these contents may change.
The values of all the objects in the system determine the state of the system. Value changes may occur
because certain conditions become true, or they may take place as a consequence of one object interacting
with another object. An object’s behaviour is a set of rules describing the situations under which these
value changes may normally occur.

Objects’ contents are simply a set of variables, each of which ranges over some set of values. They
may be stored in data structures such as those provided by a high level programming language like Pascal
or C. A rule is a named body of code. Rules specify trigger conditions, communicate with other objects
and modify contents.

The firing of an object’s rule is the execution of its statements. A rule is fireable if its statements may
be successfully executed. A rule may only fire if all the conditions in the rule are guaranteed to hold upon
firing. This eliminates the need for "postconditions" and the idea of "success" or "failure™ of a rule. A rule
is active if the conditions that refer to its instance variables alone are true.

If for any reason a rule is not fireable, then none of its statements are executed.

An event can be fired whenever there exists a collection of objects that wish to communicate through
rules whose trigger conditions are all true. An event is fired by firing all the rules in that event. We assume
that every fireable event eventually either (1) get fired or (2) get deactivated by the firing of some other
event. In [NiMT83] we give a more thorough discussion of objects and outline an implementation. In the
appendix we give an example of an object.

3. Correctness and global behaviour

Objects as they are described above suggest a number of questions. First of all, there is nothing in an
object’s behaviour that tells us what an event looks like. We only see an object’s immediate acquaintances,
not the entire set of participants of an event. We may also not be able to tell from a rule’s reference to
acquaintances exactly what classes of objects are matched, or precisely what rules within those objects will
be matched. This is analogous to not knowing what procedures are ultimately going to make use of a
library of functions.



Office Object Flow

Furthermore, the overall behaviour of the system we have defined may not correspond to what we
had in mind. This is analogous to the problem of debugging a program. The problem is more difficult here
because we are not defining programs to be run at a single instant in time, but rather a set of cooperating
programs that have an extended lifetime. The interactions between existing objects and newly-defined ones
may be difficult to determine and comprehend in an OIS of any complexity.

In a running system, it may be desirable to monitor the progress of the objects currently defined.
Suspicious behaviour may be detected by identifying those objects which are not proceeding at an expected
rate.

Some automatic analysis is required that will (1) provide users with a view of global behaviour and
(2) point out any behaviour that is unusual. There can be no a priori bad behaviour because an OIS is nec-
essarily not a closed system. What may look like deadlock may in fact be a way of preventing certain
events from taking place except under very unusual circumstances.

We assume that all objects are meant to be created, go through a series of transformations, and then
peacefully die. We may be able to detect the possibility of objects being frustrated in their attempts to ful-
fill this goal.

The creation of an object is accomplished by firing an initial rule (called alpha) which brings it from
the initial state (or alpha state) to a state in which its contents assume some value. An object eventually is
destroyed when a final rule (called omega) is fired, bringing it to its final state (or omega state), which
causes the object to be archived, printed, forgotten, or otherwise leave the set of active objects. An object is
stuck if it is prevented from reaching a final state. An object may get stuck

(1) if it reaches a state in which no rule is active

(2) if it cycles infinitely through the same set of states,
never reaching a final state

(3) if it reaches a state in which it waits forever for an acquaintance to reach a certain state because
that acquaintance is stuck or because that state is unattainable or is simply never reached.

An analysis of of objects’ behaviours can also tell us
(4) what states are unattainable and

(5) whether there are rules that can never fire because the object can never reach a state in which
those rules are active.

Our task is to abstract our object model to a simpler model that captures state changes and firing
sequences. This abstraction must then be interpreted to evaluate the global behaviour of an OIS.

4. Object states

We are concerned primarily with the possible life histories of objects, that is, the sequence of states a
objects reaches and the sequence of rules fired from state to state. A state is some set of values that an
object may (or may not) reach. If states are blocks in some partitioning of the range of an object’s contents,
then we need some criteria for establishing the partition. Since rules are the only means by which objects
may change state, an object’s state must be related to whether a rule is fireable.

The simplest possible state space would consist of a single state. Since we are interested in life histo-
ries, we would naturally add the initial and final states. One might add one state per rule -- an object being
in a particular state if that rule is active, but several rules may be active at any one time, and an object may
be in only one state at a time.

The first reasonable state space might be to consider 2" states where there are n rules, since each rule
may be either active or inactive. Some states would, however, correspond to no objects since we may
expect some rules to be mutually exclusive. In the inv object outlined in the appendix, excluding the alpha
and omega rules, either all rules are active or all rules are inactive.

A more reasonable approach would be to consider all the conditions placed on the instance variables
of an object. An object is in a given state if it satisfies that set of conditions. The conditions in the
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behaviour of the inv object are total=0 in the omega rule, and total>0 in the lose rule (in the first alternative
of the sub-rule, total=n where n>0). We have, then, the states ¢, the initial state, t; (where total=0), t,
(where total>0), t_ (where total<0), and w, the final state.

The significance of states is that they capture what rules may be active for an object. Rules map
objects from states to states and consequently cause different rules to become active. An object’s state
graph is a digraph with nodes representing states and arcs representing state transitions. For every arc there
must be at least one rule active in the state at the arc’s tail which, when fired, may cause the object to reach
the arc’s head. A state graph may be simplified by combining states. For example, a collection of states
with identical out-going arcs may be combined since they share the same next-state set.

The dicomponents of the state graph are the sets of mutually reachable states. Since these states are
mutually reachable, an object may loop infinitely through the states in a dicomponent unless the dicompo-
nent contains only a single state and there is no loop from that state to itself. The dicomponents of the inv
state graph are {a}, {to, t:}, {t-} and {w}. Any dicomponent without outgoing arcs is terminal. If this
dicomponent is not the omega state, then it is a dead dicomponent since it can never reach the omega state.
Any dicomponent without incoming arcs is unattainable, except the alpha state. ({t_} is an unattainable
dicomponent). Any dicomponent whose only incoming arcs are from an unattainable dicomponent is also
unattainable. Any dicomponent whose only outgoing arcs are to a dead dicomponent is also dead. Any
state in a dead dicomponent is a dead state. All other dicomponents are live.

A rule is composed of statements. The condition for the rule is the conjuction of all its constituent
conditions. A sub-rule may contain alternatives. The condition for the sub-rule (a statement) is the dis-
junction of its constituents.

A stategraph for inv objects
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eg.

{ x>1;
X <5;
{yz0y<1lly>2}
{z<0]|z>10};

}

The condition for this rule (which contains no executable statements) is
(((x > DACX < 5)A(y 2 0)My < DAz < 0))v
((x > DA(x < SNy 2 0)A(y < )Nz > 10))v

((x > DA < SNy > 2Nz < Q))v

((x > DA(x < Sy > 2)A(z > 10))).

We must take a cross product of conditions in sub-rules to obtain our rule condition in disjunctive normal
form. If there are no other conditions in any other rule, then each of these conditions corresponds to a state.
Otherwise they each correspond to several states. The condition represents a collection of states which is
the domain of the rule.

In this case our conditions would produce the following state space:
{(1,5),(-00,1)00[5,e0)}x {[0,1),(2,00),(-e0,0) [ 1,2] } x {(-0,0),(10,0),[0,10]}

The rule above would be active in four of the eighteen states. Here we end up with too fine a partition of
objects’ states by considering all combinations of all conditions. It would therefore be desirable to combine
certain states if they are in some sense equivalent. Non-empty intersections of rule domains and their com-
plements might determine a better state space. In this case the four states would be combined into one state
and the remaining fourteen would be combined to produce another state.

5. Formal abstraction

An object class C has a set of variables V(C), a domain D¢ (v) for each variable vV (C), and a set of
rules R(C). The instances of C are the mappings 1(C)={u|u(v)ODc(V)WIN(C)}. The rules R(C) are a
relation over the instances of C (i.e. a rule need neither be well-defined nor totally defined). We model,
therefore, whether a rule is active and what states may result from firing it, but we do not (yet) model those
firing conditions that depend on outside information (i.e. the state of an acquaintance).

The precondition for firing a rule r OR(C) is that the instance xOI(C) belong to the domain of the
rule p(r)={« 01 (C)|r(w) is defined}.
Class C; is a specialization of C; if V(C;)0V(C;). We write C; 2C;. The base object class is Cg

where V (Cp) =0 and R(Cp) = 0. We have therefore C; > CyVi. Specialization is a partial order on object
classes.

A state space S(C) may be defined as follows:
S(C)={sDI(C)ls = (N, P) N (N HCNP() # O, XOR(EC)}

This state space would have at most 2" states where n = |R(C)|, since all combinations of active rules are
considered. In fact, however, many rules will have no associated conditions, such as the total rule, for
which p(total) = I(C). Other rules may be mutually exclusive. Many of the states so generated will there-
fore be empty and so will not contribute to the state space S(C).

A firing expression [NiTs82, Shaw78] is a regular expression representing the set of all possible rule
firing sequences and state changes for an object. Since objects generally require acquaintances for their
rules to fire, one must examine the firing expression of possible acquaintances to decide whether they may
ever reach a state in which the matching rule is active. An iterative algorithm may be used to sort through
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all firing expressions to decide if the rules in the sequences may actually become fireable by finding a
matching rule in another firing sequence.

The firing expression for an object class corresponds to the set of strings accepted by the automaton
A =<S,R,d,a, w > with states S, alphabet R, initial state ¢, final state w and state change function §where
s'0s(s,r) <= s' N r(l) # 0. If the firing expression is to include state changes as well as rule firings, then
the alphabet is R x S, and s'05(s, (r,s")) < s' N r(l) # 0.

The firing expression including state changes for the inv object is

a alpha(ty +t,((gain + lose + price =)t,)" lose to)

((lose + price =)t + gain t,((gain + lose + price =)t,)lose t,)" omega .

(Since the item, total and price rules do not cause any state changes, they have been left out.) If state
changes are ignored, this expression simplifies to

alpha(gain(gain + price =)"lose + lose + price =) omega.

Firing expressions may be used to generate flow expressions. If certain kinds of objects have an
owner attribute indicating who may modify it at any given time, then certain states will correspond to own-
ership by a given workstation. The firing expressions may be used to determine what sequences of work-
stations may own the object, i.e. how the object flows through the network.

Non-determinism may enter the model in 3 different ways: (1) The state space may not be fine
enough to capture all state transitions accurately (an increment of a variable may or may not cause a state
change) (2) Incoming data from acquaintances or functions cannot be predicted (3) A genuinely non-deter-
ministic source (a random number generator or user input) may be used.

If rules require no acquaintances, if conditions are simple comparisons of variables to constants and
if firing a rule will only set variables to constants, then firing expressions are completely deterministic. If
more general actions are permitted and variables may be set to values returned by functions, then firing
expressions become regular expressions, and non-determinism is introduced.

6. Conclusions

OISs can exhibit quite complicated behaviour when automatic procedures are introduced. Global
office activity that manages objects, e.g. messages, can be hard to understand when independent local pro-
cedures vie for control. Techniques for describing and analysing global behaviour are needed as a means to
determining whether these systems behave "correctly”. Some kinds of unusual behaviour can be identified.
Firing expressions are suggested as an approach to studying global behaviour and detecting peculiarities
that are of interest to users and programmers.

7. Appendix

A specification for an object class inv follows. Instances are inventory objects used to keep track the
number of items in stock. We use the notation outlined in [NiTM83].

The contents of the inv object are the variables item, total, price, auth and date. Its behaviour con-
sists of the rules alpha, item, total, price, price=, gain, lose and omega. The inv object is a specialization of
the null object class object, which has no contents or behaviour. Every object must have an alpha rule and
an omega rule for creating and destroying it.

The conditions appearing in a rule may refer to the object’s contents, or to any value sent by an
acquaintance, an object interacting with it. The acquaintance variables in the above rules are “and B. (" is
the object invoking the rule, if there be one.) The rule may also produce values to be sent to acquaintances
or to be used in modifying the object’s contents. The alpha rule above obtains the name of its one acquain-
tance for setting one variable, and it gets the current time by calling a globally defined time function.



Rules may be named like the procedures of a module or an abstract data type, but they may also be
triggered without having to be explicitly called by another object. Consider the following rule added to the

behaviour of inv:
panic{

This rule would be triggered whenever the total field hit zero. There is no ™ acquaintance for this rule (and
hence no need to name it). This would be useful for separating triggering conditions from the events that
cause them. There are, for example, two distinct ways in which total could be set to zero. There is no need
to check this condition at those points. Note, however, that the panic rule can only be deactivated by the
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M : manager,;
total = 0;

auth = M.name();
M.panic(item);

gain or omega rules, and so would fire repeatedly until one of these other rules fired.

inv : object {

/* instance variables */
item, total, price : integer;
auth : string;

date : time;

* rules */
alpha(i,t,p){ /* rule for creating inv objects */

item{

total{

/* only managers can create them */
~: manager;

i, t, p:integer;

[* conditions on the input */

i>0;

t=0;

p=0;

item — i;

total < t;

price — p;

[* get the creator’s name by invoking his namerule */
auth — “.name();

date — time();

}

[* return item to anyone who wants it */
"~ object;

}(item)

[* return total to anyone who wants it */
"~ object;

}(total)
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price{
[* return price to anyone who wants it */
"~ object;
Hprice)

price=(pX{
/* only managers can change the price field */
~: manager;
p : integer;
p=0;
price « p;
auth « ".name();
date — time();

}

gain(n){
/* increment the total number of items */
"~ object;
n : integer;
n>o0;
total ~ total +n;

}
lose(n){

/* fill an order; return the amount filled */
"~ object;
n : integer;
n>o0;
{
total = n;
/* the usual case */
K < n;
total ~ total - n;
[* alternatively: */
/* can’t fill order; create a backorder */
B : backorder;
k « total,
B.alpha(~,item,n-k);
total — O;
}

/* return the size of the order filled */

HK)

omega{
/* only managers can destroy inv objects */
~ . manager;
[* can’t have any leftover stock */
total = 0;
}
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