
Message Flow Analysis

Oscar Marius Nierstrasz

CSRI Tech. Report #165

Department of Computer Science
University of Toronto

A thesis submitted to the Department of Computer Science and the
School of Graduate Studies in conformity with the requirements for the
degree of Doctor in Philosophy at the University of Toronto.

© Oscar Nierstrasz, November, 1984

Abstract

A message management system enables its users to automatically process messages. Procedures
associated with a workstation may scan incoming mail, perform some routine processing and possibly for-
ward the mail. The global properties of such systems may be far from obvious when large numbers of pro-
cedures are present.

We attempt to gain insight into global behaviour by studying "message flow". We do so by partition-
ing message domains into state-spaces, and analyzing the state transitions effected by procedures. Message
flow for messages of a given type can thus be represented by a finite automaton whose states are the mes-
sage states.

The finite automata for the various message types can be "welded together" to form a Petri net that
accurately captures both the message flow for individual message types and the coordination by procedures
of messages of different types. The model is useful for obtaining a descriptive analysis of behaviour, and
for analyzing interesting behaviour such as blocking, deadlock, "message loops" and "procedure loops".

In addition we present some techniques useful for detecting message loops and procedure loops at
run time.

Acknowledgements

As is always the case in these matters (that is, the ones that go on for years and years) there are a
number of people to thank. First of all, I want to thank my supervisor, Dennis Tsichritzis, whose idea this
all was in the first place (though I wonder if this is what he had in mind back in 1979). Dennis’ insights
(usually) kept me on track, and helped keep the work interesting over the years.

I also want to thank Professors Mendelzon, Sevcik, Lochovsky, Holt, Hehner, Leon-Garcia and my
external examiner, Professor Alan Shaw, for their thorough reading of my thesis (and its various incarna-
tions). In the same breath (but a different sentence) I must thank Panos Economopoulos, who went through
the nastier parts of my thesis with a fine tooth-comb long after it had stopped making sense to me.

I thank, too, the revered and respected institutions of the National Science and Engineering Research
Council, the Ontario Graduate Scholarship fund, and the University of Toronto, without whose financial
assistance I would be a poorer man, or possibly shy one or two degrees.

There are many other people, such as Brian Nixon, John Hogg, Kent Laver, Pat Martin, whose con-
versation would help to keep my mind sharp while the glowing phosphors connected to the computer would
strive to deaden it.

And, of course I must thank Mom & Dad for the free rein.

Table of Contents

1. Introduction ... 1
1.1. Setting .. 1
1.1.1. Messages ... 2
1.1.2. Automation ... 4
1.2. Global Behaviour ... 4
1.2.1. Message flow .. 5
1.2.2. Evaluating message flow .. 7
1.3. Outline ... 9

2. Background ... 10
2.1. What is Office Automation? .. 10
2.2. Automating office procedures ... 12
2.2.1. SBA ... 13
2.2.2. OFS ... 13
2.2.3. Officetalk .. 13
2.2.4. Imail .. 13
2.2.5. Smalltalk ... 14
2.2.6. Oz .. 14
2.2.7. SCOOP ... 14
2.2.8. Taxis .. 14
2.2.9. BDL .. 15
2.2.10. OSL ... 15
2.2.11. Information Control Nets .. 15
2.3. Summary .. 15

3. Message flow modeling .. 17
3.1. Notation ... 17
3.1.1. Locations ... 17
3.1.2. Messages ... 18
3.1.3. Procedures ... 19
3.2. Modeling power ... 20
3.2.1. Locations ... 21
3.2.2. Messages ... 21
3.2.3. Procedures and multi-step activities ... 21

3.3. Message paths .. 23
3.3.1. Path-equivalence ... 23
3.3.2. Undecidability of path-equivalence .. 24
3.3.3. Message states .. 25
3.4. Summary .. 26

4. Message flow .. 28
4.1. Message paths and states ... 28
4.1.1. Control attributes .. 30
4.1.2. Trigger conditions ... 31
4.1.3. Actions .. 32
4.2. Analyzing message flow .. 34
4.2.1. Detecting control attributes ... 34
4.2.2. Obtaining message states .. 37
4.2.3. State transitions ... 39
4.2.4. Symbolic messages ... 41
4.3. Summary .. 46

5. Global behaviour .. 47
5.1. Petri net representation and non-determinism ... 48
5.2. Blocking ... 52
5.2.1. Message creation .. 53
5.2.2. Unreachable states .. 53
5.2.3. Avoidable states .. 54
5.2.4. Deadlock ... 54
5.2.5. Recursive blocking ... 55
5.3. Procedure loops ... 56
5.4. Run-time monitoring ... 60
5.4.1. Message loops ... 60
5.4.2. Procedure loops and daemons .. 61
5.5. Summary .. 65

6. Concluding remarks .. 66
6.1. Limitations and possible extensions .. 66
6.1.1. Procedure inputs ... 66
6.1.2. Specialization .. 67
6.1.3. Intelligent messages and objects ... 67
6.2. Evaluating changes .. 67
6.3. Message states ... 68
6.4. Related work .. 68
6.5. Other topics .. 69

7. A : Glossary .. 70

8. B : Notation ... 74

9. C : Petri nets .. 77

10. Bibliography and references ... 81

1. Introduction

The growing interest in "Office Automation" and in naive-user programming suggests some interest-
ing problems. In an Office Information System electronic documents take the place of the familiar paper
documents (such as forms, letters, records and so on). As in a real office, these objects may change hands
frequently. When certain activities are automated, the flow of electronic documents (i.e. messages) from
location to location can become quite complicated. As long as these activities are well-understood and do
not change frequently there may not be any difficulties. The literature suggests, however, that automation
in offices will be introduced gradually, and will be subject to frequent change. The consequences of alter-
ing or adding automatic procedures that manipulate messages may not be so obvious to those who imple-
ment them. Apparently innocuous changes may affect message flow in subtle ways that can cause an exist-
ing automatic procedure to fail. In this thesis we address these problems by developing techniques for cap-
turing the existing message flow and understanding how message flow and automation of activities affect
one another.

1.1. Setting

Chapter 2 provides an overview to the various approaches to office automation that have been imple-
mented. Terms such as "Office Information System" are defined. We shall introduce here the ideas that are
crucial to this thesis.

First of all, we are interested in office information systems that are superficially very similar to real
offices. We hav e a collection of workstations ("stations", for short) that are the logical equivalent of desks.
Users communicate with each other using electronic documents or messages instead of paper documents.
Other familiar objects may also have their counterparts in a computerized office system (bulletin boards,
calculators, calendars and so on). By "simulating" a real office with the computerized system, the task of
computerization is simplified and the likelihood of acceptance by office workers is increased (see chapter
2). If naive-user programming is to work, then electronic objects should have immediately recognizable
counterparts to familiar physical objects, and the operations we normally perform on the real objects should
translate naturally into operations on the electronic ones.

In figure 1.1 we see a small collection of workstations. The circles represent workstations and the
arrows represent flow of information. A takes orders and sends the order forms to B. B maintains the cus-
tomer records. He checks the orders from A to see if the customers’ credit ratings are in order. If all is
well, the orders are sent on to C. C maintains inventory records. If there are not enough items in stock to
fill an order, C generates a backorder and sends a memo to F who is responsible for manufacturing. Orders
that can be filled are sent to D, where shipping is handled. When new shipments arrive, D notifies C so the
inventory can be updated. When orders are filled by D, the order forms are returned to B. B notifies E of
outstanding accounts, and E handles the mailing of bills. When payments arrive, E notifies B so the cus-
tomer records can reflect the payments.

1.1. Setting 2

A: takes orders
B: maintains customer records
C: maintains inventory records
D: shipping
E: handles bills and payments
F: manufacturing

Figure 1.1 : Communicating office workstations

1.1.1. Messages

The static objects in such a system are electronic documents containing the information that we
would normally find on paper documents. They resemble our intuitive notion of a message in that they can
be sent from workstation to workstation, but in this setting they may have other constraints. Messages in an
office information system may be required to continue to exist after they hav e been received -- documents
in offices often change many hands, possibly residing at a location for a long period of time before being
passed on. Furthermore, many messages fall into well-defined groups or "types". Forms and records are
highly structured -- a collection of them resembles a relational database. Questions about forms can resem-
ble database queries ("tell me what customers owe us more than a thousand dollars"). In figures 1.2 and 1.3
we see examples of structured messages. They are the order form and customer record templates of our
hypothetical office.

If messages are to correspond to documents, it is useful to have unique identifiers to distinguish
them. We shall assume that all messages have a unique identity. Copies can therefore be distinguished
from originals. (There are many variations on the notion of a "copy": copies may be "read-only", guaran-
teed to be a facsimile as of the time of copying; they may be "read-only" and guaranteed to always repre-
sent the current version of the original -- possibly tricky to implement; or they may be writeable, gaining

1.1. Setting 3

ORDER FORM Ke y:

Customer :
Date :

Item :
Ordered :

Price : dol
Quantity : ×

Total : dol

Approved:

Figure 1.2 : An order form

CUSTOMER RECORD Ke y:

Customer :

Credit limit : dol
Owing : dol

Weeks overdue :

Address :

Figure 1.3 : A customer record

independent status after their creation. Since we are concerned mainly with modifiable messages, we may
pass over this issue, beyond establishing that all messages have a unique identity.) There may also be con-
straints on the fields of a message: some fields may be write-once, read-only, write-by-owner, and so on.
Furthermore, some fields may be automatically filled, such as signature and date fields. Automatic fields
may be calculated as a function of other fields (such as "total" or "tax" fields). Virtual fields are similar, but
are never stored with the body of the message, being re-calculated whenever the message is displayed.

In addition to having a unique identity, we also assume that a message has a unique location. A loca-
tion is a workstation or some mailbox owned by a workstation. (Other locations, such as archives, printers
and so on, may exist, but we can consider these to be special cases of workstations.) The location of a mes-
sage determines who currently has control over it. Usually this can be equated with who has the power to
look at it or modify it. Exceptions are messages that may not be viewed or altered except in restricted ways
by other than privileged users (such as the creator of the message). Also conceivable is a facility to allow
messages to be "recalled" from a remote location. A manager may be able to track down the current loca-
tion of a document such as a report or a customer record and have it mailed to him even though he is not the
current owner of that location. In general, however, we assume that messages leave a station only when
they are explicitly mailed by the user owning that station.

Operations on messages include creation, destruction, display, modification and mailing. In addition,
since messages in this context may be a permanent record of information, we may wish to query a database
of messages. Such operations as selections and joins over sev eral messages by matching comparable fields,

1.1. Setting 4

for example, can be very useful. Similarly, when modifying messages, it should be possible to easily trans-
fer data from one message to another, or to use information in one field of a message to compute or gener-
ate new information for another field.

1.1.2. Automation

In order to automate office activities, one must be able to recognize conditions that cause events to be
triggered. Events may, in turn, cause other events to be triggered. Visible events include the arrival of mes-
sages and the creation and modification of messages. One must be able to select precisely those messages
that are of interest. A trigger condition thus resembles a query ("get me a message satisfying this condi-
tion") that applies to the future rather than just the present. Since a collection of messages may be required
in order to complete some activity, these conditions may potentially include joins, or matching between
messages.

A simple example is mail-forwarding in figure 1.1. A procedure could automatically forward all
completed order forms from A to B. Only slightly more involved is a procedure at B that automatically
matches incoming order forms against existing customer records by the customer fields of the two docu-
ments. If the amount owing plus the value of the order is less than (say) half of the credit limit, and the
weeks overdue field of the customer record is less than 4, then the procedure might automatically approve
the order by forwarding it to C. The condition on the value of the order involves both messages, but the
condition on the number of weeks overdue is a selection involving only customer records.

At C, a procedure could automatically match orders against inventory records. If not enough items
are in stock to fill the order, the procedure could generate a backorder to be filled when the new stock
arrives, and a memo to F that inventory is low. (The backorder is another order form that must also be
matched against an inventory record.)

It is instructive to decompose activities into steps: in each step we must gather a set of resources
(messages), possibly transform them in some way, and release them. New messages may be created in the
process. Although an activity may consist of several steps chained together, we will concentrate on the
steps themselves. The advantage of this is that we can consider the steps to be atomic -- they either succeed
or fail in entirety. Multi-step activities naturally do not necessarily have this property. It is the steps that
we shall speak of as "procedures", though one should keep in mind that more complex activities exist in
general.

We also assume that these procedures are local to workstations. This view is very natural and consis-
tent with the principle that computerized office systems resemble real offices: users of the system and their
automated procedures only have direct control over the documents "belonging" to them. (We may extend
this, however, by allowing the presence of local procedures at other sites that "belong" to someone else. A
manager may, for example, be able to install a procedure at a worker’s station that selects and forwards cer-
tain messages back to him.) Another advantage of local procedures is that we do not have to address the
problem of activities that are triggered by events that take place at several physically different locations. If
all the "workstations" are timeshared on a single mainframe then we do not have serious problems imple-
menting such behaviour, but it is another matter when each workstation is a separate machine on a network.

1.2. Global Behaviour

If automated office procedures are triggered by the receipt of mail, then it is clear that message flow
and control flow are intimately connected. The current location and current value of messages determines
what procedures are to be activated. Furthermore, these procedures may be "loosely connected" through
the messages that they handle: a procedure that processes a message and forwards it to a new location may
trigger another procedure at that site; neither procedure need have any knowledge of the other. It is (poten-
tially) transparent whether a message arriving by mail has been sent by a manual operation or an automated
one. The consequence is that the global behaviour of a system is determined implicitly by the collection of
local procedures at all of the individual workstations -- no one needs to explicitly specify the interactions
between all of the automated procedures.

1.2. Global Behaviour 5

If there are a lot of automated activities, then their interactions may be far from obvious. Worse yet,
if procedures are frequently changed and added, then there may be unexpected consequences if the proce-
dure interactions are not well-understood. As an example consider what would happen in figure 1.1 if B
did not distinguish between new orders sent by A and filled orders sent by D. A poorly-designed automatic
procedure at B might take filled orders from D and naively re-process them. A "small error" in specifying
a local procedure may have repercussions that are not obvious without examining all such procedures at all
locations handling messages it sends.

Another potential problem is blocking of procedures that coordinate several messages. An alteration
in a procedure at one site may prevent a message from reaching a procedure at another site that is awaiting
its arrival. Other messages at the second site will also be blocked.

1.2.1. Message flow

We can try to gain some insight into global behaviour by studying message flow. Since the flow of
messages through the system determines what procedures are fired, and, conversely, the procedures deter-
mine the message flow, we can measure global behaviour in terms of the interaction between messages and
procedures.

Our approach is to attempt to classify messages according to the paths they take. Two messages are
in the same equivalence class if their potential paths are identical. Intuitively, the path of a message is the
sequence of procedures it encounters. In addition, since procedures are conditionally triggered on the cur-
rent values of their input messages, we find it convenient to think of message paths as alternating sequences
of procedures and values. Since procedures typically select some messages of a given type (matching cer-
tain conditions) and ignore others, the equivalence classes of messages following similar paths can be
expected to have comparable values. If we can partition message domains into sets of message values that
satisfy various combinations of these conditions, then we should be able to express the paths of our equiv-
alence classes as alternating sequences of procedures and blocks of our partition.

Let us consider the following example. In figure 1.4 we see a graph model of the procedures
described earlier. In fact, it is a Petri net representation of those procedures (see appendix C for a discus-
sion of Petri nets). Nodes in the graph are bars (called transitions) and circles (called places). The transi-
tions, labeled t1 to t6 represent procedures. The places represent the messages handled by the procedures.
They are labeled with a letter representing the message type and a subscript. Places labeled o are order
forms, c, customer records, i, inv entory records, l, low-inventory memos, and b, bills. Procedure t1 at sta-
tion A is the procedure used to generate and forward order forms to B. t2 checks the customer’s credit rat-
ing and forwards the order form to C. t3 generates back-orders for low-inventory items (arc to o2) and
sends low-inventory memos to F (at l1). The back-orders must again be matched against inventory records
(when the supply is replenished). t4 handles orders that can be filled immediately. t5 forwards order forms
back to B after the orders have been filled. t6 updates the customer record, archives the order form and
generates a bill to be handled by E. (To keep the example manageable, we have left out procedures han-
dling customers with poor credit ratings, arrivals of new shipments, and customers’ payments.)

Figure 1.4 differs slightly from an ordinary Petri net in that there is a correspondence between input
and output places. In a Petri net, inputs (represented by dots, or tokens within the places) are consumed,
and outputs are produced. In our case, an input from o2 goes to o3. We may highlight this correspondence
by concentrating on a single message type at a time. In figure 1.5 we see a new Petri net obtained by delet-
ing all places representing messages other than order forms, and all arcs directed to or from the deleted
places. In addition, we add a new place, α , representing the creation of order forms. The resulting Petri net
has the property that every transition has precisely one input place and one output place. Such a Petri net
can be viewed as a finite state automaton. To see this, simply eliminate the bars from the figure and use the
Petri net transition labels as the state transition labels. The places of the Petri net become states of the au-
tomaton. α is the initial state of the automaton. (Note that t3 had to be split into two transitions since it
had the unusual property of outputting two messages of the same type.) The sequences of possible transi-
tion firings for the Petri net can therefore be described by a regular language.

1.2. Global Behaviour 6

Figure 1.4 : Petri net of procedure interaction

By this reduction of the Petri net into finite automata (one per message type), the message flow inher-
ent in the system becomes apparent. We can now see that there are two equivalence classes of order forms:
one created by t1 and the other created by t3. (Once any giv en order form reaches state o2 we do not know
whether t3 or t4 will fire since we cannot predict the value of the matching inventory records. All order
forms are thus "equivalent" in the sense that we cannot deduce anything more about their future path.) The
regular expressions for the two classes are:

α t1 o1 t2 o2 (t3 + t4) o3 t5 o4 t6 o5

and

α t3 o2 (t3 + t4) o3 t5 o4 t6 o5

where "+" denotes alternation (see chapter 4).

In this example the states of the automaton are distinguished by the location of the messages. t3 and
t4 are triggered by the presence of order forms arriving from B. It is important to be able to tell who sent a
message -- to this end we find it convenient to think of separate mailboxes for mail arriving from different
sources. We may thus encode the source of a message in its location. (If this seems slightly odd, one may
equivalently think of messages residing in a mailbox as having an additional sender field, which is set to
null when it is removed from the mailbox. Incorporating this information into a single location field seems
somewhat cleaner, howev er.) Messages at o1 arrive from A, messages at o4 arrive from D and messages at
o5 reside locally at B. If we were unable to distinguish these three, then they would collapse into a single

1.2. Global Behaviour 7

Figure 1.5 : Finite automaton of message flow

state. t2 and t6 would fire repeatedly since messages would always return to that state.

Since procedures may place triggering conditions on any of the fields of a message, the states of the
automaton can potentially correspond to conditions on fields other than the location. If, for example, order
forms contained an order filled field (containing the shipment date, or some other information) and a billing
date field then t6 could ignore the sender of order messages and select those with non-null order filled
fields and null billing date fields, setting the latter the appropriate value. In chapter 4 we shall look at how
to convert selection trigger conditions of procedures into message states (the states of our finite automata).

1.2.2. Evaluating message flow

A characterization of message flow is an expression of the global behaviour resulting from a given
configuration of local procedures. This in itself can be very useful if these procedures are frequently
changed. Message flow can also be used as an indicator of interesting or unusual situations arising from
the interaction of procedures.

First of all we see what procedures are responsible for creating messages. (This information is read-
ily available in the specification of the procedures.) We also see where messages terminate. Clearly, if a
message is routed to a station that has no procedure prepared to handle it, then it can go no further. The
matter is complicated, however, when there are procedures prepared to handle some messages of a given
type, but not necessarily all of them. Of course, if messages that can’t be handled never arrive anyway, then

1.2. Global Behaviour 8

this does not cause any problems. In order to find out whether or not this is the case, however, we may
need to trace the flow of all messages of that type to see where they end up. In addition, there will
undoubtedly be points where messages are expected to terminate (as in figure 1.5). We are interested in
finding out if any messages may terminate unexpectedly.

Message loops may occur if messages return to a station they hav e visited before. If neither the value
of the message itself nor those of coordinating messages are changed in the body of the loop, then the loop
may be repeated indefinitely. Another possibility is that message values change but do not alter the trigger-
ing of procedures within the loop, thus preventing the loop from being exited. This could happen in figure
1.4 if procedures at B did not distinguish between order forms coming from A, those coming from D and
those already at B. Places o1, o4 and o5 would be collapsed into a single place here and also in figure 1.5.
t2 would not distinguish between o1 and o4; the inventory would steadily decrease and the customer’s bill
would increase, however, causing the loop to terminate when stock ran out or the credit limit was exceeded.
If the values do change, as in this example, but not necessarily enough to cause the loop to be broken, then
there may be an arbitrarily large number of iterations before it does terminate. Sometimes (as would be the
case here) the presence of any message loop at all is an obvious error. Other times it may simply reaffirm
what is expected: the inventory records handled by t3 and t4 are in perfectly acceptable loops.

Blocking occurs if a message arrives at a point from which it can make no progress. There are sev-
eral ways this may happen. First, a message may simply reach a dead end where no procedure will handle
it (o5 in figure 1.5). Next, a message may be stuck at a procedure waiting for a coordinating message that
will never arrive. The coordinating message may never hav e been created; it may have been routed (non-
deterministically) so as to avoid the waiting message; there may not be a path to the waiting message; the
coordinating message may be blocked itself. Care must be taken here to establish how many possible coor-
dinating messages there may be, and where they come from. One such message may well avoid our wait-
ing message, but another one may be on its way. Consider a given customer record at c1 in figure 1.4. If
no orders arrive for that customer, then that record is blocked. Orders originating at t3 may never get to o4

if they are blocked at o2. Other orders may well be generated by t1, howev er, so that the customer record
would still not be blocked. Blocking could only occur if no coordinating message arrives. Deadlock is a
special case of blocking in which two (or more messages) are blocked, waiting for each other at different
locations.

Another situation, related to message loops, is that of procedure loops. It is possible for a loop to
exist in the firing of procedures without any giv en message indefinitely repeating a segment of its path.
Suppose, for example, that procedure t3 in figure 1.4 fired even if there were no items in stock with which
to even partially fill the order. Orders arriving at o2 would have the quantity set to zero and be sent on to
o3. A new backorder for the original quantity would be generated. This, however, would create a proce-
dure loop if the new backorder could not be distinguished from the original. t3 would fire repeatedly, gen-
erating backorders, zeroing them and mailing them to D. (More apocryphal is the example of a procedure
to automatically respond to mail messages while you are on holidays with a note telling when you will
return. If two people have such procedures, and the last act of one before leaving is to broadcast a farewell
message, then the two auto-mailers will enter a loop, sending notes to each other until the file system is
filled or somebody notices and pulls the plug.)

Procedure loops, like message loops, are of greatest concern when they are unmoderated, and when
there is no indication that the loop will terminate. (A loop is "moderated" if any of the procedures in the
loop must wait before firing for some outside event, such as user input.) The Petri net model of procedure
interactions can be used to detect procedure loops. This matter will be discussed in more detail in chapter
5.

Non-determinism in global behaviour can have many causes. Outright conflict may exist with two or
more procedures whose triggering conditions overlap. If there are no rules to determine which procedure is
to be fired, then it may be up to the system to arbitrarily choose one. Conflict may also occur in a weaker
sense when it is resolved by a coordinating message. For a giv en order form at o2 in figure 1.5, either t3 or
t4 may fire depending on the matching inventory record. Without knowing the values of all inventory
records for all time, we cannot predict which procedure will end up handling order forms. Furthermore, the

1.2. Global Behaviour 9

system is not, in general, closed, since user input can introduce new values and new messages (a closed
office system would probably not have much relevance to the real world). The uncertainty of these new
values limits our ability to predict the behaviour of the system after the values are added.

Finally, there is some artificial non-determinism introduced by our attempts to model message flow.
In order to keep the model manageable we partition message domains (the sets of possible values messages
may assume) into a finite number of message states. We can then speak of procedures causing messages to
flow from one state to another. How we make the partition inevitably influences the strength of our results.
Theoretically speaking, our message domains are infinite, but since messages must be represented within a
computer, we know there is only a finite (though very large) number of possible values. Allowing one mes-
sage state per value will clearly yield the maximum possible information about message flow, though at
enormous cost. Allowing a single message state consisting of all values yields a trivial model but sacrifices
all message flow information; all procedures would map messages from that single state back to that state.
In chapter 4 we shall consider the options available to us in choosing the message state space. When draw-
ing conclusions from our model we must take care that the information we seek has not been destroyed or
altered by our choice of a state space. Non-determinism displayed by our model may not necessarily corre-
spond to non-determinism in the systems we are studying.

1.3. Outline

In this chapter we have argued that the current philosophy tow ards automating office activities can, in
systems supporting such activities, yield overall behaviour that can be hard to understand without the aid of
some modeling tools. We hav e informally described the sort of systems that are of interest, shown what
sorts of questions and problems can arise, and suggested an approach to answering these questions by
studying message flow.

In chapter 2 we shall survey some of the recent literature to lend weight to our assumptions about
how off ice activities will be automated. In chapter 3 we shall use these assumptions to develop a general
formal model which we can use to discuss message flow and system behaviour without undue attention to
system implementation (beyond our initial assumptions). In chapter 4 we shall then use this model in our
efforts to arrive at useful methods for partitioning message domains into state spaces. The resulting mes-
sage states will be the basis of our characterization of message flow and of global system behaviour.

In chapter 5 the information about message flow is further analyzed to answer questions about mes-
sage loops, procedure loops and blocking. Chapter 6 consists of concluding remarks.

2. Background

In this chapter we survey the existing literature on office information systems. Through this effort we
hope to establish what the term means, what characteristics such systems are expected to have, what
assumptions are reasonable to make about their implementation, and what consequent analytic problems
result from these assumptions.

In the first section we survey various discussions on the nature of office work and office systems. We
try to come to a consistent view of the problems in applying computers to the field of office work, and we
generate some principles concerning implementation. Office work is often "semi-structured", consisting of
some simple, highly algorithmic parts, and some "fuzzy", judgemental parts. Exceptions and unsatisfied
assumptions frequently arise. A successful computerized office system must be flexible enough to address
these issues. Furthermore, office work changes frequently, or "ev olves" which suggests that incremental
development of automation is more appropriate than an abrupt replacement of an existing manual system
by a computerized one. With some form of naive user programming, the automation of office procedures
can be accomplished less painfully.

In the next section we survey the possible approaches to automation of office procedures. Several
systems and programming languages are outlined and discussed in terms of the principles discovered in the
previous section. Intelligent messages, automatic procedures, scripts and object-oriented programming lan-
guages each offer solutions to some of the problems to be solved. It is the approach of local, user-written
automatic procedures that we choose to investigate further in this thesis.

2.1. What is Office Automation?

Broadly speaking, in order to be successful, an office information system must take an integrated
approach to supporting office work. According to Hammer and Sirbu in their paper, "What is Office Auto-
mation?", many popular views of "office automation" are inadequate because they concentrate on too small
an area, such as "the paperless office" or "office tools", and they fail to capture office work as a whole.
They define "office automation" as: "the utilization of technology to improve the realization of office func-
tions" [HaSi80]. That is to say, the task to be accomplished and the proposed solution must be viewed in
the context of the entire office. All aspects of an office information system must be integrated in order to
be able to exploit the interaction of related tasks and minimize the pain of augmenting or altering the sys-
tem.

They define an "office procedure" as: "a structuring framework by means of which the individual
tasks and activities performed by office workers are organized." The study of office procedures rather than
just their constituent components highlights the purpose of the activities. These office procedures are typi-
cally semi-structured, that is, consisting of some routine, algorithmic parts and some "fuzzy" judgemental
parts. They define an office information system as: "an integrated collection of components that supports
the operation of an office procedure". Routine sub-tasks may be totally automated. Decision support tools
may be provided for the "fuzzy" parts. In any case, an office information system is not a specific, all-

2.1. What is Office Automation? 11

purpose cure-all, but it depends on the job to be done.

Ellis and Nutt in "Computer Science and Office Information Systems" define office information sys-
tems as: "entities which perform document storage, retrieval, manipulation and control within a distributed
environment." [ElNu80] An automated office information system "attempts to perform the functions of the
ordinary office by means of a computer system." They distinguish it from a data processing system in that
it consists of "a collection of highly interactive autonomous tasks that execute in parallel". Hammer and
Kunin state that, "An automated office system is an integrated and interconnected collection of components
under the supervision of an intelligent control program" [HaKu80].

Morgan, in his paper, "Research and Practice in Office Automation" identifies most office functions
as belonging to one of these categories:

1. Communications

2. Information acquisition, storage and retrieval

3. Data analysis and decision-making

4. Personal assistance

5. Task management

Communications involves the integration of electronic mail facilities, word processing, text format-
ting and message management. The second category can be seen as the extension of database management
to textual, graphic and aural data. Decision-making can be aided by a rich collection of application pro-
grams for massaging and analyzing data. More intuitive user interfaces that provide us with models that
correspond to the way we ordinarily think of real (as opposed to electronic) office objects can simplify the
task of generating the information needed for the decision-making process. "Personal assistance" refers to
a grab-bag of tools such as calendar programs and personal databases of phone numbers -- anything that
helps you organize your time and your work. "Task management" refers to the automatic monitoring by the
system of the tasks that are to be accomplished: since office work is typically event-driven, an office infor-
mation system should be able to keep track of events and trigger new events or at least notify us when there
is new work to be done [Morg80].

Office work is distributed in time and space and may involve the coordination of many parallel activi-
ties being performed by different people in different locations [HaSi80]. This work is "semi-structured"
[SSKH82] in the sense that it is sometimes very regular and algorithmic. Although some of these activities
may be routine to the point where a machine could perform them, much of the work is interactive and
requires the attention of a human being [HaSi80]. Office work is riddled with unsatisfied assumptions.
Human interaction is often necessary because an understanding of goals is required to accomplish a task.
Therefore an office information system must be flexible, or "open-ended", support partial information, and
handle missing information [FiHe80].

The office environment is constantly changing and evolving. Rather than instituting an office infor-
mation system to suddenly replace the existing system, one should introduce it gradually by developing it
incrementally [AtBS79, HaSi80]. This can be done by starting with something closely modeled on the
existing manual system.

Ellis and Nutt point out that programming in an office information system is a special problem.
Since these systems are developed incrementally, it must be possible to incorporate new code painlessly.
The system must be capable of running procedures in parallel and in a distributed fashion. Furthermore,
naive users must be able to have some direct control over the programs. This could be accomplished by
generating code from user specifications, by using programming-by-example, or possibly by using syntax-
directed program editors [ElNu80]. Lochovsky also points out that the approach of direct rather than pro-
cedural manipulation is especially appropriate for programming in office information systems [Loch83].
Fikes and Henderson suggest that other techniques arising from research in Artificial Intelligence may be
well-suited to office information systems [FiHe80].

Because office information systems are susceptible to frequent change, modeling and analysis are
likely to become very important in understanding and maintaining an evolving system [ElNu80]. Rulifson

2.1. What is Office Automation? 12

predicts the advent of naive user-programming, and the growing importance of database and flow analysis,
procedure analysis and system instrumentation. Systems will be built that analyze procedures and docu-
ment flow and will be able to eliminate some procedures or reduce their complexity [Ruli79]. Hammer and
Sirbu also state that an office information system will include "a variety of tracking and monitoring facili-
ties that enable the procedure as a whole to be effectively managed and controlled." These facilities would
be used, for example, for tracing document flow and evaluating the performance of a department. They
also point out that "the best designed office procedures cannot account for all unusual situations that may
arise ... thus, the office manager will have to possess both a global picture of the office procedures being
performed, as well as a detailed understanding of the work of each of his individual subordinates."
[HaSi80]

2.2. Automating office procedures

There are a variety of ways of automating office procedures. Ideally these techniques should be con-
sistent with the principles established in the previous section. The alternatives differ mainly in who is able
to specify automatic behaviour, and in who may be affected by this behaviour, directly or indirectly.
Although different techniques are appropriate for solving different problems, we can evaluate their appro-
priateness to automating office procedures in terms of the criteria discussed above.

Let us consider, for example, the ad hoc approach to automating office procedures. This might be the
case in a computerized office system where the automation of any giv en activity is implemented by a pro-
grammer. Since office workers cannot be expected to also be expert programmers, this means that a pro-
grammer must always be available to translate the specification of an office procedure into code. Office
procedures, however, typically deal with documents (i.e. messages) that must pass through many different
hands. These messages may have constraints on them that are not obvious to the implementor of the proce-
dure. A programming error can have far-reaching side-effects. Since the implementor virtually has a free
rein, we have almost no control over the changes made. Furthermore, since the changes are written in an
arbitrary programming language, it can be arbitrarily difficult to evaluate them.

We hav e already established the need for an office information system to be an integrated system.
Patched-in code could well undercut the system’s ability to keep all its parts functioning together properly.
(A program that inadvertently bypasses a system log could cause a message to become "lost in limbo" to a
tracing facility, for example.) The ad hoc approach fails on almost all counts: it is clumsy, error-prone,
inflexible and difficult to evaluate. The only advantage is that there are no practical constraints on what
you can do.

At the opposite extreme we have systems with all the automation built-in. The integrity of the system
is ensured at the cost of flexibility. The problem here is that we must anticipate all future needs. Alterna-
tively, changes to the system can be made only at a risk to system integrity, since reprogramming is
required with the possible introduction of errors.

It follows that the only reasonable way to automate office procedures when automation is to be intro-
duced incrementally and is expected to require fairly frequent alterations, is to have an extendible system.
Some means are required for adding new procedures or altering old ones without jeopardizing the integrity
of the system. If we are to have a flexible system capable of handling future needs without reprogramming,
then there must be a means of translating specifications for office procedures into code that the system can
understand. Who is responsible for the programming is another matter. This task may be associated with a
system administrator or possibly with the users themselves. Which is the case depends on the nature of the
application and the nature of the procedure to be automated -- clearly, if the task in question directly affects
only a single user, then it would be highly desirable to have that person able to automate it himself.

We shall now look at a number of systems in order to establish what common features they hav e, and
what characteristics we must capture if we are to model these systems.

2.2. Automating office procedures 13

2.2.1. SBA

The System for Business Automation (SBA) [deZl77] is an IBM research project built around the
ideas of Query-By-Example (QBE). Query-By-Example is a relational database interface that allows users
to submit non-procedural queries using example elements. A 2-dimensional skeleton of a table is dis-
played. One places example elements in the columns of the table, specifies conditions on these variables
and indicates the ones to be displayed.

SBA extends this concept by allowing users to program with objects called "boxes" (related to actors
[Hewi77]). A box has an identifier, input, output and contents. The input section consists of messages or
boxes to be received and trigger conditions on the inputs. The output section describes the objects (boxes)
produced and the messages sent. The specification of a box is done in a fashion similar to the specification
of a QBE query.

2.2.2. OFS

A similar approach is taken in the Office Forms System (OFS) [TRGN82]. Users sign on to worksta-
tions that are connected by a network. They may create, file, retrieve, modify and mail electronic forms.
Forms may also be "stapled" together into "dossiers" -- a device similar to a file-folder for keeping track of
an arbitrary collection of forms. All forms have a unique system-wide key that can be used for tracing their
passage through the system. OFS supports several different flavours of form fields. Fields may be modifi-
able at any time, or may be unmodifiable once they are filled, or may be required at the time of creation.
Special fields are the date field, which is automatically written with the current date, and the signature field
which is automatically filled with the user’s name when some other field is filled or modified. In addition
there are two flavours of automatic field which are computed as a function of any (physically) preceding
fields on the form. One flavour will be evaluated only if all the argument fields contain some non-null
value, and the other flavour accepts null fields.

Users may write automatic procedures that are triggered upon the receipt of mail. The trigger condi-
tion is specified by filling in a set of form templates (called sketches) with example elements (as in QBE).
The actions for the procedure are specified by stepping through them manually with the form sketches.
Since automatic procedures may create new form instances and mail them to other users, a chain of cooper-
ating procedures can be created.

2.2.3. Officetalk

Officetalk [ElNu80] is another system based heavily on the idea of electronic forms. That is, it elec-
tronically captures those objects that are familiar to us in a real office. An Officetalk "desktop" has an "in-
basket", an "out-basket", a "file index" (filing cabinet) and a "blank stock index". Users manipulate these
objects directly with the use of a graphics mouse rather than through a command language. Officetalk sup-
ports the idea that one should do rather than explain what is to be done. The potential for forms and proce-
dures using forms in office information systems has also been discussed in [LuYa81] and [Geha82].

2.2.4. Imail

Imail [HMGT83] is an intelligent mail system that places the intelligence with the messages. Mes-
sages are, in effect, simple programs that can convey information, engage in a dialogue with their recipi-
ents, and then take further action based on the responses received. Such messages can be used to gather
information or automatically route themselves depending on the outcome of a dialogue. This approach to
automation works well when the information to be managed is scattered in many different places. Auto-
matic procedures, on the other hand, are more appropriate for managing and coordinating information that
converges on a single location.

2.2. Automating office procedures 14

2.2.5. Smalltalk

A concept that is becoming increasingly popular as a programming tool for office information sys-
tems is the "object". There are many different working definitions of objects, but there are a few key ideas
that they hav e in common. Objects are very similar to abstract data types. They hav e a static storage area
or "memory", and a set of valid operations or rules for manipulating the object. This is also reminiscent of
the construct of a module. Generally, howev er, one does not deal with objects by "calling" or "invoking"
their rules but rather by sending them messages. In this way objects are all equal. They communicate with
one another by passing messages rather than by calling and returning.

Smalltalk objects [BYTE81] are described by the class they belong to. An object’s static memory is
its set of instance variables and its rules are called methods. The methods describe the messages an object
is prepared to accept. A method consists of (1) a pattern (describing the selector and its arguments), (2)
temporary variables and (3) some expressions (i.e. actions). The expressions enable the object to (1) send
messages, (2) assign variables, (3) return a value.

An expression consists of an object which is the receiver of the message, a selector, which specifies
the kind of message sent, and optional arguments. If a value is returned by the expression, it may be
assigned to a variable. Expressions may be composite. Unary selectors have highest precedence; next are
binary selectors, and then keyword selectors, which may have sev eral arguments. The expression "x + 2"
sends the (binary) message "+ 2" to the object x. x presumably interprets this as an instruction to increment
itself by the integer 2.

2.2.6. Oz

Oz objects [NiMT83] are similar to Smalltalk objects. They hav e contents and behaviour consisting
respectively of a set of static local variables and a set of rules for accessing them. Rules have a set of asso-
ciated conditions describing the circumstances under which they may be triggered. Those conditions may
include the successful invocation of other rules in other objects. Rules may have the ability to sponta-
neously fire up when their trigger conditions become true without having to be explicitly invoked by
another object. Oz is intended to be a prototype system for programming office information systems. Oz
objects are sufficiently general to capture both office procedures (at one end of the spectrum) and "intelli-
gent" messages (at the other end).

2.2.7. SCOOP

The System for Computerization of Office Processing (SCOOP) [Zism77] uses the augmented Petri
net (APN) as the basic ingredient for specifying office procedures. This is a Petri net with each transition
augmented by a set of production rules that indicate what actions are to take place when the transition fires.
(See appendix C for a brief discussion of Petri nets.) An augmented Petri net may instantiate another aug-
mented Petri net. This approach works well for fairly well-structured procedures that have a reasonably
long life-expectancy. An augmented Petri net may "sleep" for hours or days or even months in a particular
state while waiting for some event to occur. The construct is not intended for batch processing of high vol-
ume, highly-structured applications, nor is it appropriate for completely unstructured procedures (i.e. those
handled by humans in an entirely ad hoc fashion). The Specifications Language for Office Procedures Exe-
cution (SLOPE) [Pott78] is a non-procedural interface to SCOOP.

2.2.8. Taxis

Taxis [MyBW80, Barr82] is a programming language for interactive database applications. Its fun-
damental objects are classes and instances of classes. Classes are instances of metaclasses. A class has a
set of properties, much like a database relation has attributes. One class IS-A another class if it has "at least
the properties" of the second class. This means that it may have additional properties, or it may have prop-
erties which are specializations of properties of the second class. Student is-a person, for example, with the
additional properties of student number, university etc., and the specialized property age which is restricted
to integers greater than 16, say. Taxis supports a variety of augmented Petri net called the Taxis script.
Each transition in a Taxis script may have at most one set of conditions and actions, however, rather than a

2.2. Automating office procedures 15

list of condition/action pairs. Communication between scripts is allowed.

2.2.9. BDL

The Business Definition Language (BDL) [HHKW77] is a very high level programming language for
specifying data processing applications. There are three components to a BDL program. The form defini-
tion component defines the physical layout of documents, field names, their data types, and so on. The
document flow component describes data flow with a directed graph with program steps and files as its
nodes. A step is enabled if there is a document for each of its inputs (much like a Petri net transition). The
document transformation component defines the actions of a program step on its input documents.

2.2.10. OSL

The Office Specification Language (OSL) [HaKu80] is a formal language for describing office proce-
dures. The two major components in a specification are the description of the application domain -- that is,
the objects relevant to the application -- and a description of the procedures manipulating those objects.
Objects are described using a variant of the semantic data model. The life-cycle of an object is managed by
an initiating procedure, an administrative procedure that manages resources, and a terminating procedure
that archives the object. The language has built-in constructs for describing how exceptions and special
cases are to be handled.

2.2.11. Information Control Nets

An Information Control Net (ICN) [Elli79, Cook80] is a formal model for capturing and analyzing
information flow within offices. The model is useful for detecting deadlock, analyzing data synchroniza-
tion and detecting communication bottlenecks. Some restructuring and streamlining of procedures can also
be done within the model. A procedure can be displayed graphically as a collection of nodes representing
activities connected by arcs representing precedence constraints. Activities may access a set of input and
output repositories. This input and output relationship can also be represented graphically with arcs. Infor-
mation flow and control flow are thus distinguished, being represented through two separate relations.
Information control nets are capable of capturing parallelism, conflict and coordination as are Petri nets.
Activities that can be eliminated or coalesced are detected by studying, for example, whether or not they
permanently store any information, and whether precedence constraints are preserved after they are coa-
lesced.

2.3. Summary

In this chapter we have surveyed the prevailing attitudes concerning automating office procedures. In
particular, we hav e discovered that office procedures tend to be "semi-structured", consisting of some rou-
tine, algorithmic parts and some judgemental parts. Automated office procedures must be capable of inte-
grating these parts. They must be capable of handling exceptions gracefully. The nature of the work often
changes or evolves, and the system must be capable of incorporating these changes. Similarly, it is desir-
able if automated activities can be introduced incrementally. A useful way of accomplishing this is naive-
user programming. Although this may be inappropriate for certain applications, there are many situations
in which users should somehow be able to automate their own office procedures.

Typically, procedures appear to be event-driven. Events in these systems include the arrival of mes-
sages, the modification of forms and documents (i.e. user input), and the passing of time. In addition, pro-
cedures may need to coordinate several events by waiting, for example, for a collection of messages to
arrive. Additional conditions may include constraints on the messages and on user input.

It is generally convenient to partition a system into workstations that have a function logically similar
to desks. A workstation is associated with a single role, usually a single person. In many applications,
office procedures may be associated with the workstations (this corresponds to the work associated with the
role). One exception is the Imail system, in which automatic behaviour is associated with the messages
themselves. When office procedures are local to a workstation, naive-user programming is a useful
approach to automating them. The users, who are presumably the most knowledgeable about the task to be

2.3. Summary 16

automated, are thus able to directly specify the automation without the use of any intermediary (i.e. a pro-
grammer). These local, user-written procedures may consist of a single step that waits for a set of events
(such as message arrivals) and takes some action on the objects collected when it is triggered. Alterna-
tively, procedures may be scripts resembling Petri nets augmented with additional conditions and actions.

The literature on office information systems thus far has focused mostly on non-theoretical issues.
Many papers have dealt with the requirements for a successful office automation system, and they hav e pre-
sented detailed arguments outlining the key areas of research. Other papers have provided practical solu-
tions to some of these problems, notably: presenting convincing prototype environments for computerized
office work; suggesting languages or frameworks for specifying and executing office procedures; and pro-
viding reasonable and intuitive interfaces for automated activities, such as programming-by-example in
SBA. Finally, there has been some research into descriptive modeling of office information systems. These
models are typically used to aid in the design of systems, or to provide a specifications language which may
(possibly) be directly executed. With the exception of Information Control Nets, this author knows of no
theoretical models for studying and analysing the behaviour of office information systems. This thesis
addresses the latter problem by presenting a model for describing the behaviour of office systems with
automatic message-handling, and by introducing some techniques for analysing instances of the model.

3. Message flow modeling

Before we can begin to address questions of global behaviour in message management systems, we
need a formal framework for discussing automatic procedures. This framework must be powerful enough
to capture quite general procedures but should be divorced from any particular implementation of them. It
is immaterial, for example, whether procedures are written in some high-level programming language or in
some intermediate code generated by a programming-by-example interface.

We will first present a model for describing messages and the procedures that manipulate them.
Although we make some simplifying assumptions about procedures, we will show that quite general behav-
iour can be captured within the confines of our model. The terminology and notation introduced in this
chapter is summarized for reference in appendices A and B.

The concepts of message classes and message states will then be introduced. Messages in the same
class exhibit similar behaviour in that they potentially encounter the same sequences of procedures. Mes-
sage domains are partitioned into state spaces in order to identify the message classes. Message paths
traced by messages in the same class can then be thought of as alternating sequences of message states and
procedures. The matter of how to partition the message domains is discussed in the following chapter.

3.1. Notation

We shall begin by introducing the notation for our model. Although some of the reasons for our
choices of notation will be self-evident, others may not be immediately so. We shall discuss some of these
choices in greater detail in the following section on modeling.

3.1.1. Locations

The logical configuration of an office information system is similar to that of a physical office. There
are a number of workstations ("stations", for short), each of which is capable of communicating with any of
the others. Whether or not the system runs as a collection of physically independent communicating
machines or not is immaterial. Similarly the nature of the communication medium does not concern us
here.

The collection of workstations is represented by:

S = {s1, . . . sN }

In addition we have two pseudo-stations, α and ω , that represent creation and destruction of objects. Cre-
ation and destruction are thus explicitly modeled. In some situations such stations will exist in truth:
destruction of documents may in fact be implemented by permanently archiving them; also, creation of
documents may be the responsibility of a privileged authorizing agent that assigns, say, unique identifiers.
We require only that no messages be sent to α and that none be received from ω . That is, they must behave
as source and sink, respectively. The set of stations and pseudo-stations is:

3.1. Notation 18

S+ = S ∪ {α , ω }

Mailboxes are intermediate locations between stations. Messages passed between stations must be
put into a mailbox just as physical documents are placed in an "in-tray". Although there may not be any
"real" mailboxes in the system we are modeling, this allows us to distinguish between new mail and previ-
ously-seen messages. Furthermore, our model has one mailbox for every ordered pair of stations. This
allows us to readily identify the sender of a message without having to resort to modeling a sender field for
messages in transit. The latter approach would be entirely equivalent, however. The set of all mailboxes is
thus:

M = {mij | 1 ≤ i ≤ N , 1 ≤ j ≤ N}

where mij is the mailbox for messages sent from si to s j . Note that α and ω do not have mailboxes. A
message "from" α appears at the station creating the message. A message that is destroyed goes directly to
ω . A station is allowed to mail messages to itself.

The set of all locations is

L = S ∪ M

and, with the pseudo-stations:

L+ = S ∪ M ∪ {α , ω }

The set of locations from which si may receive messages is:

L(si) = {α , si} ∪ {mki | 1 ≤ k ≤ N}

This is the local scope of si -- the locations that are accessible to the procedures at si . Messages may be
created at α , they may already reside locally at si , or they may arrive by mail from any of the N stations
(including si itself, if desired).

Similarly si may route messages to anything in the set:

R(si) = {ω , si} ∪ {mik | 1 ≤ k ≤ N}

(Note the reversal of subscripts on the mailboxes.)

3.1.2. Messages

Messages are assumed to be structured, and belong to one of several message types that encode this
structure. The set of message types is:

X = {X1, . . . XK }

The domain of a message type is assumed to be the Cartesian product of the attribute domains. (The
attributes are the "fields" of a structured message.) We hav e, therefore:

dom(Xi) =
ni

j=0
Π dom(Xij)

where ni is the number of attributes of message type Xi .

We reserve two attributes, Xi0 and Xi1 for the identity and the location of a message, respectively.
The identity of a message instance is the only attribute that is never allowed to change. Since message
instances may change value, we need some convention that allows us to keep track of their identity. We
thereby also distinguish between a message instance and a message value: a message instance may assume
different message values at different points in time. dom(Xi0) may be any enumerable set; for simplicity’s
sake we may assume it to be the set of positive integers. Of course, dom(Xi1) = L (a message whose "loca-
tion" is α or ω is not explicitly represented). A message value is represented by

3.1. Notation 19

x ∈ dom(Xi)

The kth attribute of x is denoted by either xk or x[k]. (The latter notation is generally used when x is the
jth message in a tuple of messages, τ = (. . . , x, . . .), so x = τ [j], and xk = τ [j][k]. Message tuples are dis-
cussed below, in the section on procedures.) The identity of x is x0, and its location is x1.

The system state is the collection of all the values of existing message instances. There is a set of
message values Di for each message type Xi . The system state is:

D = < D1, . . . DK >

where Di⊆dom(Xi). We do not represent messages whose "location" is α or ω . Such messages have not
yet entered, or they hav e already left, the system. We also insist that each Di contain at most one message
with a given identifier, i.e.

V-x ∈Di , y∈Di , y0 = x0 => y = x

Identifiers are therefore unique within message types. By encoding type information into the identifiers,
we could make them unique across all message types as well. Since we are generally interested in mes-
sages of specific types only, howev er, there is no real need to introduce this refinement.

In addition, we adopt the convention that

D(I) = Di where I = Xi

(i.e. if I is an arbitrary message type then D(I) represents the set of instances of that type).

3.1.3. Procedures

At each station si ∈S there may be a set of procedures that automatically process messages:

P(si) = {pij |1 ≤ j ≤ ki}

where ki is the number of procedures at si . The set of all procedures is:

P = {pij |1 ≤ i ≤ N , 1 ≤ j ≤ ki}
= ∪ N

i=1
P(si)

Every p∈ P has a set of input types, trigger conditions and actions. A procedure (within our model)
is a single-step activity. A collection of messages (inputs) matches the trigger condition and the actions are
performed, causing messages to be modified (possibly created or destroyed) and routed. The input types
are the types of the messages p needs in order to evaluate its trigger conditions:

I (p) = < I p1, . . . I pl p
>

where Ipi ∈ X . l p is the number of inputs to p.

The inputs to a procedure p form a set, or rather a tuple, of messages that we call an input tuple. We
usually represent such a tuple by the symbol τ , where x = τ [j] is the jth input message and xk = τ [j][k] is
the kth attribute value of the jth message. Such a tuple τ may trigger procedure p∈P(si) if

τ ∈
l p

j=1
Π dom(I pj) and it satisfies the trigger conditions of p. In addition, the messages in τ must be available

to p, that is, τ [j][1]∈L(si), and each of the messages in τ must be unique (a message can’t play two roles
for a single procedure). We formalize this in the set T (p) of message instances that may trigger p∈si ,
where:

1. T (p)⊆
l p

j=1
Π dom(I pj)

3.1. Notation 20

2. (τ ∈T (p))// \\(I pj = I pk)// \\(τ [j][0] = τ [k][0]) => j = k

3. τ ∈T (p) => V- j τ [j][1]∈L(si)

Tuple τ can thus trigger p if τ ∈T (p) and for all I pj ∈I (p) we hav e τ [j]∈D(I pj) or the jth message is to be
created by p (i.e. τ [j] does not exist yet). We then say that p is enabled.

In order to disambiguate conflicts between procedures, we allow for a partial ordering ">>" of proce-
dures. If both p and p′ are enabled and p >> p′, then procedure p must be fired. We say that p has prior-
ity over p′. p′ may only be fired if it is enabled and p is not. This is useful if p is triggered when message
x matches some coordinating message y and p′ is triggered when there is no coordinating y. Without par-
tial ordering of procedures it would be impossible to express the condition: "fire p′ with message x only if
there is no matching message y". For example, if procedure p matches inventory forms to order forms and
p′ looks for order forms for non-existent items, then the only way to capture the trigger condition of p′ is to
have it accept all order forms not accepted by p.

Actions map input tuples to output tuples. In our model, there is a one-to-one correspondence
between input messages and output messages even if the procedure creates or destroys some messages.
This is why we need the pseudo-stations α and ω . They allow us to (somewhat artificially) model mes-
sages that are created as arriving from α , and those that are destroyed as being sent to ω .

The action of procedure p is a mapping:

A(p): T (p) →
l p

j=1
Π dom(I pj)

such that the identities of input messages are never changed, and they are routed only to valid locations.
We use the notation a jk to refer to the individual attribute mappings of A(p). If τ ′ = A(p)(τ), then

a jk : τ |→τ ′[j][k]

For each j, therefore, a j0 is the identity map (can’t alter identity of τ [j]). Also, the a j1 are the routing
functions, since they are responsible for updating the location attributes. Clearly, the domain of a j1 is
R(si), where p∈P(si).

Within our model, user input, external databases and other outside sources of information are not
explicitly represented. When procedures make use of external information, we consider the mappings of
the procedures to map to a choice of possible values (modulo the outside information sources). The A(p)
are therefore not necessarily well-defined (i.e. functions). Consequently, when we perform our analysis
with traditional machine models such as finite automata and Petri nets, a certain amount of non-determin-
ism appears that may not necessarily be evident in the system under analysis. A function that sets a field of
a message to anything a user wishes to enter is therefore modelled as a mapping from the input message to
the entire domain of that message field. We should therefore keep in mind that this "non-determinism" is
often an artifact of our attempt to exclude arbitrary information sources from the outside world.

If τ triggers p then the system state D is updated to reflect the firing of p. Input message instances
are replaced by their new values. If τ ′ = A(p)(τ), then the new system state D′ =< D′1, . . . D′K > is defined
by:

D′i = (Di − {τ [j]|I pj = Xi}) ∪ {τ ′[j]|(I pj = Xi)// \\(τ ′[j][1] ≠ ω)}

Messages that are destroyed are simply deleted from D′i .

3.2. Modeling power

The purpose of our model is to provide a precise context for our discussions of message flow and of
global behaviour. First, we must convince ourselves of the appropriateness of the model. To do so we may
ask, "What kinds of systems are we able to capture?", "What are the inherent assumptions and limitations
of the model?", "What properties does the model exhibit?" and "How do systems correspond to the model?"

3.2. Modeling power 21

The surface assumptions that we have made are that there are discrete "locations" that have control
over messages, that messages are structured but have little or no built-in intelligence, and that procedures
are stationary, they reside permanently at the locations, and they are effectively "memoryless" (though we
shall see that this is not really a restriction).

3.2.1. Locations

Locations in our model are either workstations or mailboxes. Workstations serve to subdivide a sys-
tem so that every message and every procedure "belongs" to exactly one station. This corresponds strongly
with the idea of physical documents having a unique location and a unique person in control of it at any
time. We hav e provided distinct mailboxes for each ordered pair of stations in order to more easily identify
the source of messages. Without these distinctions we would need to explicitly include a sender field with
all messages. Naturally there need not even be mailboxes in the real system. In that case, the mailboxes of
the model would simply exist to represent the fact that a message has been sent but not yet seen by its recip-
ient. Conceivably one might wish to further subdivide stations into "directories" for the purpose of organiz-
ing groups of messages. Such an extension could easily be made to the model by allowing for a set of
"directory locations" belonging to any giv en station. For simplicity’s sake, however, we shall presently
restrict the locations to workstations and mailboxes.

3.2.2. Messages

Messages are "structured" in our model. A collection of messages of the same type is equivalent to a
database relation where each message is a tuple in the relation. The domain of a message type is assumed
to be the Cartesian product of its attribute domains, but we do not make any assumptions about the attribute
domains other than that values in the domain be finitely representable in a computer. Messages could
therefore be composed of text fields, graphical images, and so on. Messages are assumed to contain a finite
number of attributes, but most documents (such as forms) can reasonably be expected to satisfy this restric-
tion. Note, however, that an attribute could be a text field allowing, for example, a thirty-page report to be a
"field" of a message.

3.2.3. Procedures and multi-step activities

Procedures are assumed to be "personal" -- that is, they reside at a single workstation and do not look
at messages at other workstations. Other kinds of automated activities may, of course exist, such as the
"intelligent messages" described previously. We are interested, however, in procedures that handle volumes
of messages passing through individual stations, rather than procedures that move from station to station.
This corresponds more closely with our idea of workers having a fairly well-defined domain of responsibil-
ity.

The procedures of our model are not necessarily intended to completely represent an automated
activity. A procedure may be just a single step within a more complicated task to be accomplished. Fur-
thermore, these procedures do not have any "memory", though it is clearly useful to be able to "remember"
a message that has been seen before. There is a difference, though, between automated activities and our
usual way of thinking of computer programs. When a program is executed, it is allocated some memory,
given some processing time, and it runs to completion. There may be some side effects, but generally the
traces of the program’s execution disappear. An automated activity may, howev er, be interrupted and have
to wait for a long time (minutes, days, months ...) before it can resume. The "state" of the activity must be
remembered if it is to continue from where it was before. This information strikingly resembles a message,
since there is typically a well-defined list of things to remember. The state of the activity can thus be
passed from procedure step to procedure step as a message, without the need for any other special mecha-
nism for remembering information. Furthermore, an activity that does span several workstations can be
captured by modeling all information exchanged as messages. There is thus no need for procedures to have
a special "memory".

To demonstrate how useful this idea is, consider an activity that is structured as an augmented Petri
net. The "state" of a Petri net is its marking, the number of tokens in each of its places (see appendix C).

3.2. Modeling power 22

(The places of the augmented Petri net may or may not be interpreted; in the Petri net of procedure interac-
tions described in chapter 1, the places represented the presence of a message, but within the automated
activity they may well have a very different interpretation or possibly none at all.) If the transitions of the
activity represent indivisible "steps", then we may translate them to procedures in our model. A new mes-
sage type is added to the system representing the "state" of the augmented Petri net (i.e. of the automated
activity). The state of the augmented Petri net consists of the current marking of the underlying Petri net,
the identities of the messages it modifies and the values of any static variables that are to be "remembered".
The steps then translate into procedures with inputs as before, one per original message type, plus an addi-
tional input for the message that stores the state of the activity. The trigger conditions of the procedures in
our model would encode the markings for which the transitions of the augmented Petri net would be trig-
gered.

As an extremely simple example, consider the diagram in figure 3.1. This activity is used to track
down documents. Transition t1 allows one to generate a request for information about a document. One
must supply a short description of the request and someone to whom the request should initially be sent.
Place p1 represents a request having been created. Transition t2 causes the request to be mailed. Place p2

represents an outstanding request for which a response is awaited. A response may be affirmative ("yes --
the document is ..."), negative ("no -- I have no idea") or tentative ("I dunno, but why don’t you ask ..."). If
the response is tentative, t3 fires, sending a new request to the named user. If the response is negative or
affirmative, then t5 fires and reports the response to the initiator of the request. If no response is received
within some reasonable time limit, then t4 fires and issues a reminder.

Figure 3.1 : An off ice activity

The state of this activity includes the marking of the Petri net, the identity of the request/response
message being awaited, and the static variables containing the text of the request, the identity of the person
to whom the request was issued and the time that the request was mailed. Within our model the transitions
of the Petri net are represented by procedures that are triggered by the presence of the request/response
message and another message that encodes the state of the activity. The single exception is t1 since it is the
step required to initiate the activity -- before it is fired there is no activity state message.

3.2. Modeling power 23

By thus recording the state of a multi-step office activity in the contents of a message used exclu-
sively by the steps of the activity, and by translating those steps into procedures triggered by the presence of
the input messages and the activity state message we can capture the notion of activities with "memory".
Furthermore, it is even possible to distribute such activities across several workstations by mailing the state
of the activity like an ordinary message.

3.3. Message paths

Our model of message management views procedures and locations as being basically static entities.
Although procedures are altered and workstations may be added to a system, we expect these events to
occur infrequently compared to the rate at which messages are processed and modified by the procedures.
Also, we do not expect to be able to formalize the changes in procedures and in system configuration in the
same way that we can formalize the changes in messages (through the procedures). We may try to measure
the large-scale changes in procedures, however, in how they effect the behaviour of messages. Since it is
the behaviour of the messages that best characterizes what is actually happening on a regular basis, it is
here that we are to concentrate our efforts in analyzing global behaviour.

What is immediately visible is that messages are created, are modified and routed by sequences of
procedures at different workstations, and are eventually destroyed. We can think of messages as tracing a
path through the network of stations as they encounter different procedures. In between the procedures
they acquire different values (including their location) which they hold until the next procedure changes
their value. We may thus think of a message path as being not merely a sequence of procedures encoun-
tered by the messages, but as an alternating sequence of values and procedures. This message path is an
expression of "message flow" since it encapsulates all the locations a message visits during its lifetime,
especially if we allow ourselves to think of procedures as extremely brief, temporary "locations".

A certain amount of artificial non-determinism appears in the message paths due to coordination. A
message may be handled by any number of procedures depending on the coordinating messages that it
encounters at those procedures. An order form may be routed in different directions, for example, depend-
ing entirely on whether there are sufficient items in stock listed on the corresponding inventory record. We
cannot, in general, predict in advance what values those coordinating messages will have, so we cannot pre-
dict what path a message will trace. It is conceivable, however, that we may be able to determine what set
of message paths a given message may trace. To do this one would have to list the procedures that might
handle a message, then, for each procedure, list all possible values that it could acquire next, and so on.
Depending on whether or not there are unique coordinating messages at run time, the action performed may
or may not be uniquely determined. In either case, however, when we restrict our model to a consideration
of a single message type at a time (as we do with message paths), the actions performed are not determinis-
tic.

3.3.1. Path-equivalence

To completely characterize the behaviour of messages of a single type, one would have to do this for
all possible initial values of such messages. We may be able to simplify this task by considering equiv-
alence classes of messages. Tw o messages are deemed to be path-equivalent if the sets of possible proce-
dure sequences they may encounter are equal. That is to say message x is path-equivalent to message y if
x can potentially encounter any sequence of procedures that y can potentially encounter (given the right
coordinating messages), and vice versa. We may formalize this as follows:

Suppose x ∈dom(Xi). Let

p̂ (x) = {p∈P|Xi ∈I (p), Xi = I pj , ——
— τ ∈T (p) such that x = τ [j]}

i.e. p̂ (x) is the set of procedures that may be triggered by x.

âp(x) = {A(p)(τ)[j]|p∈p̂ (x), τ ∈T (p), Xi = I pj , x = τ [j]}

i.e. âp(x) is the set of values to which x may be mapped after triggering p.

3.3. Message paths 24

Finally, we wish to define l̂ (x) as the set of possible sequences of procedures that x may encounter.

That is, l̂ (x) is the language (i.e. set of strings) over the alphabet P of procedures representing the possible

sequences of procedures that x may trigger. We may define l̂ (x) recursively as:

l̂ (x) =

{pl̂ (x′)|p∈p̂ (x), x′∈âp(x)}

λ (the empty string)

if x1 ≠ ω and p̂ (x) ≠ ∅
otherwise

We call l̂ (x) a message flow language. Sequences terminate, of course, when messages are destroyed,
since no procedure can be triggered by a message whose location is ω . Some strings in the languages may
be infinite, if messages never get destroyed.

Now we may say that

x˜ y if l̂ (x) = l̂ (y)

that is, x and y are path-equivalent if they potentially trigger the same sequences of procedures.

Our hope is that we may be able to simplify our problem of capturing behaviour in terms of message
flow by limiting the number of messages that we must examine. If we can separate messages into equiv-
alence classes, we may be able to save some work and obtain a cleaner description of behaviour by obtain-
ing expressions of message flow for the classes. Unfortunately this is not an easy problem. We can show
that it is possible for a message system to simulate two Petri nets at once so that two messages are path-
equivalent if and only if the corresponding Petri net languages are equivalent. Since the latter problem is
undecidable, so is determining path-equivalence. The proof follows.

3.3.2. Undecidability of path-equivalence

The following definition is from [Pete83]:

Definition 3.1 : A language L is an L-type Petri net language if there exists a Petri net structure (P, T , I , O)
(as defined in appendix C), a labeling of the transitions σ : T → Σ, an initial marking µ, and a finite set of
final markings F such that L = {σ (β)∈Σ * |β ∈T * and δ (µ, β)∈F}. (The next-state function, δ (µ, t) = µ′,
is extended to sequences of transitions in the obvious way, i.e. δ (µ, t β) = δ (δ (µ, t), β).)

The language L is therefore obtained by mapping transition firing sequences to strings over Σ via the
labeling function. Of course, the transition firing sequences themselves form a Petri net language over T by
using the identity map as the labeling function. Note that through the permissive nature of Petri nets, one is
not obliged to stop firing transitions when a "final" marking is reached. One may continue firing transi-
tions, passing through final markings as often as possible. The definition of the language states only that
we must be in a final marking when we do decide to stop.

There are 12 classes of Petri net languages described in [Pete83] each with slightly different defini-
tions. We are interested here in the L-type languages that allow non-distinct but non-null labeling of transi-
tions. (These are known as the non-λ , non-free labelings.)

Lemma 3.2 : Every L-type Petri net language is a message flow language.

Proof : By construction. (When symbols in the Petri net notation are identical to those in our notation, we
shall distinguish them with an accent, for example P for Petri net places and P′ for procedures.) Let L be a
Petri net language as in definition 3.1. Let the set of procedures P′ = Σ. Consider message types X1 and
X2 as follows:

Let message type X1 have one attribute for each place in P in addition to its identity and location. The
domain dom(X1 j) of each of these attributes is the set of non-negative integers. A marking µ is thus repre-
sented by a message x with attribute µ j = x j+1 (x1 being the location of the message).

In addition, let message type X2 have an attribute X22 whose domain is T , the set of Petri net transitions,
and an attribute X23 whose domain is { "yes", "no" }. (This attribute will be used as a "toggle" to decide
whether to stop or to continue when we reach a "final" marking.)

3.3. Message paths 25

Let I ′(p) =< X1, X2 > be the set of inputs types for each p. Let T ′(p)⊆dom(X1) × dom(X2) be defined by:

T ′(p) = {(x, y)| x represents µ, y2 = t, σ (t) = p, t is enabled in µ}

That is, p is triggered if p is the label for some transition t, and t is enabled in the marking µ that x repre-
sents. The message y exists merely to select which transition is to be used, since p may be the label for
several.

The action of p modifies x to represent µ′ where µ′ is the marking that results from firing transition t
in marking µ. In addition, if the marking µ′∈F , then p may conditionally destroy x if y3 ="yes". This is
necessary since the definition of a Petri net language allows us to optionally continue firing transitions even
after reaching a "final" marking.

It should now be clear from the construction that δ (µ, β)∈F if and only if σ (β) is a potential proce-
dure firing sequence that destroys message x representing µ. We need only supply one message
y∈dom(X2) for every combination of t ∈T and "yes" or "no". The non-determinism of our message model
guarantees a choice of procedure firings for every corresponding choice of transition firings. Consequently

L = l̂ (x).

Note that message type X2 is not strictly required, since we may construct a single message type that
combines the attributes of both X1 and X2. A new "toggle" attribute would be used to tell us which of the
two old types are represented by an instance of the new type. The result can thus hold even in systems
where there is only a single message type.

We may now state the main result:

Theorem 3.3 : Path-equivalence is undecidable.

Proof : Let L and L′ be two Petri net languages. Construct a message system that simulates both Petri nets
at once by letting X1 have enough attributes for the places of both nets and a "switch" attribute, Xswitch that
tells the procedures which net to simulate. The switch attribute is set at the time of message creation and
must not be changed. A message can thus represent a marking in either net depending on the switch set-
ting. (Obviously, messages are not allowed to hop from one Petri net to another, so the switch may not be
changed.)

Procedures are triggered by messages that represent markings in which transitions for the appropriate
net are enabled (as above). The trigger conditions for the procedures are of the form:

T ′(p) = {(x, y)|x represents µ, xswitch = L, y2 = t, σ (t) = p, t is enabled in µ}

∪ {(x, y)|x represents µ′, xswitch = L′, y2 = t′, σ (t′) = p, t′ is enabled in µ′}

Actions similarly map x depending on the setting of xswitch.

Now consider message x such that l̂ (x) = L and message x′ such that l̂ (x′) = L′. Such x and x′ exist
by the construction of Lemma 3.2. Clearly x is path-equivalent to x′ if and only if L = L′. Since the latter
problem is undecidable [Pete83], so is the former.

The P-type Petri net languages include strings σ (β) obtained from all β such that δ (µ, β) is defined,
that is, from all transition firing sequences, not just those that end in some "final marking". It is also unde-
cidable whether P-type languages are equivalent. If we extend message flow languages to include proce-
dure firing sequences that do not result in the destruction of a message, then path-equivalence is conse-
quently still undecidable.

3.3.3. Message states

Since path-equivalence is undecidable, it appears that we are asking too much if we expect to obtain
an exhaustive characterization of message flow. Nev ertheless we may be able to make use of a weaker
form of path-equivalence. One of the reasons that we run into problems is that Petri nets can have an infi-
nite number of states. We are required to keep track of too much information about the value of a message
if we are to characterize the paths it may take. Since there is already a large degree of uncertainty built into
the message paths (due to coordination), it hardly seems worthwhile to distinguish so sharply between

3.3. Message paths 26

different message values. Furthermore, since we cannot effectively analyze message paths when we do
keep such detailed information, we are forced to make some simplifications.

Naturally one simplification is to limit the power of procedures. In chapter 4 we shall consider pro-
cedures of varying degrees of complexity. We would still like to be able to obtain some results for more
general procedures, so the approach we take is to try and limit the number of "message states" that we need
to consider. We may do this by partitioning message domains into a finite number of message states, each
of which represents a collection of "similar" messages. We thus eliminate the need to consider a potentially
infinite number of message values, and we obtain message paths that are considerably less complex. Proce-
dures will map messages from one state to another if there is any message value in the first state that it
maps to some value in the second state. Clearly the art is in choosing the partition of a message domain in
such a way as to lose as little information as possible.

An obvious first attempt at such a partition is to allow one message state for each station. All mes-
sages at a given station (or any of its mailboxes) would then be considered equivalent. This naturally corre-
sponds to the notion that procedures at a station can only be triggered by messages owned by that station.
It is easy to see, however, that this would be inadequate to handle the case where different procedures at the
same station have different ways of handling similar messages from different sources (such as in our exam-
ple from chapter 1 in which new order forms to be filled come from one source and those that have already
been filled come from another source).

Our next attempt might be to have a message state for each location, thus distinguishing between
messages from different sources. Messages arriving from the same source may, howev er, be interpreted
differently depending on their value. We would therefore like to include as much information as we "rea-
sonably" can, yet still have a finite ("reasonably small") number of message states to consider. In the next
chapter we shall consider ways of producing a reasonable partition.

3.4. Summary

The message system model presented in this chapter allows us to describe the complex interactions
of office procedures. We represent messages, stations, mailboxes and procedures. Messages are assumed
to be structured and resemble tuples in a relational database. Messages of the same type have the same
structure. Message instances also have a unique identity and location, the former being unalterable and the
latter being either a station or a mailbox.

Procedures are associated with stations, and may manipulate messages at that station or one of its
mailboxes. Procedures have a fixed number of inputs of given message types. A procedure may be
executed if its trigger condition holds over some set of input messages of the required types. The action of
the procedure enables it to alter, create, destroy and route any of its inputs. One may place priorities on
procedures to disambiguate situations where two or more procedures may be triggered by the same input
set.

The most severe limitation of this model appears to be that procedures have no memory. In fact,
however, it is possible to "simulate" the memory of a procedure by adding a new message type. Complex,
multi-step activities can be modeled by a collection of single-step procedures (possibly residing at more
than one station) and a single "message" that is used to record the state of the activity. We hav e shown how
one popular scheme for describing office activities, the augmented Petri net, can be captured within our
model.

With our model we can easily display such properties as parallelism, non-determinism, synchroniza-
tion (coordination of messages) and conflict (competition of procedures for messages).

There is no explicit mechanism within the model for adding stations or altering procedures. Rather,
the model is intended to represent system behaviour for a given configuration of workstations and proce-
dures. Changes in the configuration are interpreted as changes in the model. We cannot, of course, predict
what changes in configuration are to be made, but we can predict the behaviour of the system for a given
configuration. We attempt to characterize this behaviour in terms of the objects that are modified in a regu-
lar way, namely, the messages.

3.4. Summary 27

Our intuitive notion of message behaviour is the flow exhibited as messages are shunted from proce-
dure to procedure and as their values are changed in the process. We try to characterize message flow by
the path that it traces: an alternating sequence of values and procedures. We would like to classify mes-
sages according to these paths by grouping together those that have the potential for encountering the same
sequences of procedures. We show, howev er, that this notion of equivalence is too strong, and that we
therefore cannot hope to characterize message behaviour in this way.

We may nevertheless obtain some results by simplifying our problem somewhat. If we can partition
message domains into finite state spaces then we may be able to obtain paths in terms of "message states".
Although we lose some information by grouping messages that may not be capable of following precisely
the same paths, we hope to gain by achieving an expression of message flow that provides us with some
insight into the behaviour of a message system as defined by the procedures in it. In the following chapter
we shall investigate the problem of finding a "good" way to partition message domains.

4. Message flow

In the preceding chapter we developed a notation for describing automatic behaviour in message sys-
tems, and we discussed the idea of message flow as a measure of system behaviour. Since it is not, in gen-
eral, possible to exhaustively enumerate all potential message paths, we must seek some less demanding
way of describing message flow. The difficulty in classifying message paths seems to be a consequence of
the number of values that messages of a given type may acquire being practically unlimited. We are reluc-
tant, however, to consider only messages with finite domains, or to consider only severely restricted proce-
dures. Our approach to this problem is to consider only a finite number of sets of message values by parti-
tioning message domains into finite state spaces. A giv en message value would therefore be in only one of
a finite number of message states. This allows us to consider large or infinite domains as being effectively
finite. As we shall see, this finiteness makes our analysis of message flow tractable by sacrificing some
information.

In this chapter we will consider ways of developing a reasonable partition of message domains by
classifying different kinds of trigger conditions and actions. "Control attributes" appearing in trigger condi-
tions and actions are used to partition attribute domains and message domains. Algorithms and techniques
for collecting the necessary information about control attributes are presented. The message domain parti-
tions may then be used to develop a finite state machine model of message flow. "Symbolic messages" are
introduced as a technique for gathering the raw message flow data. These data may then be translated into
message flow expressions that describe the state transitions that may take place.

4.1. Message paths and states

In this section we shall consider the effect that trigger conditions and actions have upon message
flow. By studying and classifying triggers and actions, we hope to gain some insight into the matter of
defining message states. We will develop the notions of "selection attributes", "routing attributes" and
"control attributes" as being crucial to an understanding of message flow. These attributes appear in the
trigger conditions and actions, and either directly or indirectly influence the path that a message takes.
Later in this chapter, after we consider the different ways these attributes affect message behaviour, we will
show how to use these ideas to generate finite state models of message flow.

In chapter 3 we defined a "message path" as an alternating sequence of message values and proce-
dures. The potential sequences of procedures alone became what we called the "message flow language" of
a particular message instance. Messages that could potentially encounter the same sequences of procedures
were said to be equivalent with respect to message flow.

Since we have shown this notion to be too strong to be of any practical use, we shall attempt to
weaken it slightly in order to get some usable expression of message behaviour. By partitioning message
domains into a finite state space we limit the possible combinations of messages and procedures to be con-
sidered. Furthermore, since procedures can be thought of as effecting transitions of messages from state to
state, we can derive a finite state machine representation of message flow. We can thus extend the notion of

4.1. Message paths and states 29

message paths to be alternating sequences of message states and procedures. As finite state machines are a
well-understood formalism, this leads to a classical interpretation of system behaviour.

There are, however, two rather obvious problems. The first is a consequence of the fact that we can-
not exhaustively enumerate all message paths. This means that the paths that we derive in terms of mes-
sage states must of necessity sacrifice some information. We must therefore be cautious in our interpreta-
tion of the derived message paths. The second problem is how to choose the state spaces so as to minimize
this loss of information.

Clearly, triggering conditions are important in deciding what procedures a message may trigger. If
we partition message domains according to trigger conditions alone, then messages in the same message
state are capable of triggering the same procedures. Tw o messages that do trigger the same procedure may
be routed to different stations, however, so the procedures that they trigger next may well be different. We
would like to partition message domains finely enough that messages in the same block of the partition
potentially encounter the same procedures indefinitely, or until they are terminated. (This is, as we stated
already, impossible, but we shall try to obtain a reasonable approximation.)

The set of procedures that a message may trigger is directly affected by its value and its location.
The value of the message affects triggering by satisfying or not satisfying trigger conditions. The location
may be examined by a trigger, but it is also important in limiting the procedures that may access the mes-
sage at all, independent of the trigger conditions. (Even if none of the trigger conditions of any procedure
discriminate between messages on the basis of location, the location of messages they handle still limits
when procedures may process them.) Collections of messages of the same type are thus "split" along dif-
ferent paths by:

1. matching different T (p)

2. being routed to different stations by A(p)

In turn, the actions of the procedures that handle a message determine its subsequent value. Actions,
unfortunately, create problems for us. Suppose that actions were not allowed to alter messages, but only to
route them (that is, they may only change their location attribute). If there are a finite number of proce-
dures, then for a given message value we can decide what procedures it may trigger if it arrives at the loca-
tion belonging to the station. Since the value of the message may not change, we know for all time what
procedures it may trigger. There being only a finite number of locations, we know that any message may
reach only a finite number of states. Its behaviour with respect to message flow is thus comparable to that
of a finite state machine. It is simply a matter, then, of enumerating all possible combinations of triggering
conditions and tracing the procedures that messages matching them will encounter. We may start by
assuming no knowledge about a message, progressively adding constraints on the message as we consider
its encounter with procedures and other messages.

If, on the other hand, actions are allowed to arbitrarily alter the value of the message, then the infor-
mation that we gather about the message (i.e. that it satisfies certain trigger conditions) will be (partly)
destroyed. We must therefore try to glean as much as possible from the actions by using the information
gathered to determine what new values the message may have.

Since message states are obtained by partitioning message domains, any giv en message state σ for
messages of type Xi must satisfy:

σ ⊆ dom(Xi)

Specifically, we are interested in message states that are obtained by partitioning the attribute
domains:

σ =
ni

j=0
Π R j

where each R j⊆dom(Xij) is a block in some partition of dom(Xij). Since messages are modified attribute
by attribute, this kind of message state makes it simpler to keep track of the current state of a message.

4.1. Message paths and states 30

Since we plan to derive message states partly from trigger conditions, the R j will often correspond to
simple conditions on the jth attribute. If Xij is a numeric field, the conditions that express R j may specify
a range of values in dom(Xij) (hence our use of the symbol R j).

One attribute domain that is trivial to partition is the location of messages. Recall that procedures at
a giv en station may only access messages that "belong" to that station by either residing at the station or at
one of its mailboxes. One may therefore partition locations into groups, one per station. Furthermore,
since there are only a finite number of locations, we may even go so far as to distinguish between all loca-
tions. We shall henceforth assume, therefore, that all messages in the same state are at the same location,
i.e. for any message state σ , we hav e:

for all x, y∈σ => x1 = y1

Before we take a closer look at the nature of triggers and actions, we shall introduce some definitions
that will help us in deciding exactly what attributes are of interest to us.

4.1.1. Control attributes

We need not necessarily consider all message attributes when we partition our message domains into
a state space. Some attributes may not affect the path of messages at all. Attributes that do affect the path
do so by affecting either the triggering of procedures or the routing of the message.

To begin with, although the domain of a procedure’s actions and triggers is all of T (p), it is in fact
likely that only some of the attributes of the input messages are examined or modified. We would like to
identify the true arguments of a function as the ones that are actually used in the computation of the value
returned. We are assuming, of course, that all the functions we will be dealing with are effectively com-
putable, and describable by algorithms. A procedure that increments a field of a message clearly does not
need any of the information contained in the other fields of the message in order to compute the result. The
only true argument to the incrementing function is therefore the field that is modified.

The true arguments to a function can generally be determined by inspection. For example, the true
arguments to f (x, y, z) = x2 + y are clearly x and y, provided the domains of x and y have more than one
element. (We note that it is possible to construct odd functions for which the "true" arguments are debat-
able, such as f (x) = x/x where x is a positive real. Although x appears to be a true argument (it occurs in
the definition of the function), in fact it is not since f (x) = 1 is an equivalent definition. This matter may
be of theoretical interest, but does not concern us here.)

We will now define selection attributes, routing attributes and control attributes:

Selection attributes are defined to be those attributes that are true arguments to the trigger conditions.

Xij is a selection attribute if Xij ∈arg(T (p)) for some p

Routing attributes are those that are true arguments to some routing function (recall that routing func-
tions are the components of an action A(p) that modify the locations of the input messages).

Xij is a routing attribute if Xij ∈arg(ak1) for some routing function ak1.

Control attributes are attributes that are true arguments to any action that modifies some selection
attribute, some routing attribute, or (recursively) some other control attribute:

Xij is a control attribute if:

(i) Xij is a selection attribute or

(ii) Xij is a routing attribute or

(iii) Xij ∈arg(akl) for some akl and attribute l of input I pk is a control attribute

Routing attributes are those that directly affect routing decisions. Selection attributes indirectly affect
routing by determining which procedure is likely to "grab" the message (and consequently route it). Con-
trol attributes affect routing even more indirectly by influencing the value of routing or selection attributes.
Note that the definition of control attribute is recursive, and so includes attributes that affect routing even
indirectly.

4.1. Message paths and states 31

Non-control attributes (the ones left over) do not influence routing or message flow in any way. Con-
sequently we may ignore these when we decide how to partition our message state space. The non-control
attributes are only of interest to us if we have specific questions about their value. We might, for example,
like to know the range of values of a particular message field when it arrives at our station, even though that
field in no way affects its flow through the network.

4.1.2. Trigger conditions

In our model we may express trigger conditions through the set T (p) of acceptable input messages.
This tells us nothing, however, about the structure of the condition. Let us consider some of the possibili-
ties. The simplest trigger is no condition at all:

1. all messages of the correct type(s) are accepted

In this case all messages in the local scope of the procedure may trigger it. Since there is no other condi-
tion on the input, there can be no coordination between messages (i.e. if there is more than one message
input, then there would be no trigger conditions comparing fields of one input to those of another). This
sort of trigger is therefore likely to be useful only when there is a single message input. An example would
be a procedure that automatically forwarded all order forms (figure 4.1) to another station.

ORDER FORM Ke y: 1.000

Customer : Dennis Tsichritzis
Date : Thu Mar 8

Item : Deluxe Potrzebie
Ordered : 1

Price : dol 23 000
Quantity : ×

Total : dol

Approved:

Figure 4.1 : An order form

2. selections on attributes

We consider conditions in disjunctive normal form \\ //(// \\C j) where each C j is a simple condition comparing
an attribute to some constant, that is xiθ u. Comparators such as = , ≠ , < , ≤ , > , ≥ may be used for numeri-
cal or text fields. Pattern matching in text and searching for voice patterns and bit maps in audio and visual
fields is also conceivable. xi˜"Crete" might represent the condition that the text field xi contain the (con-
stant) string "Crete". Low inv entory items could be detected by a procedure that selects inventory records
with a quantity less than 10, say, as in figure 4.2.

INVENTORY RECORD Key:

Item :

Price : dol
Quantity in stock : < 10

Figure 4.2 : Low inv entory trigger

4.1. Message paths and states 32

3. predicates over message attributes

It may sometimes be necessary to select messages on a comparison of attributes. A procedure that selected
orders that could not be completely filled would have to compare the Quantity field of an order form to the
Ordered field. Such conditions are of the form xiθ x j . More complex conditions may be predicates over
several attributes (for example, xi + x j ≤ xk).

4. joins between messages

Matching messages are identified by comparing similar attributes of different message inputs (usually of
different message types). Although equality joins seem to be the most useful for matching messages,
inequality joins are sometimes useful for identifying special cases of individual messages or pairs of
matched messages. An inventory record and an order form may be matched by item name, for example, by
applying an equality join. We may further select from amongst the message pairs retrieved by comparing
the number in stock (on the inventory record) with the number ordered (on the order form) using an
inequality join. We may thus identify orders that cannot be filled and (say) trigger a procedure that creates
a backorder and requests more stock.

Arbitrarily complex conditions (involving more than one or two attributes) may exist in practice, but
simple selections and joins are likely to be adequate for most applications. We shall therefore concentrate
on these without excluding the possibility of other conditions. Such conditions may involve the evaluation
of functions of several attributes, or the inclusion of information outside the system such as user input.

4.1.3. Actions

Actions modify messages and re-route them. The routing functions, ak1 of an action A(p) are con-
strained in that they must route messages to the finite set R(si) (where si is the location of p). If these rout-
ing functions are defined in terms of the input messages alone (and not user input or any other external
source), then the input tuples τ ∈T (p) can be partitioned into a finite number of independent subsets
according to where the messages are routed. We may represent the set of tuples for which the kth message
is sent to station s j by ρ kp(j):

ρ kp(j) =

{τ ∈T (p)| ak1(τ) = si} if j = 0

{τ ∈T (p)| ak1(τ) = mij} if 1 ≤ j ≤ N

{τ ∈T (p)| ak1(τ) = ω } if j = ω
ρ kp(0) and ρ kp(ω) are used to represent the case where message k is not forwarded or is destroyed, respec-
tively.

Because there is only a finite image space for routing functions, it is consequently possible to re-state
these functions in the form:

ak1(τ) =

si

mi1

mi2

. . .

ω

if τ ∈ρ kp(0)

if τ ∈ρ kp(1)

if τ ∈ρ kp(2)

if τ ∈ρ kp(ω)
Furthermore, if we can express the ρ kp(j) "nicely" then we automatically have a corresponding defi-

nition for the routing functions. The earlier discussion of triggers may be applied here as well. If we can
express ρ kp(j) in terms of simple conditions on attributes, then we may obtain routing functions that look
like:

ak1(τ) =

si

mi1

mi2

. . .

ω

if \\ //(// \\C0l)

if \\ //(// \\C1l)

if \\ //(// \\C2l)

if \\ //(// \\Cω l)
If the conditions C jl compare attributes to constants, then these constants can be used to partition attribute
domains into ranges.

4.1. Message paths and states 33

The remaining components of an action may modify the attributes of the input messages. Each aij

potentially makes use of all the information available in all the input messages. In practice, however, not all
attributes of a message will be modified. Most of the aij will therefore be identity functions. Other simple
actions may set attributes to constants. This is the case, for example, when a procedure automatically
approves a request with a (constant) signature.

When actions set attributes to values that depend only on the previous values of those attributes, or on
the values of other attributes in the same input message, then the next state of that message depends only on
its previous state. If, however, information from the other inputs is needed to evaluate the new values of
attributes, then we cannot determine the next state from the previous state alone. Furthermore, if external
information (e.g. the date, user input) is required, then the actions are effectively non-deterministic (from
the viewpoint of the model). The next state of a message can at best be determined as a set of possibilities.

Let us consider how actions may map a message from state to state. Much of what follows assumes
numeric attribute domains, but often the arguments can be generalized to other domains, such as text fields.

Functions that depend on individual messages and map message fields to constants are the simplest
to handle:

1. aij ≡

if τ [i]∈ξ1 then set x j : = u1

if τ [i]∈ξ2 then set x j : = u2

. . .

where x is the ith input message, and each ξ k is a product of attribute ranges. Since attributes are set
to constants, we can easily test whether they fall in the attribute ranges of any message state. Simi-
larly, it is relatively straightforward to test what states σ overlap a given ξ k .

2. aij is linear in τ or τ [i].

This applies to numeric attributes. If aij is a linear function of the inputs (i.e. a polynomial of degree
1), and we know what ranges of values the arguments may assume, then the image of aij can also be
expressed as a range. If, for example, aij is defined to be xk + yl (where x and y are input messages
in τ), and we know that xk ∈[10, 20] and yl ∈[4, 6], then we can deduce that the image must lie in the
range [14, 26].

3. aij is polynomial in τ or τ [i].

A function that computes yearly interest compounded monthly would be a twelfth-degree polyno-
mial. In this case, we may have difficulty telling what the image of a given message state will be.
Finding the minimum and maximum of { f (x)|x ∈Π Rk} cannot be solved exactly for a polynomial
f (x) of degree higher than four (since we must find the roots of its derivative). With a bit of work,
reasonable bounds may be found, however.

4. aij is monotone.

Any mapping that is monotone increasing or decreasing maps ranges neatly to ranges. In this case
we can be sure that aij attains its minimum and maximum at some "corner" of a message state (where
the "corners" correspond to the attributes assuming the extreme values of the attribute ranges). Many
polynomials will be monotone over the domain of concern, such as the compound interest example
above.

5. aij is arbitrary.

If actions are not "well-behaved", then there is little hope of recovering any useful information about
modified fields. If aij behaves especially badly, it may map elements of one message state to all
other states. This is the case, for example, when the action is an arbitrary modification of the mes-
sage by the user. Since we cannot predict what changes will be made (assuming the modification is
without restriction), we have no way of limiting the possible next states.

4.1. Message paths and states 34

4.2. Analyzing message flow

We hav e thus far introduced the notion of a "message state", we have defined "control attributes", and
we have classified several kinds of trigger conditions and actions. In this section we shall develop a method
for partitioning message domains into state spaces and some techniques for obtaining message paths in
terms of message states.

The first step is to identify the control attributes, since they are the ones that influence message rout-
ing. We present a distributed technique for collecting this information from all the workstations in the sys-
tem. The next task is to extract the information in the trigger conditions and actions that will tell us how to
partition the control attribute domains. This will yield our message state space.

We can then translate trigger conditions and actions into operations on message states. We thus
obtain a finite-state automaton representation of message flow, with one automaton per message type. The
state transitions for the automata can also be gathered in a distributed fashion by the use of "symbolic mes-
sages". The symbolic messages represent messages in various states, and they travel from station to station,
logging the path they trace. Since messages may be routed in different directions depending on coordinat-
ing messages they encounter, the symbolic messages may "split" along the way. The children of a symbolic
message eventually return to the originating station, and, through the use of "splitting histories", the infor-
mation gathered is reconstructed.

4.2.1. Detecting control attributes

We hav e previously defined control attributes as those attributes that affect routing directly or indi-
rectly. This includes selection attributes that are examined by trigger conditions, routing attributes that are
used to compute the next location of a message, and (recursively) any attribute that is used to compute the
next value of any other control attribute.

We shall present a distributed algorithm for collecting the control attributes present in the system.
Briefly, whenever new procedures are created or old ones modified, a station locally detects the new control
attributes. These are then broadcast to all other stations. If yet more control attributes are discovered at the
other stations, then these too are broadcast. Every receipt of new control attributes must be acknowledged
with a message telling whether more are discovered or not. Since there are only a finite number of
attributes, this procedure must eventually terminate.

Discovering what the control attributes are for a given message type is not inherently difficult. We
assume that it is fairly easy to tell what the arguments to a trigger condition or an action are. Routing
attributes and selection attributes are then trivial to detect. To discover the remaining control attributes one
need only apply the recursive definition until no more attributes are found. The only real twist is that we
wish to know the global control attributes, that is, we are concerned with all procedures at all sites, not just
those at a single station. When all stations are on the same physical machine, then this may not pose any
special problems, but it is far more reasonable to assume that our stations are on separate physical machines
connected by a network.

Although it may be possible to collect all the information concerning procedure arguments at a single
station that does all the processing to determine the control attributes, it is desirable to have the option of
running such an algorithm in a distributed fashion. Where all stations are equal, we may well prefer not to
unnecessarily burden one with the "dirty work" of analyzing system behaviour.

We introduce the notation:

γ (Xij , p) = ∪ {arg(akj)| I pk = Xi}

to represent the set of attributes that affect the computation of any action in procedure p that modifies
attribute Xij . Clearly, if Xij is a control attribute, then so are any attributes in γ (Xij , p). Of course,
γ (Xij , p) is empty if Xi ∈/ I (p). We extend γ to sets of attributes and sets of procedures in the obvious way.

In our distributed algorithm each station is responsible for detecting locally all routing attributes and
control attributes. This is done whenever a procedure is added. New control attributes are then broadcast
to all other stations. Stations receiving new control attributes then apply γ recursively to detect any further

4.2. Analyzing message flow 35

control attributes. If more are discovered, then these too are broadcast. The algorithm terminates when no
station has anything left to broadcast. We can detect termination by insisting that all stations acknowledge
broadcasts by stating whether or not any new control attributes result.

Each station maintains 3 × N lists:

Λi , ∆i and Γi

Each Λi is the list of control attributes for message type Xi ∈X . Initially each Λi is empty. As new proce-
dures are added to the system, these lists are updated to include newly-discovered control attributes.

∆i and Γi are temporary lists for keeping track of new control attributes of Xi , as they are discovered.
The Γi are the pending lists of control attributes to be broadcast. In addition, each station maintains a list
ack of broadcasts awaiting acknowledgement. ack, when it is not empty, contains tuples of the form:

(s, n, l)

where s is the station initiating the broadcast, n is a unique broadcast sequence number for s, and l is the
list of stations that have acknowledged the broadcast. l is always initialized to contain the broadcasting sta-
tion s. We assume that every station knows what other stations exist. (Note that l could be replaced by a
counter that is used to simply keep track of the number of acknowledgements received.) We also assume
that the network can reliably handle ‘broadcasting’ even though all stations may not necessarily be up at the
same time.

When a station s broadcasts control attributes, it sends a message to all other stations of the form:

NEW (s, n, Γ1, . . . , ΓN)

where the Γi contain new control attributes, and at least one Γi is non-empty. n is a unique broadcast num-
ber for s.

When station s receives a NEW broadcast, NEW (s′, n′, . . .), from some other station s′, it must in
turn broadcast an acknowledgement of the form:

ACK (s, s′, n′, ∅)

if there are no new control attributes, or

ACK (s, s′, n′, NEW (s, n, Γ1, . . . , ΓN))

if there are.

The algorithm has several parts. Each part is run independently at every station, when required.
Each station must ensure that parts A, B and C are not run concurrently (since they access the same data
structures) but if more than one needs to be run at any time, they may be executed in any order. A gener-
ates NEW broadcasts, B processes NEW broadcasts and acknowledges them with ACK broadcasts, and C
processes ACK broadcasts. When we refer to a "new" control attribute, we mean one that is not to be
found in Λi , ∆i or Γi . The following is to be run whenever a new procedure p is created:

4.2. Analyzing message flow 36

A1. add all new routing attributes and selection attributes Xij of p to ∆i

A2. add all new control attributes Xij in γ (Λi , p) to ∆i

A3. if ev ery ∆i is empty then STOP
else {

A4. for each ∆i and Xij ∈∆i do {
A5. move Xij from ∆i to Γi

A6. add each new Xkl ∈γ (Xij , P(s)) to ∆k

(continue until every ∆i is empty)
}

A7. broadcast the non-empty Γi with NEW (s, n, Γ1, . . . , ΓN) and make a broadcast entry (s, n, {s})
in ack

A8. move all Xij ∈Γi to Λi

}
STOP

New control attributes can result from procedures being created or from processing a broadcast from
another station. Procedure B is run by stations receiving NEW broadcasts. It is very similar to A except
for the acknowledgement that must be generated. When station s receives a NEW broadcast
NEW (s′, n′, . . .), from station s′, it must be processed as follows:

B1. make a broadcast entry (s′, n′, {s, s′}) in ack
and add new control attributes to Γi

B2. for each Γi and Xij in Γi do {
B3. move Xij to Λi

B4. add each new Xkl ∈γ (Xij , P(s)) to ∆k

(continue until every Γi is empty)
}

B5. if ev ery ∆i is empty then {
B6. acknowledge receipt with no new attributes resulting i.e. broadcast ACK (s, s′, n′, ∅)

}
else {

B7. for each ∆i and Xij ∈∆i do {
B8. move Xij from ∆i to Γi

B9. add each new Xkl ∈γ (Xij , P(s)) to ∆k

(continue until every ∆i is empty)
}

B10. acknowledge receipt and broadcast the non-empty Γi

i.e. broadcast ACK (s, s′, n′, NEW (s, n, Γ1, . . . , ΓN))
make a broadcast entry (s, n, {s}) in ack

B11. move all Xij ∈Γi to Λi

}
STOP

Every NEW broadcast of control attributes that is received must result in an acknowledgement,
regardless of whether more control attributes are discovered. Acknowledgements may or may not be
accompanied by further broadcasts. When an acknowledgement of the form ACK (s′, s′′, n′′, ∅) or
ACK (s′, s′′, n′′, NEW (s′, n, Γ1, . . . , ΓN)) is received by station s, ack must be updated:

C1. update (s′′, n′′, l)∈ack to (s′′, n′′, l ∪ {s′})
C2. if that entry is complete then delete it
C3. if ack is empty then all control attributes are known
C4. if the acknowledgement is of the second form, invoke B on NEW (s′, n, Γ1, . . . , ΓN)

Parts A and B guarantee that all routing and control attributes will be known to all stations. Part A
recursively applies γ to the new routing and selection attributes to detect any more new control attributes.
Step A2 is needed in case any new control attributes arise from the new procedure p modifying old control

4.2. Analyzing message flow 37

attributes.

In part B we first check newly-arrived control attributes to see if they locally yield any more (steps
B1 through B4). If they do not, then we acknowledge receipt, and we are done. If they do, then we must
apply γ recursively to obtain all of them, and then broadcast the lot (steps B7 through B11). Note that we
must apply γ to the new control attributes in two steps, since we need not re-broadcast the new arrivals. We
only broadcast new control attributes if any result from the first application of γ .

Every broadcast must be acknowledged by all other stations. When all broadcasts have been
acknowledged with no new broadcasts resulting, then we know that every station has the same collection of
Λi and all control attributes are known.

Since there are only a finite number of attributes to begin with, the algorithm must eventually termi-
nate. Furthermore, note that in steps A1, A2 and A6, and also in steps B4 and B9, we only investigate trig-
gers or actions that have not been looked at before. (By "actions" we mean the individual aijs of a proce-
dure.) This means that the algorithm checks each trigger and each action at most once. Whenever a new
procedure is added, the amount of work to be done is linearly bounded by the number of attributes that have
not yet been identified as control attributes plus the number of triggers and actions in all procedures that
have not yet been checked (i.e. those of the new procedure, and those actions of existing procedures that
modify non-control attributes).

4.2.2. Obtaining message states

We will now consider the matter of how best to partition message domains into state spaces. Simple
trigger conditions provide us with excellent partitions, but complex conditions yield unusual message sub-
domains whose images under actions can be hard to follow. Since we are interested especially in the effect
of actions on message states, it is important to have states that are as simple as possible to trace. We may
therefore try to "box" complex subdomains, or reduce a complex condition to a collection of simple condi-
tions that cover it. We may also try to refine our partition by discovering new message states that result
from applying actions to existing message states. This "fine-tuning" may be continued indefinitely, how-
ev er, and so it is generally not practical to carry it too far.

Generally speaking, the best message state space would identify one message state per message
value. Since we require a finite number of message states to begin to analyze message flow, we must con-
sider carefully how we choose our partition.

Since control attributes are the only attributes that affect routing, our message states should corre-
spond to predicates over the control attributes. We can gather this information at the same time that we col-
lect the control attributes in the above algorithm.

Selection attributes are those that are arguments to trigger conditions. The trigger conditions thus
automatically yield conditions that may be usable for generating message states. If a trigger condition can
be expressed as \\ //(// \\C j) where each C j is a predicate involving one or more control attributes, then we can
use the C j to generate message states. The conditions collected in this way at all stations yield a state space
by considering messages that may or may not satisfy each of these conditions. If, for example, there are c
conditions in total that involve messages of type Xi , then a message x ∈dom(Xi) may potentially fall in one
of 2c message states, corresponding to success or failure in matching each of these conditions.

Of course, not all combinations of conditions necessarily yield a usable message state: some combi-
nations may be contradictory. Conditions xi > 5 and xi < 3 clearly cannot both be true at the same time.
There may therefore be considerably less than 2c non-empty message states.

We hav e previously mentioned the desirability of message states expressible as a product of ranges or
attribute subdomains. Message states that are expressible as a Cartesian product of attribute subdomains
allow us to consider each attribute independently. We would thus have

σ =
ni

j=0
Π R j

4.2. Analyzing message flow 38

or

σ = {x ∈dom(Xi)|
j
// \\C j}

where each C j represents R j . C j is therefore a simple condition involving only attribute Xij , for example:
4 ≤ x j ≤ 10.

If the trigger conditions \\ //(// \\C j) hav e the property that each C j is a simple condition of this form, then
we automatically are able to derive our desired message states. Furthermore, when the attributes are
numeric and the conditions are of the form xiθ u where u is a constant and θ ∈{ = , ≠ , < , ≤ , > , ≥ } then the
conditions yield attribute ranges bounded by the constants. In this case, if we have c j conditions involving
attribute Xij , we hav e at most c j constants and at most c j + 1 ranges. Consequently we would have

j
Π(c j + 1) message states (where c j = 0 for non-control attributes). This is considerably less than the

potential 2c states resulting from non-simple conditions (where c is the total number of conditions involv-
ing all Xij , i.e. c = Σ c j).

Unfortunately we cannot reasonably expect all trigger conditions to be this well-behaved. There are
two options available. The first is to ignore all C j that are not of the form xiθ u, and the other alternative is
to try to convert them to simpler conditions that are more useful. The idea is to "box" the messages satisfy-
ing the condition by discovering the attribute ranges that correspond to solutions of the predicate. This can
be done, for example, with a condition like:

x2
i + x2

j ≤ 25

Here we can deduce that −5 ≤ xi ≤ 5 and −5 ≤ x j ≤ 5. With the condition:

xi = x j

however, we can deduce nothing since both attributes potentially range over their entire domains. Note that
we may use combinations of conditions to extract more information. If, for example, the condition above
were combined with x j > 0, then we may deduce that xi > 0 is also of interest. In a trigger condition of the
form \\ //(// \\C j), one should use the conjunctions // \\C j to deduce the simple conditions.

We may take the same approach with routing attributes. Earlier in this chapter we introduced the
notation ρ kp(j) to represent the input tuples for which the kth message is routed to station s j . We may sim-
ilarly "box" each ρ kp(j) to obtain simple conditions on control attributes.

In the cases of both selection attributes and routing attributes, the problem is greatly simplified if trig-
gers and routing actions are expressed by users in terms of fairly simple conditions on attributes. Further-
more, the user may be asked to supply any additional information implied by conditions that involve com-
parisons of several attributes. Of course, depending on the complexity of the triggers and actions express-
ible within the system, it would be desirable if the system itself could do all the analysis of attribute ranges.

Other control attributes are slightly more complicated to handle since they appear in actions that may
not map to finite sets. We hav e, howev er, already obtained ranges for the control attributes found thus far
(the routing and selection attributes), so we may feel free to use this information at this point.

Consider a control attribute Xij that is modified by akj of procedure p (where Xi = I pk). By the defi-
nition of "control attribute", we know that all attributes in arg(akj) must also be control attributes. Also,
since Xij is a control attribute already discovered, we presumably have some range information about it. If
Rl is a range for Xij , then:

akj(τ)∈Rl

is a predicate over the inputs τ to procedure p. We may therefore attempt to "box" the set of inputs that sat-
isfy this condition, and thereby obtain ranges for the control attributes in arg(akj). The new ranges can be
used to further subdivide, or "fine-tune" the message states.

Note again that "boxing" may be impossible in some cases, yet trivial in others. Specifically, if akj is
a function of a single argument, then the condition akj(τ)∈Rl is a predicate over a single attribute. For

4.2. Analyzing message flow 39

example, if akj returns something like xh + 1, and Rl is the range [a, b], then the resulting predicate is
xh + 1∈[a, b], and the resulting range for this attribute will (trivially) be [a − 1, b − 1].

If, on the other hand, akj is a complicated function of several arguments (for example, a high-order
polynomial), then the task of obtaining attribute ranges is a problem in numerical analysis with only
approximate solutions available.

We hav e, therefore, techniques for extracting attribute ranges (or subdomains) for selection attributes,
routing attributes, and all other control attributes. Whenever a new control attribute is discovered in the
algorithm of the previous section (in steps A1, A2, A6, B1, B4 and B9), we may determine the ranges at the
same time. New range information about existing control attributes can also be detected. This information
may be broadcast at the same time.

Special care must be taken at one phase, however. When we analyze actions, we use the known
ranges of other control attributes. More ranges may be discovered, and one may be tempted to fine-tune the
analysis. Consider the following trivial example to see what may happen: Suppose xi is a selection
attribute in the trigger condition 5 ≤ xi ≤ 10. We are therefore interested in the range [5, 10]. Suppose
there is an action that sets xi: = xi − 1. If we analyze this we discover that we are also interested when
xi − 1∈[5, 10], i.e. the range [6, 11]. If we continued recursively we would never stop finding new ranges.

Since this problem only occurs in the recursive step, an obvious solution is to prohibit fine-tuning of
existing control attributes appearing in actions. Selection attributes and routing attributes do not present
any problems.

4.2.3. State transitions

At this point in our analysis we expect each station to know what message states are currently of
interest. What is left is to determine what state transitions are effected by the procedures. For a message in
a giv en input state σ we would like to know the possible next states, σ ′ that may result if the message trig-
gers some procedure p.

To tell what happens when p fires, it is not, in general, sufficient to know the state of a single input
message. Attributes of all coordinating messages are potentially available to the actions that modify the
message we are interested in. Although we cannot predict what states the other inputs will be in, we know
that they must satisfy the trigger condition. We therefore introduce the following notation to represent the
possible inputs given one message in state σ :

τ p(σ) = {τ | τ ∈T (p), τ [k]∈σ }

(where σ ⊆dom(Xi) and Xi = I pk)

(For simplicity, Xi and k are understood.) Note that τ p(σ)[k] is the set of message values in σ that may
trigger p (possibly empty). This is equal to σ ∩ T (p)[k].

Recall that p̂ (x) was the set of procedures that x might trigger, and âp(x) was the set of values that x
might be mapped to after triggering p. We extend our definitions of â and p̂ from chapter 3 to message
states:

p̂ (σ) = {p∈P| τ p(σ) ≠ ∅}

âp(σ) = {A(p)(τ)[k]| p∈p̂ (σ), τ ∈τ p(σ), Xi = I pk}

Procedure p then effects a state transition from σ to σ ′ if p∈p̂ (σ) and âp(σ) ∩σ ′ ≠ ∅. That is
p: σ → σ ′ if p is capable of mapping some message in state σ to some message in state σ ′, giv en the right

coordinating messages. We may extend l̂ from chapter 3 to apply to message states as well:

l̂ (σ) =

{pl̂ (σ ′)|p∈p̂ (σ), âp(σ) ∩σ ′ ≠ ∅}

λ (the empty string)

if σ ≠ ω and p̂ (σ) ≠ ∅
otherwise

4.2. Analyzing message flow 40

l̂ (σ) therefore is the message flow language for message state σ . It represents all sequences of procedures

that messages in state σ may possibly encounter. l̂ (σ) may be "computed" by recursively applying its defi-

nition. Sequences of procedures are generated as l̂ (σ) is expanded. (Of course, a straightforward expan-
sion is impractical since infinite strings may be generated.)

Since messages in different states may still be able to trigger the same procedures, it is useful to keep
track of the message states together with the sequences of procedures encountered. We spoke earlier of a
message path as an alternating sequence of message values and procedures. We may easily extend this idea
to message states in the following definition:

φ (σ) =

{σ pφ (σ ′)|p∈p̂ (σ), âp(σ) ∩σ ′ ≠ ∅}

σ
if σ ≠ ω and p̂ (σ) ≠ ∅
otherwise

Note the similarity to the definition of l̂ . In fact, we may obtain l̂ (σ) by mapping the states in φ (σ) to the
empty string. φ (α) represents paths starting from message creation. Paths terminate when messages are
destroyed, so φ (ω) = ω .

At this point we can easily see that message behaviour can be compared to that of a finite state au-
tomaton. Let Σi be the set of message states for message type Xi , i.e. Σi is a partition of dom(Xi) obtained
by the approach described in the previous section. Then the finite automaton of Xi is:

< Σi , P × Σi , δ i , α , ω >

The states of the automaton are the message states. Inputs are strings over P × Σi , i.e. pairs of procedures
and next-states. The initial state is α , the final state ω , and the next-state function is:

δ i(σ , (p, σ ′)) |→ σ ′

where Xi = I pk , p∈p̂ (σ) and âp(σ) ∩σ ′ ≠ ∅. Note that we have K automata, one for each message type.
We shall discuss how these automata can been seen to interact in chapter 5.

Determining what the state transitions are may not be so easy. One of the difficulties may lie in eval-
uating âp(σ). In the earlier section on actions we enumerated some of the possible functions that may be
encountered in procedures. If we assume that the states in Σi are all products of attribute ranges, then func-
tions that are monotone (linear, monotone polynomial, etc.) are relatively easy to analyze. With monotone
functions we need only consider the allowable ranges of the argument attributes to determine the output
ranges. Consider the function xi + x j . If in the input message state we have xi ∈[0, 5] and x j ∈[10, 20] then
the image of the function xi + x j for that message state is the range [10, 25]. If this function sets field xk ,
then we need only determine what attribute ranges of that field intersect [10, 25]. With non-monotone func-
tions we have the "boxing" problem mentioned in the previous section.

Functions whose image is a finite domain may be stated in the form:

aij(τ) =

u1

u2

. . .

if C1

if C2

where each uk is a constant and each Ck is some condition on the input τ . For a given message state σ we
must therefore determine which Ck are satisfied by the inputs τ ∈τ p(σ). We assume that such functions are
available to us in this form, or that the Ck can at least be derived. If the Ck are composed of simple condi-
tions of the form xiθ u, where θ is an inequality, then the evaluation is straightforward. Perverse conditions

like x7
3 − x5 +

x7

x3
8 + x8

= 0 cause problems because we must solve them over the domain τ p(σ) to tell what

the next state may be.

Clearly, it is possible to devise actions that are miserably tricky to analyze. There are several possi-
ble ways of dealing with this. One approach is to design the system so that only "nice" actions may be

4.2. Analyzing message flow 41

used. Another possibility is to have the system request information about new functions such as whether
they are monotone, or, more specifically, how they are expected to map message states (if the states are
known).

One interesting approach may be to have the system do its best to determine what the state transitions
are, and then monitor actual message state transitions to see if they agree with its analysis. For every mes-
sage we must determine what message state it belongs to, and when it is modified by a procedure, check
what its next-state is. If the transition is one that was predicted, then we know all is well. If not, then the
transition must be added to the known set, and the discrepancy can be pointed out to a system programmer.

The set of all state transitions can be found by having each station determine what transitions may
occur there. Not all message states may be reachable, however. (Similarly, not all state transitions are
"reachable".) An alternative way of finding the state transitions is to start with the procedures that are capa-
ble of creating new messages, and to trace message state transitions starting from there. The reachable state
transitions are thus collected by following the paths in φ (α). Since there are only a finite number of transi-
tions, an algorithm to compute φ (α) should terminate after encountering each transition at most once. We
shall investigate such an algorithm in the following section.

4.2.4. Symbolic messages

We collect reachable state transitions by using a symbolic message that represents a choice of possi-
ble current message states and keeps track of the transitions that have been traversed up to that point. Since
different messages are often routed in different directions by procedures, we need the ability to split a sym-
bolic message whenever this happens. A symbolic message may thus split into many parts going in differ-
ent directions before all reachable states and all state transitions are found.

A symbolic message gathers all the reachable state transitions by simply traversing a "spanning tree",
starting at α , and visiting each station where the information about the transitions resides. (A spanning tree
of a graph is a subgraph of that graph that both covers all the vertices of that graph, and is a tree
[BoMu76].) When there are no new states and state transitions to visit, it returns to the station initiating it.
Since the symbolic message may have split into separate parts, the work is not finished until each of the
parts returns. When the transitions have all been gathered, we may then generate a regular expression cap-
turing the message flow automaton by using a standard algorithm such as in [AhHU74]. (These algorithms
have complexity O(n3), where n is the number of states in the automaton.)

Consider the message flow automaton in figure 4.3. Here messages are created by procedure p1 and
are destroyed by procedure p5.

Figure 4.3 : A message flow automaton

4.2. Analyzing message flow 42

Suppose that each state corresponds to a different station, so that the location of σ1 is s1, and so on.
Then the procedures in the figure belong to the stations as follows:

p1 ∈P(s0)

p2, p3 ∈P(s1)

p4 ∈P(s2)

p5, p6 ∈P(s3)

Each procedure thus sends the message to a new station, after modifying it.

A symbolic message would start at state α and follow transition p: α |→σ1. At σ1 it would split into
two directions and follow p2 and p3 to σ2 and σ3, respectively. From σ2 it could only go back to σ1, which
has been seen already. From σ3, it could go to σ2 and ω . This causes another split. σ2 has also been seen
already, and there is nowhere to go from ω , so the symbolic messages would terminate, having traversed all
possible state transitions.

Note that we may have multiple paths to a single message state σ . There are multiple paths, for
instance, to state σ2 in our example. Different children of the original symbolic message may encounter
this state at different times, but, of course, only the first one to arrive is needed to continue and compute
φ (σ). The other children need to know that the first one has already been there, so, in addition to the infor-
mation kept by the symbolic messages, we must keep track at each station which states have been reached
thus far by some symbolic message. The children in our example result from the splits at σ1 and σ3.

The first split occurs at σ1, since p2 and p3 route the message to different locations. The first child
of that split (going to σ2) gathers the transitions from σ2. The second child is itself split into two at σ3.

The first grandchild terminates at ω . The remaining grandchild, follows p6 to σ2. There it termi-
nates, since state σ2 has already been visited by the first child of the first split. (That information must be
maintained at the station that σ2 belongs to.)

Finally, we need to know when all the symbolic messages have finished their work. This means we
need to somehow keep track of how many descendants there are of the original symbolic message. One
way to do this is to note that we can visualize a tree of symbolic messages with the original one as the root.
Let us label each edge of the tree with a pair (j, n), where edge (j, n) is the jth of n edges leaving a node.
If the tree grows downward, then the leftmost edge is always labeled (1, n), and the rightmost (n, n).

Now we may label each node of the tree with the sequence of edge labels along the path from the
root of the tree to that node. Since each edge incident with a given node is uniquely identified for that
node, the sequence of edge labels uniquely identifies each node in the entire tree. The leftmost leaf node
therefore has the label (1, m) . . . (1, n), and the rightmost leaf node has the label (m, m) . . . (n, n). We call
such a sequence of pairs a splitting history. The splitting history (1,4)(2,2) identifies the second child of the
first child of the root. It also indicates where other children have split off. By comparing the splitting his-
tories of the symbolic messages, we can tell whether they hav e all returned or not.

A symbolic message, then, is a tuple:

ν = (s, Θ, Σ, χ)

where s is the originating station, Θ is the collection of state transitions gathered thus far, Σ is the set of
message states currently represented, and χ is a splitting history. (Additional information such as the mes-
sage type of the symbolic message and a unique identifier may also be needed since there will typically be
many such symbolic messages floating through the system. For simplicity’s sake we shall take this for
granted.)

The state transitions in Θ are represented by triples,

(p, σ , σ ′) such that p∈p̂ (σ) and â(σ) ∩σ ′ ≠ ∅

(p, σ , σ ′) is therefore a transition from state σ to state σ ′.

4.2. Analyzing message flow 43

Each station must also maintain a list SEEN to keep track of the states that have been seen by a
descendent of some given original symbolic message. (Again, we need a unique set SEEN for every given
original symbolic message and its descendents. For simplicity we shall take this as understood.)

Briefly, at each station that a symbolic message visits, we must add new transitions to Θ, determine
the new states in Σ that the symbolic message represents, and split into several new symbolic messages, if
necessary.

If station s has a procedure p that creates messages of type Xi then it may initiate a symbolic mes-
sage ν with Θ = ∅, Σ = {α } and χ = λ , the empty string. As ν ’s children arrive at each station in the sys-
tem, the following steps must be taken: (Σ′ and Σ1, . . . , Σn are temporary variables.)

D1. for each σ ∈Σ do {
D2. if σ ∈/ SEEN and p̂ (σ (π)) ≠ ∅ then {
D3. for each p∈p̂ (σ) and σ ′ such that âp(σ) ∩σ ′ ≠ ∅ do {
D4. add (p, σ , σ ′) to Θ
D5. add σ ′ to Σ′

(σ ′ may be ω)
}

D6. add σ to SEEN
}

}
D7. replace Σ by Σ′
D8. partition Σ into Σ1, . . . , Σn so that every state σ ∈Σ j is at the same station
D9. if n > 1 then do {
D10. split ν into ν1, . . . ,ν n such that:
D11. ν j = (s, Θ j , Σ j , χ j)
D12. for j = 1, Θ j = Θ
D13. for j > 1, Θ j = ∅
D14. χ j = χ (j, n)

}
D15. for each ν j do {
D16. if Σ j = ∅ or Σ j = {ω } then
D17. send ν j back to s
D18. else send ν j to the station of Σ j

}
STOP

In our example, we start out with:

(s0, ∅, {α }, λ)

As we traverse the transitions, we obtain:

(s0, ∅, {α }, λ)

(s0, {(p1, α , σ1)}, {σ1}, λ)

(s0, {(p1, α , σ1), (p2, σ1, σ2), (p3, σ1, σ3)}, {σ2, σ3}, λ)

At this point we split into:

(s0, {(p1, α , σ1), (p2, σ1, σ2), (p3, σ1, σ3)}, {σ2}, (1, 2))

and

(s0, ∅, {σ3}, (2, 2))

(Note that only the first child keeps the transitions gathered thus far.) The former yields:

4.2. Analyzing message flow 44

(s0, {(p1, α , σ1), (p2, σ1, σ2), (p3, σ1, σ3), (p4, σ2, σ1)}, {σ1}, (1, 2))

and the latter yields:

(s0, {(p5, σ3, ω), (p6, σ3, σ2)}, {ω , σ2}, (2, 2))

At station s3 we cannot tell that state σ2 has been reached already, so we split again into:

(s0, {(p5, σ3, ω), (p6, σ3, σ2)}, {ω }, (2, 2)(1, 2))

and

(s0, ∅, {σ2}, (2, 2)(2, 2))

Both children then die, the first from reaching ω , and the second from reaching a state that has been seen
before.

Each symbolic message always represents only messages that encounter the same stations. When-
ev er messages may be routed in different directions, a symbolic message must "split". The children are
then routed to their new locations. Children are routed back to the originating station s for any of four rea-
sons:

1. s appears normally in the message path

2. messages are destroyed; the final state ω has been reached

3. messages have reached a dead end; there are no procedures to handle those message states

4. the message state encountered has been seen by another symbolic message; to continue would unnec-
essarily duplicate work

Only the last three cases mean that the symbolic message has finished its work.

When symbolic messages return to the originating s, the χ may be examined to determine whether
there are more children yet to arrive. Simply keep all the χ in a sorted list, such that

χ < χ ′ if χ = a(j, n)b, χ ′ = a(k, n)c and j < k

where a and b are (possibly empty) sequences of pairs. χ and χ ′ will have split after the common
sequence a. When there are no "gaps" left in the list, we are done. To detect gaps, we need the following
definitions:

i) A sequence b is "initial" if it is of the form (1, m), . . . , (1, n). That is, the first element of each pair in
the sequence is a 1. An empty sequence is always initial. An initial sequence identifies the leftmost
child of some branch of a tree (the tree grows "downward").

ii) A sequence b is "complete" if it is of the form (m, m), . . . , (n, n). That is, the first element of each
pair equals the second. An empty sequence is always complete. A complete sequence identifies the
rightmost child of some branch of a tree.

For a list to contain no "gaps":

1. The list must start with a χ that is initial.

2. If χ = a(j, n)b and b is complete, then χ must be followed in the list by χ ′ = a(j + 1, n)c, where c is
initial.

3. The list must end with a χ that is complete.

Conditions 1 and 3 identify the leftmost and rightmost nodes of the tree. Condition 2 guarantees that
ev ery node in the tree has an immediate successor.

In our example, the list obtained is:

(1, 2)

(2, 2)(1, 2)

(2, 2)(2, 2)

4.2. Analyzing message flow 45

Condition 1 is satisfied since (1,2) is initial. Condition 2 is satisfied by χ = (1, 2) where a = λ , b = λ and
c = (1, 2); and by χ = (2, 2)(1, 2) where a = (2, 2), b = λ and c = λ . Finally, of course, (2,2)(2,2) is com-
plete, so we know that we have all the children of the original symbolic message.

By this technique we may collect all reachable state transitions starting at any procedure p that cre-
ates messages of a given type. When all the symbolic messages have returned to their source, the results
may be broadcast to other stations.

If desired, φ (α) may be encoded as a regular expression. This is a consequence of the fact that every
finite automaton may be described by a regular expression, and vice versa. The regular expression may be
obtained from the state transitions by any standard algorithm, such as appears in [AhHU74]. One regular
expression for our example would be:

φ (α) = α p1 (σ1 (p2 + p3 σ3 p6) σ2 p4) * σ1 p3 σ3 p5 ω

If we are interested only in the procedures (i.e. in l̂ (α)), then the corresponding regular expression would
be:

l̂ (α) = p1 ((p2 + p3 p6) p4) * p3 p5

Let us consider the complexity of collecting the state transitions. The symbolic messages traverse
each state transition at most once. If there are k message states and l procedures, then there are at most

t = l × k2

state transitions that may be effected by the procedures. The time it takes to traverse these transitions is
therefore bounded by l × k2.

Each state transition is collected at most once by any child of the original symbolic message. The set
of all the Θ therefore takes up at most O(t) space. The Σ are similarly bounded since we can only reach
new states through the state transitions.

The space taken by the splitting histories is equal to the product of the number of symbolic messages
and the average length of each χ . Recall that the splitting histories correspond to a tree with the original
symbolic message as its root. Let us assume that the tree is balanced and that each node has the same num-
ber of children. If each node has n children (outdegree n) and the height of the tree is h, then there will be
nh leaf nodes. The space taken by all the paths will therefore be

1. SPACE = h × nh

The number of edges in the tree is:

2. n + . . . nh

Each node is the result of at least one state transition, hence:

3. n + . . . nh ≤ t

4. nh < t

5. SPACE < logn(t) × t

Since every node in the tree corresponds to at least a split into two children, we know that n ≥ 2, hence:

6. SPACE < log2(t) × t

7. SPACE < log2(l × k2) × l × k2

In the opposite extreme where the tree is severely skewed, we might have a tree where all but the first
child of each split dies immediately. Suppose again that each node splits into n, and the height of the tree is
h. Then the space taken by the splitting histories will be:

1. SPACE = (n − 1) + 2 × (n − 1) + . . . (h − 1) × (n − 1) + h × n

2. SPACE < n + 2 × n + . . . (h − 1) × n + h × n

4.2. Analyzing message flow 46

3. SPACE < n ×
h × (h + 1)

2
The number of edges in the tree is:

4. n × h ≤ t

Again we have n ≥ 2, so:

5. h ≤ t/2

6. SPACE <
t ×

t

2
+ 1

2

7. SPACE <
t × (t + 2)

4

8. SPACE <
l × k2 × (l × k2 + 2)

4
Of course, these are upper bounds. In general we do not expect procedures to effect transitions

between arbitrary states since we would then obtain no useful information about message behaviour. Fur-
thermore, we do not expect every state transition to result in the splitting of a symbolic message, so there
should be far fewer nodes in the splitting tree than there are transitions.

4.3. Summary

Although we cannot capture message behaviour by exhaustively enumerating all possible message
paths, we can still obtain an expression of message flow by partitioning message domains into a finite num-
ber of message states. We then extend the notion of a message path to alternating sequences of message
states and procedures. The difficulty then lies in determining reasonable partitions of the message domains,
and in discovering what the state transitions are.

Since we would like message states to correspond closely to sets of messages that travel together, it is
instructive to consider what exactly influences message paths. We dev elop the idea of a "control attribute"
being an attribute whose value somehow influences routing. Routing is directly affected by selection
attributes that appear in trigger conditions, and by routing attributes whose values are used to compute new
locations for messages. Attributes used in the computation of actions that modify control attributes are also
control attributes. A distributed algorithm for determining the control attributes has been presented.

Message states intuitively correspond to predicates over the control attributes. These predicates come
from the trigger conditions, and from inverting the actions that modify control attributes. The analysis of
state transitions is simplified somewhat by considering message states expressible as conjunctions of simple
conditions on individual attributes. Where fields are numeric, message states are products of attribute
ranges. The attribute ranges may be obtained at the same time that the control attributes are detected.

State transitions occur when there is a possibility of a message in one state to be mapped to a mes-
sage in another state, given the presence of the requisite coordinating messages. If message states and
actions are reasonably uncomplicated, then the state transitions can be determined without too much dif-
ficulty. With very messy states or actions, however, it may be very hard to tell whether a state transition
may take place without the help of numerical analysis tools or detailed information on the functional behav-
iour of the actions. One approach to this problem is to monitor messages as they are handled by a proce-
dure and note what state transitions actually take place. This has the advantage of not requiring any
detailed analysis of actions, but has the distinct disadvantage that one never knows for certain that unob-
served transitions are impossible.

If an "analysis workstation" is available, then all state transitions can be sent to that station where the
information will be processed and analyzed. Alternatively, message paths may be determined by using
"symbolic messages" that represent sets of message states that travel from station to station collecting state
transitions. This has the advantage of determining only those states and transitions that are actually reach-
able, and of not putting any undue computational burden on any giv en workstation. The cost is a greater
load on the communications medium to handle these symbolic messages.

5. Global behaviour

In this chapter we cover a variety of related topics that fall under the general heading of "global be-
haviour". We first elaborate on our finite state automata interpretation of message flow, and we show how
coordination of messages by procedures can be recovered by deriving a Petri net model that "welds" the au-
tomata together. This Petri net model proves useful in later discussions. We also discuss various types of
blocking, in which messages are held up indefinitely at a procedure, awaiting some event. The opposite
problem, in which procedures are endlessly triggered and messages return repeatedly to the same state, is
discussed in the section on procedure loops and message loops. Blocking and looping thus constitute the
two extremes of anomolous behaviour in message systems. A section on run-time monitoring rounds off
this chapter with some suggestions on alternative ways of detecting procedure loops.

The model of message flow that we have dev eloped is characterized by a collection of message states
representing sets of values that messages may acquire, and by expressions of the state transitions that they
may undergo. We hav e not yet explicitly dealt with the matter of coordination between messages of differ-
ent types, nor have we characterized global behaviour by classifying the ways in which messages may flow
through the system.

Some questions about global behaviour are straightforward to handle. One may, for example, easily
identify unreachable message states by noting what states are not encountered by any of the symbolic mes-
sages in the algorithm described in chapter four. Other questions are not so simple to answer. This has
much to do with the fact that we cannot exhaustively enumerate all message paths. Message states sacrifice
information by equating message values that may in fact behave rather differently. The better the message
states are, the less information that is lost. (A "better" partition may or may not be a finer one.)

We may especially note this loss of information in the non-determinism displayed in the message
paths. Although there is a certain amount of non-determinism inherent in the model, spurious "non-deter-
minism" may be introduced by a message state space that is "too coarse". We shall see in an example how
this may happen.

Blocking is one aspect of global behaviour. A procedure is blocked if it is waiting for messages that
never arrive. There are several reasons why this may happen. Spurious non-determinism is one of the rea-
sons it is difficult to detect some kinds of blocking. Another problem is that since our message paths are
only "approximate", we must be careful when we use them to draw inferences about the presence or
absence of blocking.

A curious phenomenon that may occur in a partially automated message system is that of message
loops. An unfortunate combination of procedures may bat a message back and forth forever, or until some-
one notices the problem and stops them.

A slightly more unusual problem is the occurrence of "procedure loops". Here we have a set of pro-
cedures repeatedly triggering each other through the messages they produce. Although message loops are a
special case of procedure loops, we may have a procedure loop with no message loop, especially if the pro-
cedures consume their input messages and produce new outputs with each iteration of the loop.

Because our analysis sacrifices some information for the sake of tractability, other techniques that do
not make simplifying assumptions about message behaviour can be very useful in detecting some of these
problems. We describe, for example, a way of detecting procedure loops at run-time by monitoring the
chain of events.

5.1. Petri net representation and non-determinism

Before we continue with a discussion of non-determinism, it is instructive to note that there is a natu-
ral Petri net interpretation of global behaviour arising from the message states and state transitions derived
in the previous chapter.

Although message behaviour can be compared to the behaviour of a finite automaton, this does not
tell the whole story since coordination is not explicitly represented. What we in fact have is a collection of
finite automata, one for each message type, interacting with each other. For procedures to fire, several of
these automata must be in the right state at the same time. In fact, it is possible to "weld" these automata
together in such a way as to produce a Petri net that captures the procedure interactions. The resulting Petri
net not only models the message flow and control flow apparent in the automata, but also captures the coor-
dination of messages by procedures. We thus explicitly represent the flow of messages of all types at once,
and the necessary trigger conditions (in terms of message states) of all procedures.

Consider, to begin with, a Petri net with one transition for each procedure, and places for the inputs
and outputs of the procedures. Each input and each output may correspond to several message states, how-
ev er. Let us then add one place for each message state of each message type. Now add transitions from the
places representing message states to the places representing inputs whenever messages in those states
match the trigger conditions for the procedure. Similarly add transitions from outputs to message states
when actions may map messages to those states. In figure 5.1 we represent procedure p with inputs i1 and
i2 and outputs o1 and o2 as a single transition. Message states σ1 through σ4 and σ ′1 through σ ′5 are repre-
sented by places. Petri net transitions are also present to represent the fact that input i1 corresponds to mes-
sage states σ1 and σ2, and that p generates outputs in state σ4. An entire Petri net may be built in this way
with transitions mapping message states of various types to other message states.

There is a serious problem here, however. In figure 5.1 it appears that messages in states σ ′1 or σ ′2
may map to messages in states σ ′3 or σ ′4. Suppose that in fact we only have state transitions p: σ ′1|→σ ′3
and p: σ ′2|→σ ′4. In this case that information would be lost by our Petri net interpretation. It is possible to
remedy this situation by adding extra Petri net states to "remember" what the previous message states were.
In figure 5.2 we have added states t1, t2, t′1 and t′2 to accomplish precisely that.

We may formalize this construction as follows:

Let P be the set of procedures in the system. I (p) = < . . . , I pj , . . . > is the list of input types to p.
O(p) = < . . . , O pj , . . . > is a "copy" of I (p) representing the outputs. Σi is the set of message states of type
Xi . Ti ⊆ {(p, σ j , σ k)|σ j , σ k ∈Σi , p∈p̂ (σ j), âp(σ j) ∩σ k ≠ ∅} is the set of state transitions for messages of
type Xi . There are at most |P| × |Σi |

2 of these (and, in general, much less). Also, let ri = {(p, σ j)|——
— σ k such

that (p, σ j , σ k)∈Ti}. The ri represent the σ j that trigger some procedure p. We shall use the elements of
these sets as labels for the places and transitions of our Petri net.

Let our Petri net have places with labels in:

{I pj |p∈P, I pj in I (p)} ∪
{O pj |p∈P, O pj in O(p)} ∪
(

Xi ∈X
∪ Σi) ∪(

Xi ∈X
∪ ri)

and transitions with labels in:

P ∪(
Xi ∈X
∪ ri) ∪(

Xi ∈X
∪ Ti)

Note that we have both places and transitions labeled (p, σ j)∈ri , but they are in fact to be considered dis-
joint. We therefore have places representing message states, procedure inputs and outputs, and "state

5.1. Petri net representation and non-determinism 49

Figure 5.1 : A Petri net interpretation of message flow

reminders" to remember previous states. The transitions represent procedures and the acts of "grabbing"
and "releasing" messages. The "grabbing" and "releasing" allows us to capture the idea that procedure
inputs and outputs may correspond to several states.

The transitions have the following inputs and outputs:

1. a transition labeled p∈P has inputs I (p) and outputs O(p),

2. a transition labeled (p, σ j)∈ri has input σ j , and has outputs (p, σ j) and I pk where I pk = Xi

3. a transition labeled (p, σ j , σ k)∈Ti has inputs (p, σ j) and O pk where O pk = Xi , and has output σ k .

It is now clear from the construction that tokens may "travel" from message state σ j to state σ k via
procedure p only if there is a state transition labeled (p, σ j , σ k)∈Ti . This is the problem that we set out to
correct after our first attempt at a Petri net representation. In addition, procedure p may only fire if it has at
least one message available for each of its inputs. We hav e therefore succeeded in "welding" together the
finite automata of message flow by reclaiming the coordination that we "sacrificed" in chapter 4.

Note that the Petri net we have obtained is "conservative". (A Petri net is conservative if we can
assign weights to tokens according to their places so that the net weight of the entire net never changes.)
Since tokens represent message instances in certain states, this means that messages are "honestly" repre-
sented. We neither gain nor lose messages. To prove this, let us assign double the weight to tokens in the
places representing message states. Consider the transition firings in 1, 2 & 3 above. Transitions

5.1. Petri net representation and non-determinism 50

Figure 5.2 : An "improved" Petri net interpretation

representing procedures are trivially conservative since they all have the same number of inputs as outputs.
The "grabbing" and "releasing" transitions are also conservative since the former "splits" a message state
token into a procedure input token and a "reminder" token, and the latter "joins" a "reminder" token and a
procedure output token. In either case, the total weight of the tokens is the same before and after.

The net is no longer conservative if we add extra transitions to represent the creation and destruction
of messages. This may be done by adding one transition for each place representing an α state or an ω
state. Tokens could then be added at will to the α states, and removed from the ω states. Equivalently, we
may simply delete procedure input and output places corresponding to the creation or destruction of mes-
sages. Message states α and ω need not be explicitly represented in this case.

It is important to note the distinction between the Petri nets that we generate from the message flow
automata and the Petri nets that appear elsewhere in the literature. In SCOOP [Zism77] and in Taxis
[MyBW80, Barr82], Petri nets are used to control office activities. In these systems the Petri nets are
explicitly given by the person specifying an office procedure. In our model, however, the Petri net-like be-
haviour is a side-effect of simple one-step procedures that are only loosely connected. Furthermore, tokens
in SCOOP and Taxis represent flow of control rather than flow of message instances. In our model there is
a very close relationship between message flow and control flow since messages must be present for proce-
dures to be triggered. Similarly, in Information Control Nets [Elli79, Cook80], which strongly resemble
Petri nets in many ways, there is a conscious effort to distinguish between data flow and control flow.

5.1. Petri net representation and non-determinism 51

Here, since we are interested in automatically triggered procedures, we make a conscious effort to identify
the two.

Finally, the Petri nets that we generate would typically contain far more places (corresponding to
message states) than would be required to represent a procedure in SCOOP or Taxis. This is because we
wish to translate as much as possible the trigger conditions of a procedure (productions in SCOOP) into
distinct message states. In this way the Petri net itself rather than any code associated with its transitions
more accurately reflects the behaviour of the system in terms of message flow.

Petri nets are non-deterministic models. The non-determinism displayed in our Petri net model of
message flow has a variety of sources. Most of these sources are artefacts of our modeling assumptions
rather being inherent properties of the systems we are studying. We can identify four main sources of non-
determinism, or apparent non-determinism:

1. Coordination: we cannot necessarily predict what coordinating messages will arrive. Since the entire
input set must be available for a procedure to be triggered, we cannot predict on the basis of a single
message alone what will happen to it. Furthermore, a single message may be capable of simultane-
ously triggering several procedures at once if the right coordinating messages are present. Transi-
tions may therefore exist from message states to the inputs of several procedures.

2. User input: since this is, strictly speaking, outside of our system, we can at best model it as non-
determinism in the actions. Actions can thus be seen as "multi-valued" functions with a particular
value being chosen by the user. Procedure outputs can thus be mapped to any of sev eral new mes-
sage states.

3. Random number generators: applications are conceivable in which a pseudo-random number genera-
tor is used in procedure actions. (Such as selecting random lot numbers for testing purposes, or
selecting a random message recipient when several will do.)

4. State-space granularity: a message state-space that is "too coarse" will yield a model of message flow
that exhibits non-determinism that may not be observable in the real system. This is a consequence
of identifying messages that are actually different in significant ways. The following example is used
to explain how this may happen.

Suppose we have fiv e procedures handling customer records. p0 is used to create new records. p1

and p2 are fired weekly. p1 automatically increments the weeks overdue field. p2 automatically generates
messages to Simon if the account is more than 5 weeks overdue. p3 resets the weeks overdue field to zero
when payment is received. p4 may be used to retire a customer record. The account must not be overdue.
There are three states of interest. σ0, σ1 and σ2 represent records with an overdue field of 0 weeks, 1 to 5
weeks, and over 5 weeks, respectively. We hav e the following state transitions:

p0: α → σ0

p1: σ0 → σ1

p1: σ1 → {σ1, σ2}

p1: σ2 → σ2

p2: σ2 → σ2

p3: σ0 → σ0

p3: σ1 → σ0

p3: σ2 → σ0

p4: σ0 → ω

The next state function δ would map (σ1, p3) to σ0, for example. We represent this graphically in the (non-
deterministic) finite automaton of figure 5.3.

A regular expression representing the possible message paths is:

φ (α) = α p0 σ0 (p3 σ0 + p1 σ1 (p1 σ1) * (p3 σ0 + p1 σ2 (p1 σ2 + p2 σ2) * p3 σ0)) * p4 ω

5.1. Petri net representation and non-determinism 52

Figure 5.3 : Non-determinism in message flow

In this example it appears that p1 may fire indefinitely without ever causing the message to change
from state σ1 to state σ2. That is, in state σ1, the effect of firing p1 is not uniquely determined. This is not
so, of course, since after firing fiv e times, the message will reach state σ2. The apparent non-determinism
could be removed by creating separate state for messages whose weeks overdue fields have the values 1, 2,
3, 4 and 5.

Although it is easy to point this out in an example such as this one, it is quite another matter to do it
automatically. If, for example, we try to subdivide σ2 then we end up with an infinite number of states,
which will never do. (This problem was discussed in chapter four at the end of the section on obtaining
message states.) This is one of the costs of sacrificing information in order to make the problem of charac-
terizing message flow tractable.

Although non-determinism is a characteristic of these systems (specifically, when messages may trig-
ger multiple procedures), our means of modeling message behaviour may introduce non-determinism that is
not observable in reality. This apparent non-determinism may sometimes be eliminated by fine-tuning the
state-space. One must therefore exercise care in drawing conclusions about message behaviour where non-
determinism is concerned.

5.2. Blocking

A procedure is blocked if it waits indefinitely for one of its inputs to arrive. If the procedure has only
one input, then that simply means the procedure does not fire, but there may not necessarily be any far-
reaching effects. If, on the other hand, the procedure does have other inputs, then inputs that arrive to be
processed by that procedure may wait forever because of the blocking.

There may be several reasons for an input not to arrive:

1. The input is never created.

5.2. Blocking 53

This causes blocking when a coordinating message is uniquely determined, but does not, in fact,
exist. If, for example, an order is placed for some "feeblevetzers", and no such items exist, then a
procedure that attempts to match such an order with a corresponding inventory record will be
blocked.

2. The message states corresponding to the trigger conditions of the procedure are unreachable.

This may happen because the message reaches a dead end, or because it enters an infinite loop, or it
may simply be that all possible paths avoid the procedure in question.

3. The message states corresponding to the trigger conditions of the procedure are avoidable.

Messages of the input type in question may be able to reach the procedure to trigger it, but alternative
paths may avoid it entirely. Blocking may occur here if the message is uniquely determined by the
other inputs. An order form that is to be matched against an inventory record for "veeblefetzers" will
be unable to proceed if the inventory record happens to be routed along a path that avoids it. (We
assume that there is a unique inventory record for any giv en item.) If, on the other hand, an inventory
record is waiting to be matched against an order form, then it may not matter that the order form can
be routed along alternative paths -- there will be other orders for that item, so the procedure will not
necessarily be blocked.

4. There is a "blocking loop".

Tw o procedures are each waiting for a message that is stuck at the other. This is what is most com-
monly thought of when we speak of "deadlock" in systems where there is contention for resources.
The resources in our case are the messages.

5. The missing input is itself stuck at another procedure that is blocked.

The other procedure may be blocked for any of the first four reasons.

Note that in cases 1, 3, 4 and 5 we only have blocking if the awaited message is uniquely determined
by the other inputs. If it is not, then another message in the same state may eventually arrive, so we would
not have blocking. For example, since order forms would not be uniquely determined by any procedure
matching them against inventory forms, they could never be the cause of blocking in such a situation. In
case 2, we have blocking even if the awaited message is not uniquely determined since no message may
ev er reach the desired state.

Let us consider each of the cases in turn.

5.2.1. Message creation

The first case seems a degenerate one, and not so much a candidate for analysis. At any rate, one
may easily identify all the procedures that are responsible for creating messages of the awaited type. Possi-
bly this information can be useful in determining whether the awaited message has been created. If we can
determine that procedure p may not be supplied with some inputs for this reason, we say that p is
1-blocked, or 1-BL, for short.

Of course, if the procedure creating the messages is blocked, then no messages will be created. This
may be considered an instance of case 5, however.

5.2.2. Unreachable states

Cases 2 and 3 are quite similar in that we are interested specifically in the message paths. In case 2 it
is simply a matter of determining whether the message states corresponding to the trigger condition of a
procedure are reachable or not. This information is readily available from our work in chapter 4. The sym-
bolic messages only encounter reachable message states. Lists of reachable and unreachable states can thus
be compiled.

Exactly why a particular message state is not reachable is another matter. A characterization of mes-
sage flow may be useful in tracking down what is wrong, but it is well-nigh impossible to tell this without a
deeper understanding of what the procedures are supposed to do. There are, however, two readily identifi-
able situations that suggest that something is amiss:

5.2. Blocking 54

i) A message may hit a dead end.

A message that ends up at a location where no procedure is prepared to handle it at all is at a "dead
end". Without user intervention the message will stay there forever. A dead end may be the conse-
quence of incorrect routing. Naturally this will prevent a message from reaching waiting procedures.
Again, we may discover dead ends by our analysis of chapter 4. Symbolic messages terminate when
a message is destroyed, or it reaches a state that has been seen by some other symbolic message, or it
reaches a state that is a dead end.

ii) A message may enter an infinite loop.

This happens if a message reaches a set of mutually reachable states from which there is no escape.
States outside that set would not be reachable. In particular, ω could never be reached. This too may
be the result of incorrect routing. In a directed graph, a set of mutually reachable nodes is called a
dicomponent [BoMu76], or a strongly connected component [AhHU74]. Once a message leaves a
dicomponent it may (by definition) never return. If the dicomponent cannot be left, then the message
is in an infinite loop. A depth-first search algorithm can partition a directed graph into its dicompo-
nents in order O(max(n, e)), where n is the number of nodes and e is the number of edges [AhHU74].
To identify infinite loops, one need only determine whether there are any dicomponents with no arcs
leaving it for another dicomponent.

A procedure for which some input cannot arrive because the input message states are not reachable is
2-blocked, or 2-BL.

5.2.3. Avoidable states

In case 3 we are concerned with messages that may or may not arrive. A state may be reachable, but
not necessarily by all messages of the specified type. Blocking is possible if any giv en message is not guar-
anteed to reach at least one of the message states corresponding to the trigger condition, and that message is
uniquely determined by one of the other inputs. To determine the latter, one needs to know something more
about constraints on the messages. If, for example, we know that a certain field of a message is a key field,
and we have a procedure that matches that message against another via that key field, then we know that for
any matching input it is uniquely determined. An inventory record, for example, is uniquely determined by
any order form.

As to the matter of reachability, we may rephrase it as follows: Is it possible for messages of a given
type to avoid all of the message states corresponding to the trigger condition for a given procedure? In fig-
ure 5.2, message states σ1 and σ2 must be simultaneously avoidable for input i1 to be avoidable. In this
light it is clear that we may easily answer this question. One need simply traverse the directed graph of the
message state automata, starting at α , and avoiding all nodes representing message states that are inputs to
that procedure. If we can construct a path to ω that avoids all these nodes, then it is possible for a message
never to trigger the procedure in question. Clearly we need only traverse each edge of the graph at most
once, so the problem is solvable in order O(t), where t is the number of state transitions (i.e. the number of
edges in the graph). If all paths encounter at least one of the input states, then they are unavoidable (as a
set), and this cannot be a source of blocking.

If the reachable message states corresponding to some input of procedure p are all avoidable, then p
is 3-blocked, or 3-BL.

5.2.4. Deadlock

There is the possibility of deadlock, wherein two procedures are each waiting for a message held by
the other.

Suppose that procedure p has some input x that uniquely determines some other input y. Suppose
also that y may come to p from p′, and it uniquely determines some input z at p′. Finally suppose that z
comes to p′ from p′′, where z uniquely determines the same x of procedure p. We then have a potential
deadlock in which x waits at p for y, y waits for z at p′, and z waits for x at p′′.

5.2. Blocking 55

Let us suppose that we know for all procedures p when some input Xi ∈I (p) uniquely determines
some other input X j ∈I (p), and there is no other procedure p′ accepting messages of type Xi in the same
states as those accepted by p. Messages of type Xi must therefore wait at p for the arrival of some specific
message of type X j . A message of type Xi would uniquely determine one of type X j whenever we hav e
some trigger condition of the form xn = ym where x ∈dom(Xi), y∈dom(X j) and X jm is a key field of mes-
sages of type X j . We represent this information as a set of tuples:

AWAITS ⊆ {(p, Xi , X j)|p∈P, Xi , X j ∈X}

For (p, Xi , X j)∈AWAITS, we say that p: Xi → X j , or simply Xi → X j . Furthermore, we say that:

Xi
*

→ Xk

if we have a sequence:

Xi → X j → . . . → Xk

If p: Xi → X j , then messages of type Xi must await uniquely determined messages of type X j . Similarly,

if Xi
*

→ Xk , then messages of type Xi must await messages of type Xk , since the latter are uniquely deter-
mined by the former.

If Xi
*

→ X j , and X j
*

→ Xi , (i.e. Xi
*

→ Xi) then a message of type Xi aw aits a message of type X j and
vice versa. If the "two" messages of type Xi are in fact one and the same, then we have the distinct possi-
bility of deadlock. We need only find ourselves in the situation where messages of type Xi and X j are
aw aiting each other at precisely the same time. Since there is no other procedure that these messages can
trigger, then they will both wait forever, neither able to reach the other.

The set AWAITS of dependencies defines a directed graph with nodes in X and arcs in AWAITS.

Xi
*

→ Xi occurs precisely when there is a cycle in the directed graph. Cycles, of course, occur within the
dicomponents of the graph. As we mentioned earlier in this section, dicomponents can easily be deter-
mined by a standard algorithm such as in [AhHU74]. Any dicomponent with more than one node in it

would yield an instance of Xi
*

→ X j , and would therefore provide us with a potential deadlock.

If a procedure p can be blocked due to deadlock, then we say that p is 4-blocked or 4-BL.

5.2.5. Recursive blocking

Finally, blocking in one procedure may cause blocking in other procedures. If the first procedure is
preventing messages from moving on, then other procedures waiting for those messages will also be
blocked.

To detect recursive blocking we must find out not only which states are unreachable or avoidable, but
also which states are "blocking states". We call a message state a blocking state (BL-state) if every proce-
dure effecting a transition to that state is blocked, that is:

for each (p, σ , σ ′)∈Ti , p is blocked <==> σ ′ is a blocking state

Conversely, if every state leading to an input of some procedure p is a blocking state or is unreach-
able, then that procedure is 5-blocked, or 5-BL. This is a consequence of the fact that blocking states are a
variation on unreachable states -- they are unreachable only as a result of other blocking.

Similarly, if an input is uniquely determined, and the reachable, non-blocking states are all avoidable,
then the procedure is 6-blocked, or 6-BL. We therefore end up with a recursive form of blocking.

We may summarize potential blocking detection in the following algorithm to be run at all stations
("new" BL-states mentioned in step 8 come from steps 7 or 13, whichever is appropriate):

5.2. Blocking 56

1. for each procedure p do {
2. for each input X j ∈I (p) do {
3. if p: Xi → X j then
4. check if p is 3-BL
5. else check if p is 2-BL }

}
6. determine which p are 4-BL
7. identify all BL-states arising from the above
8. for each p not BL, such that (p, σ , σ ′)∈Ti where σ is a new BL-state do {
9. for each input X j ∈I (p) do {
10. if p: Xi → X j then
11. check if p is 6-BL
12. else check if p is 5-BL

}
}

13. identify all new BL-states arising from the new 5-BL or 6-BL procedures, if any
14. if there are no new BL states then STOP
15. else continue from step 8

Steps 4, 5, 6 and 7 are as described earlier in this section. Steps 11 and 12 are similar to 4 and 5.

The algorithm must terminate since there are only a finite number of procedures and a finite number
of states. As long as the algorithm continues to run, at least one new BL-state must be found at step 13.
Eventually we must run out of candidates for BL-states. Similarly, we eventually run out of candidates for
5-BL or 6-BL procedures.

The blocking that we uncover can be of interest in several ways. If a procedure p is 2-BL, then we
know that it cannot fire under normal circumstances. This means that (according to our analysis) there is at
least one input to the procedure for which there is no known path to the procedure. This may mean that p
is incorrect, in the sense that it has been created under the delusion that its inputs will arrive, or it may mean
that some incorrect procedure elsewhere is improperly routing messages, possibly to dead ends, or into
message loops. An examination of the message flow automaton will reveal how it is being routed, and pos-
sibly provide some insight into what the problem is.

If procedure p is 3-BL, then that means that a uniquely-determined input is (theoretically) capable of
avoiding p. An examination of the path that does (appear to) avoid p can provide insight into whether
there is truly a problem or not. Note that our analysis may have generated spurious paths, if there are state
transitions present in our model that for some reason never take place in the running system.

Procedure p and p′ are 4-BL if there is some theoretically possible configuration in which p and p′
are each preventing the progress of messages required by the other procedure. It remains for someone to
look more closely at that configuration to tell whether it is in fact reachable in the running system. If it is,
then we can either modify the procedures to avoid the blocking, or we can monitor the flow of these mes-
sages to detect blocking if it ever occurs.

Procedures that are 5-BL or 6-BL are only blocked if message inputs are stuck at a blocked proce-
dure. Naturally, if we solve the blocking at the other procedure, or if that blocking is not reflected in the
running system, then the 5-BL or 6-BL problem goes away.

5.3. Procedure loops

Infinite loops may be thought of as the opposite extreme to blocking and deadlock. In the case of
blocking we had problems with messages being "stuck" and nothing happening as a consequence. Here we
have problems with too much happening. Messages either loop endlessly, visiting the same stations and
procedures, or procedures are fired repeatedly, creating an undending stream of messages. We shall discuss
here the kind of infinite loops that may arise, and how we may go about detecting them. The different
kinds of loops all turn out to be variations on what we call "procedure loops". Our Petri net model provides
us with an analytical approach to detecting when procedure loops may occur.

5.3. Procedure loops 57

Our discussion of message loops earlier revealed that there may be situations in which messages
encounter the same states infinitely often. This may happen naturally with certain messages that are in fact
records expected to be handled repeatedly and indefinitely in more-or-less the same way. The inventory
records of a previous example are repeatedly processed by the same procedures whenever new order forms
arrive. This sort of message loop does not cause any problems since the inventory records must wait before
they are processed again. If, on the other hand, they do not have to wait, then we may have a message loop
that is unmoderated. Procedures will fire repeatedly, as fast as they possibly can until someone notices the
problem and repairs it.

Unmoderated message loops can be thought of as a special case of procedure loops. A procedure
loop exists when a given configuration of procedures and message instances provides the opportunity for
some procedures to fire infinitely often without human intervention. Every unmoderated message loop,
then, is clearly part of a procedure loop. Some procedure loops, however, may not contain any message
loop. Consider figure 5.4. Procedure p generates message x, which is consumed by procedure p′. p′ in
turn generates y, which triggers p. We hav e a procedure loop, but no message loop exists since all mes-
sages handled by p and p′ have finite paths.

Figure 5.4 : A procedure loop

Procedure loops depend not only on the presence of an unusual configuration of procedures, but also
on a corresponding configuration of messages to start the "chain-reaction". Our Petri net interpretation of
message flow can help us now. A Petri net can represent the interaction of procedures (up to the accuracy
of the message state-space partition), and a marking of that net can represent the current message states of
all the messages in the system. We limit our Petri net to those procedures that do not require any user
input. A procedure loop exists if the Petri net can be fired forever. This may happen if and only if there is
some transition firing sequence that may be repeated infinitely often [KaMi69]. Such a sequence must
yield a new marking that is "at least as big as" the initial marking, that is, the sequence must at least restore
all of the tokens used. If µ is a marking of the Petri net, and t1

. . . tn is a transition firing sequence yielding
new marking µ′, then t1

. . . tn can be repeated infinitely often if µ i ≤ µ′i for each i.

Karp and Miller in [KaMi69] describe a reachability tree which summarizes the markings reachable
from an initial marking µ. The nodes of the tree are markings and "pseudo-markings". We draw an arc
between two nodes if there is some transition that is enabled in the first marking, and results in the second
marking when it is fired. Whenever a marking is reached that is strictly greater than some previous mark-
ing, then the greater components are replaced by the symbol ω (not to be confused with the ω of message
flow model). Markings containing an ω are called pseudo-markings. Any node that is identical to any of
its ancestors is made a terminal node. This guarantees that the reachability tree be finite (see [Pete83] for a
readable proof of this result). We can tell if the Petri net can be fired forever by examining the reachability

5.3. Procedure loops 58

tree.

This result suggests that we may be able to discover procedure loops by generating a reachability tree
for the message flow Petri net. This may, in fact, be done for any giv en marking of the Petri net (i.e. any
given configuration of messages in the system). Our attempt is frustrated, however, by the fact that we wish
to determine whether procedure loops may exist for all possible markings. The reachability tree answers
the question: For a given marking, can this Petri net be fired forever? What we would like to know, how-
ev er, is: Does this Petri net have a marking from which it may be fired forever?

An obvious approach is to try to solve the problem symbolically. We may generate a reachability tree
starting with an initial marking consisting of variables rather than constants. If we ever reach a marking
that is at least as big as the initial marking, then we are done. No matter that we do not have specific values
for the initial marking since every reachable marking can simply be computed relative to the initial one.
Unfortunately this plan has a severe problem. Crucial to the algorithm for generating the reachability tree
is the criterion that the tree be finite. This is done by showing that any infinite sequence of transitions must
ev entually yield a marking that is at least as big as some ancestor. When we start with a symbolic initial
marking, the argument no longer holds. Since the initial marking may be arbitrarily large (though finite),
different components may grow and shrink without bound.

Although there may be a way to "patch" the reachability tree for symbolic markings, there is another
approach that easily yields a solution. Petri nets are equivalent to vector addition systems [KaMi69]. This
alternative representation encodes the transitions of a Petri net by using two matrices, A− and A+. Each
matrix has n rows and m columns, where n and m are the number of places and transitions, respectively.
The (i, j) entry of A− is −1 if place i is an input to transition t j and the (i, j) entry of A+ is +1 if place i is an
output to transition t j . For the net in figure 5.4, we have:

A− =

0

−1

−1

0

and A+ =

1

0

0

1

with p and p′ represented by the first and second columns of each matrix, respectively.

Transition t j is enabled in marking µ if µ + A−
j ≥ 0 (where A−

j is the jth column of A−). Suppose
A = A− + A+. In our example:

A =

1

−1

−1

1

If t j is enabled in µ, then the result of firing t j is µ′ = µ + Ai . Furthermore, if we have a sequence of tran-
sitions that can be fired from µ, and we represent that sequence by a column vector x where x j is the num-
ber of times t j is fired, then µ′ = µ + Ax is the marking that results after firing the sequence.

If we can find some non-negative integer column vector x ≠ 0 such that Ax ≥ 0, then
µ′ = µ + Ax > µ, so that any transition sequence represented by x can be fired indefinitely, starting from
some appropriate initial marking µ. Furthermore, we can always find a marking µ "big enough" that the
transition sequence represented by x can be fired at least once. The marking µ = −A− x, for example, guar-
antees this. Consequently, we hav e a procedure loop if and only if there is some x such that Ax ≥ 0. The
question only remains whether we can easily solve Ax ≥ 0. To this end we present the following theorem:

Theorem 5.1 : The problem, "Does a Petri net have a marking in which some transition sequence can be
fired infinitely often?" can be solved in polynomial time.

Proof : By reduction to linear programming. Let A be the matrix encoding the transitions of the Petri net,
as described above. Then the problem is solved if we can answer whether there exists a non-negative inte-
ger column vector x ≠ 0 such that Ax ≥ 0. Let A′ be the matrix obtained by adding a column of zeroes at
the left side of A, followed by a row of ones at the top of A. A′ is therefore an (n + 1) × (m + 1) matrix such
that:

5.3. Procedure loops 59

A′ij =

Aij

0

1

if i ≥ 1, j ≥ 1

if i ≥ 1, j = 1

if i = 0

Intuitively this corresponds to adding one place, p0, which is an output of every transition, and
adding one transition, t0, whose only output is p0. Consequently, p0 serves to count the total number of
transition firings.

Consider the linear programming problem A′ x′ ≥ (1, 0, . . . , 0)T where we seek to minimize the cost
function cx′, c = (1, 0, . . . , 0). (If v is a row-vector, then vT is the column-vector, v transpose.) The cost is
therefore x′0, the number of times that we need to fire t0.

The constraint A′ x′ ≥ (1, 0, . . . , 0)T guarantees that at least one transition fire, since each transition
places a token in p0. Furthermore, x′ = (1, 0, . . . , 0)T is a basic feasible solution, since transition t0 places
a token in p0. The cost of this solution is 1, since t0 fires once. This is therefore an upper bound on the
cost. The lower bound is 0, corresponding to a solution x′ that does not use t0. Such a solution would also
be a solution to our original problem, since it guarantees that we fire only transitions represented by A.

Furthermore, the solution is always either zero or one. Suppose that we have a solution such that
cx′ = x′0 lies between 0 and 1. (Such a solution would correspond to a "fractional" number of firings of t0.)
Consider x′ = x′′ + x′′′ where:

x′′i =

0

x′i
if i = 0

if i ≠ 0
and x′′′i =

x′0
0

if i = 0

if i ≠ 0

Now

A′ x′′ + A′ x′′′ ≥ (1, 0, . . . , 0)T

A′ x′′ ≥ (1, 0, . . . , 0)T − A′ x′′′
A′ x′′ ≥ (1 − x′0, 0, . . . , 0)T

Since (1 − x′0) > 0, there exists some k such that k(1 − x′0) > 1, so

A′ k x′′ ≥ (1, 0, . . . , 0)

but then c kx′′ = 0, a contradiction to our assumption that the minimum lay between 0 and 1.

The linear programming problem has a solution with cost 0 if and only if Ax ≥ 0 has a solution x ≠ 0.
This is easily seen by letting xi = x′i for all i > 0. Furthermore, x′ cannot be all zero else A′ x′ = 0, violat-
ing our constraint, A′ x′ ≥ (1, 0, . . . , 0)T . Hence x is a non-zero solution. Finally, x′ may be non-integral,
but linear programming always yields rational solutions. Since x′ is a rational solution, there exists a posi-
tive integer k such that kx′ is integer. Furthermore, if x′ is a solution, then clearly so is kx′. This then
yields an integer solution for x, if one exists.

Since linear programming is solvable in polynomial time in the size of the input (by the ellipsoid
method [PaSt82]), so is infinite fireability of Petri nets.

Since there is a polynomial-time solution to the procedure loop problem, one is left wondering if
there is not some way of making the reachability tree approach work. This would be especially desirable
since the linear programming solution destroys the intuition behind the problem: there is no notion of "frac-
tional procedure firings", though linear programming yields rational solutions. Note we do not have to
resort to integer-linear programming, since we are not really interested in minimizing anything. The cost
function that we construct is there mainly as a tool to count transition firings. In the end we merely wish to
find any solution, not some "optimal" one, in any sense. Since a rational solution yields an integer one, we
may exploit the polynomial nature of regular linear programming.

5.3. Procedure loops 60

5.4. Run-time monitoring

We hav e mentioned several times that our analysis suffers from our inability to exhaustively enumer-
ate message paths. Message states inevitably hide some of the differences between "similar" messages. We
would therefore like to dev elop some techniques that supplement our analysis by monitoring system behav-
iour at run-time.

Some problems are trivial to identify: dead ends are easily recognized if a message fails to satisfy
trigger conditions of any of the procedures it is currently exposed to. Similarly we may take note of non-
determinism whenever we find a message triggering two procedures simultaneously. (Of course, to do so
we would need to list all the procedures the message may trigger before firing any of them; afterwards it
may be too late.)

Less trivial to detect are message loops and procedure loops. This is of special concern since they
are examples of the system "gone wild". At best these loops needlessly consume cpu cycles. At worst they
may saturate the file system and the communications medium with endlessly generated messages. If we
can detect these loops when they occur, then we can arrest the damage they may inflict.

In the following two sections we suggest ways of tackling these problems at run-time. Unfortunately
(as we shall prove), there are no effective procedures for conclusively detecting message loops or procedure
loops, but we can nevertheless apply some techniques that will tell us where potential loops exist.

5.4.1. Message loops

Message loops are generally of concern if they are unmoderated, that is, if a message in the loop can
repeatedly trigger procedures without ever having to wait for user input or a coordinating message. Mes-
sage loops are therefore potentially detectable by keeping track for every given message after it has been
processed by a procedure whether it can immediately trigger another procedure or not. We call a sequence
of procedures that a message triggers without any waiting an unmoderated triggering sequence. If such a
sequence terminates (with the message waiting, or being destroyed) then the message is not in an unmoder-
ated loop.

In figure 5.5 we see that message x is in an unmoderated loop. Its unmoderated triggering sequence
is p p′ p Here, y and z are in loops, but each must wait for x or x′ before they can trigger p or p′,
respectively.

Figure 5.5 : An unmoderated message loop

5.4. Run-time monitoring 61

How long must an unmoderated triggering sequence get before we are guaranteed of having a loop?
Unfortunately this is the halting problem: we may model a Turing machine by using a list attribute of some
message to represent the (infinite) tape of the Turing machine, and a procedure to model the logic of the
Turing machine (since our actions are completely general). The trigger condition of the procedure would
be that the message not represent a halting state of the machine. The action would be to compute the next
state. If we could effectively tell whether messages are in a loop or not we would have a solution to the
halting problem. This problem is known to be undecidable [HoUl79].

The only reason that we can "detect" message loops and procedure loops is that we approximate sys-
tem behaviour with a simpler model. In fact, the procedure loops and message loops that we discover in
earlier sections may not (as we have pointed out) necessarily correspond to real loops.

When we attempt to detect loops at run-time we are faced with the same problem. If a message does
"stop" and wait when an unmoderated triggering sequence terminates, we know that we do not have a loop.
If, on the other hand, it does not stop, then we have no effective way of determining whether it will ever
stop or not.

At best, we may apply some rules that help us tell if something does appear to be going awry.
Clearly, a message loop requires that some message encounter at least one procedure infinitely often. Fur-
thermore, we can safely assume that most unmoderated triggering sequences will be quite short. If an
unmoderated triggering sequence for a given message instance does reveal that that message has encoun-
tered some procedure twice, then we will probably want to sound the alarm.

Immediately, an exception comes to mind: Consider our old example of a procedure that coordinates
order forms with inventory records. The inventory records don’t normally leave the station. When an order
form arrives, it gets processed, and leaves the station. The inventory record triggers the procedure once,
then waits for the next order form to arrive. Suppose that suddenly a large batch of order forms arrives. If
they are all for the same item, then the corresponding inventory record will repeatedly trigger the same pro-
cedure until all of the order forms are processed. The "message loop" terminates normally when the forms
are all gone.

This suggests that we may wish to keep track of the identities of the coordinating messages at each
procedure that we visit. If we visit the same procedure twice in an unmoderated triggering sequence, and
we see precisely the same messages as the input, then we may suspect an infinite loop. Although this
means that we would not catch the spurious loop of the example above, we would also miss more unusual
loops within which our coordinating messages are consumed and created.

It appears, therefore, that if we try to be too clever about our attempts to catch certain potential mes-
sage loops and not others, then we may end up outsmarting ourselves and miss ones that we should be
catching. This is not unexpected, since we know there can be no effective procedure to detect exactly the
infinite loops. Better, then, that we trap all unmoderated triggering sequences in which some procedure is
encountered twice (or some bounded number of times), and let the user decide whether there is a real prob-
lem or not. In cases where we are confident that there is no danger of an infinite loop, we may disable the
trap for that trigger sequence, or increase the bound on the number of iterations before we are notified.

5.4.2. Procedure loops and daemons

We hav e already identified message loops as special cases of procedure loops. Consequently we
know that the detection of procedure loops is also undecidable. We can at best hope to find some means of
detecting potential procedure loops. The apparent loops that we find may or may not correspond to true
infinite loops. By detecting the start of a potential loop, however, we may be able to prevent the damage
done by real loops.

At this point we should note that it is possible for a "moderated" message loop to exist that is part of
a procedure loop, without any messages being created or consumed within the loop. This means that our
technique of tracing unmoderated triggering sequences in order to detect message loops may miss certain
esoteric loops. Consider the Petri net in figure 5.6.

5.4. Run-time monitoring 62

Figure 5.6 : "Moderated" message loops

Messages x, y and z are clearly in message loops, since we can repeatedly fire p and p′. We therefore have
an unmoderated procedure loop (assume no user input or time conditions at p or p′). Note, however, that
after firing p, message x must wait at i2, since there will be no message at i1. p′ then fires, and y is moved
from i′2 to i′1, and z from i′1 to i1. y must then wait at p′. z then triggers p and then it must wait.

Procedures p and p′ both grab a pair of messages, and send the one that’s been waiting. Since ev ery
message must eventually wait, all unmoderated triggering sequences trivially terminate with length one.
This means that it is not enough to look at message loops alone. We must consider how procedures interact
by looking at all of the messages involved.

We may approach the problem by noting that procedures are event-driven. If the system is in a
"quiet" state, that is, no procedure is executing and none are enabled, then the only possible way for a pro-
cedure to be triggered is if some outside event occurs, namely some time condition is met, or some user
action takes place. We consequently only need to check the trigger conditions of procedures that may be
affected by the events that take place. A "chain of events" then occurs, with the actions of procedures caus-
ing new events (creating, modifying, mailing and destroying messages), until the system is quiet again. If a
"chain of events" is circular, howev er, then the system will never become quiet, and we have a procedure
loop.

We may approach this in a manner similar to the way we attempted to tackle message loops. When
an outside event takes place and some procedure is triggered, we must trace the events that follow, to make
sure that no procedure loop results. For each message that is created or modified or mailed, we must check
if it triggers another procedure. The "chain of events" is therefore really a tree, starting with the first proce-
dure triggered, and continuing along the paths of the messages handled by that and every subsequent proce-
dure.

In the example of figure 5.6, the tree branches with the firing of p, since there are two messages out-
put. x must wait, so that branch terminates. y triggers p′, which causes that branch to split into two. y
dies, and z continues. Although branches of the tree may die, there is always some branch that continues,
so the chain of events never terminates, and we have a procedure loop.

5.4. Run-time monitoring 63

Let us now introduce the notion of a "daemon". A daemon is created when an outside event occurs,
such as a user action. The event is given some unique identification (a time-stamp plus the nature of the
ev ent, for example). One copy of the daemon is assigned to each message affected by the event. We then
see if these messages in turn trigger yet other procedures. If they do, then each of the outputs of the trig-
gered procedure inherits the daemon. A daemon is thus "split" into copies whenever the chain of events
branches.

In addition, we keep track of the history of each child daemon by remembering the sequence of pro-
cedures and message instances that daemon has passed through. We call this a daemon path. In our exam-
ple we might start with:

(id , p)

This is inherited by x and y, so we obtain:

(id , p x)

(id , p y)

The former dies and the latter continues. We eventually get a daemon of the form:

(id , p y p′ z p x p′ y p . . .)

A daemon dies if the message it is currently associated with fails to trigger any new procedures. However,
as long as one child daemon exists with a given identification, we know that the chain of events starting
with the corresponding outside event has not yet terminated. Note that messages in message loops will be
associated with the same daemon for the duration of the loop. An unmoderated triggering sequence there-
fore corresponds exactly to the tail of a daemon path in which the messages do not change. In the example
of figure 5.5, the daemon path would be:

(id , p x p′ x p x p′ . . .)

corresponding to the unmoderated triggering sequence p p′ p p′

How may we use daemons to detect procedure loops? Again we are faced with the fact that daemons
cannot possibly tell us exactly when there is or is not a procedure loop, that problem being undecidable (as
it was for message loops). We note, however, that a procedure loop exists if and only if some daemon can
encounter at least one procedure infinitely often (clearly an unobservable event!). This suggests that we
may detect potential procedure loops simply by noting when a daemon encounters some procedure more
than once (or some bounded number of times). As with message loops, we could alert a user if we detect
such an occurrence.

We are tempted to try to refine this technique. For example, we note that for a procedure loop to
exist, the procedures must be able to indefinitely generate their own inputs. The obvious approach is to
note for each message that waits, which daemon (i.e. which original event) was responsible for its current
state. Whenever a daemon "dies" because the message it is associated with fails to trigger some procedure,
we would continue to "remember" the daemon identification for future reference. Then, whenever a proce-
dure is triggered, we can compare the daemon ids of the triggering message with those of the other mes-
sages. If all of the inputs are there as a result of some common original event, then we have some evidence
that there may be a procedure loop.

For example, when x waits at i2 in figure 5.6 after the first firing of procedure p, we remember the
daemon id . When message z ev entually catches up with it, we see that both x and z ultimately result from
the same initial event.

There are two problems with this attempt at refinement. The first is that such evidence, albeit
weighty, is not conclusive. If procedure p generates two messages that are consumed by procedure p′, then
the inputs to p′ will have the same daemon ids, though there is obviously no loop.

The second problem is that there is not necessarily a one-to-one correspondence between daemons
and procedure loops. One daemon could easily result in several independent procedure loops. More

5.4. Run-time monitoring 64

interestingly, two or more daemons may enter into a symbiotic relationship in which they feed message
inputs to each other. In this case, some (possibly all) procedures in the loop would be triggered by inputs
that do not have common daemon ids. To see this, consider the Petri net of figure 5.7.

Figure 5.7 : Symbiotic daemons

Here we have an initial marking of (1,0,0,1,1,0). Transitions t1 and t3 are enabled. Suppose that the tokens
(representing messages) in places p1 and p4 have daemon ids A and B, respectively. The transition firing
sequence t1 t2 t3 t4 will bring us back to the initial marking, and so we have a procedure loop with that
sequence repeated indefinitely.

Furthermore, the daemon for A remains alive, being associated with the token that travels between p1

and p2. During the entire sequence, either t1 or t2 is always enabled, so daemon A never dies. Only when
A splits at t1 does the child going to p6 die, since it fails to trigger t4. Similarly, daemon B never dies since
one of t3 or t4 is always enabled.

In all fairness, we should mention that this unusual situation is very sensitive to timing. Suppose that
A "got ahead of itself" and we had the firing sequence t1 t2 t1. At this point we would have the marking
(0,1,0,1,0,2). Neither t1 nor t2 would be enabled and daemon A would die entirely.

Daemon B could "take over" now by repeatedly firing the sequence t3 t4 t2 t1. Daemon symbiosis is
inherently unstable if the daemons truly rely on each other for input. One need simply "force" one daemon
to exhaust itself by triggering procedures until it dies (after all, it depends on the another daemon), and then
start up the other daemons again so they can "take over".

All of this may be entertaining, but it is not very encouraging for our search of procedure loops. This
counter-example shows that it is unreasonable to expect that procedure loops will be limited to the case
where inputs are ultimately generated by a single daemon only. We might attempt a further refinement by
remembering all the daemons of matching inputs and noting whether we see the same faces repeatedly. For
symbiosis to take place, some finite set of daemons must cooperate indefinitely. If we continue to see new
daemons with newer and newer time-stamps, then we can be sure that we are not in a loop. If there is a
procedure loop, however, then the finite set of daemons in the loop must have some newest daemon. That
daemon should then never encounter coordinating inputs resulting from yet newer events.

Again, however, this does not really help us, since a procedure loop exists even if other events occa-
sionally throw new messages into the works. In conclusion, then, the only means we have of recognizing
possible procedure loops is by noting the repetition of procedures in daemon paths. If the number of repeti-
tions exceeds some bound, then we may alert someone, and halt further procedure triggering until confir-
mation is received that it is alright to continue. If certain situations yield the spurious discovery of

5.4. Run-time monitoring 65

procedure loops, one could increase the bound on the allowable number of procedure repetitions within
daemons paths, or even disable the alerting facility entirely for procedures in that "loop".

5.5. Summary

In this chapter we have attempted to identify certain types of global behaviour that appear to be of
special interest.

To aid our analysis we have shown how to recover the coordination that was temporarily lost when
we obtained the message flow automata. These automata can be "joined together" to develop a Petri net
interpretation that reflects both the message flow exhibited by the automata, and the procedure interactions
that result from the coordination of messages in trigger conditions.

We discovered that non-determinism in our modeling effort has its sources not only in the systems
that we are trying to analyze, but also to some extent in the way that we abstract messages into message
states. The loss of information resulting from the grouping of messages into states can cause spurious non-
determinism to appear in our model.

Blocking was also shown to have many potential causes. Messages cannot reach procedures awaiting
them if there is no path to them. Procedures may also be blocked if there is a choice of paths, some of
which avoid the procedure. Another possibility is that two procedures may each be waiting for a message
that is stuck at the other. Finally, we hav e a recursive form of blocking in which messages cannot reach a
procedure because they are blocked somewhere else.

Procedure loops are a potentially dangerous situation. We show that procedure loops may be
detected by using our Petri net interpretation of message flow, and translating a matrix representation of our
Petri net into a linear programming problem. The solution to the linear programming problem tells us
whether or not there is a possibility of a procedure loop.

The information loss due to our use of message states makes the results of our analysis overly pes-
simistic in some cases. We would therefore like to be able to detect some problems at run time, indepen-
dently of our message flow analysis. The most serious potential problem is that of procedure loops, since
they can inflict much damage before they are detected by observation. We show how message loops and
procedure loops can be caught early on by tracing the chain of uninterrupted events. Although we cannot
conclusively prove that loops do or do not occur, we can at least identify what appears to be the start of one.

6. Concluding remarks

The aim of this research has been to develop techniques for formally describing and analyzing the
global behaviour of a message management system. We hav e been interested in systems that provide some
facility for its users to implement -- directly or indirectly -- procedures for automatically processing incom-
ing messages. The interaction of these automatic procedures can be sufficiently complex to make it very
difficult for anyone to tell how the system is behaving globally.

In our study of this problem, we have:

1. Developed a notation for a powerful model that captures the interactions of automatic procedures.
The model allows us to represent workstations, mailboxes, a variety of message types and instances,
and procedures that automatically process messages that match their trigger conditions.

2. We hav e developed the notion of message flow as a tool for characterizing global behaviour. Parti-
tioning message domains into states allows us to express message flow with alternating sequences of
message states and procedures. This yields a finite automaton interpretation of flow for individual
message types, and a Petri net interpretation for procedure interaction.

3. We hav e classified types of message behaviour in terms of deadlock, "dead ends", message loops and
procedure loops.

4. Algorithms for generating message state spaces, for collecting state transitions, and for detecting
deadlock and procedure loops are presented.

5. In addition, techniques for the run-time detection of procedure loops are developed.

6.1. Limitations and possible extensions

Although our model allows us to capture fairly general procedures, there are some inherent limita-
tions that make modeling of certain kinds of procedures difficult or awkward.

6.1.1. Procedure inputs

Inputs to procedures, for example, are limited to a fixed number of messages of a fixed set of mes-
sage types. Generally speaking, this assumption makes sense, since a procedure should be defined for a
reasonably well-defined set of inputs. One might, however, want to be able to define a procedure that han-
dles a variable number of order forms, for example. Presently one would have to do this by running a sin-
gle procedure a variable number of times. A set of order forms could not be processed at the same time
unless we defined several procedures (in our model) to handle each of the possible sizes of input sets. This
makes it difficult to represent the idea of "dossiers", or messages that are electronically "stapled together".

Conditional creation of outputs is also not easily represented. Presently one must split such a proce-
dure into two -- one to handle the situation in which the output is created, and the other to handle the case
in which it is not. This is easily seen by referring to our Petri net representation. Petri net transitions do
not conditionally output tokens. One must represent this behaviour with two (or more) transitions -- one for

6.1. Limitations and possible extensions 67

each possible way of producing outputs. Extensions to the model that would allow variable numbers of
inputs or conditional creation of outputs would therefore not help our Petri net interpretation since proce-
dures would then still have to be multiply represented.

A similar extension would be to allow a choice of input types. This too must presently be repre-
sented with different procedures to handle the different combinations of input types. This would be useful
if, for example, there are two different types of order forms and three kinds of inventory records. We would
like to distinguish between them, up to a point. There would be six possible combinations of orders and
inventory records, however, and each would have to be represented individually, if we wanted to maintain
the distinction.

6.1.2. Specialization

The above problem may be seen as one of representing specialization of message types. (This is
analogous to specialization in TAXIS. See chapter 2.) One message type would be the specialization of
another if it has at least the attributes of other, and then some. A specialized order form would contain
additional information, such as an area for special delivery instructions. (Another common notion of spe-
cialization is that of restricted attribute domains. Specialized messages would be limited to a restricted set
of values.) A possible way of extending the model to allow for specialization of message types would be to
represent the type and all its specializations as a single type with attributes that are the union of the
attributes of all the subtypes. Non-specialized messages would have null values for the attributes that do
not apply for that subtype. (No special delivery instructions for that order form.)

The advantage of this approach is that it solves the problem of representing procedures with a choice
of message types for some inputs, provided the choices are all specializations of the same basic type. At
that level we simply ignore the distinction. We can recapture that information at the level of partitioning
message domains into state spaces: we would reserve special message states for attributes with null values.
Groups of message states would therefore correspond exactly to given message subtypes. Procedures that
are triggered by messages of some subtypes only could be represented using trigger conditions insisting
that certain attributes have (or not have) null values.

6.1.3. Intelligent messages and objects

A far more interesting extension would be to allow for "intelligent messages" (as described in chapter
2). Currently we could only represent them by having procedures at all stations to capture the automatic
behaviour of those messages. This has the disadvantage of disguising the fact that this behaviour is associ-
ated with the message type rather than with the workstations.

The distinction between procedures and messages gets very fuzzy if we notice that intelligent mes-
sages resemble procedures with memory that can be mailed from station to station. An extension to the
model that would incorporate this idea, would probably replace procedures and messages by the more gen-
eral notion of an object (as described in chapter 2). Objects would have one area for their memory that
resembles the contents of a message, and another area that represents their behaviour. The behaviour could
be made up of a set of rules resembling the triggers and actions of procedures. The major difficulty in mod-
eling object interactions with Petri nets is that we no longer have a neat correspondence of message states
and inputs to places, message instances to tokens and procedures to transitions. Furthermore, it is not clear
that an object model helps our understanding of behaviour in message systems -- it is much more natural to
draw a distinction between concrete objects (forms and records represented by messages) and abstract pro-
cedures for handling them (represented by activities). Perhaps some sort of hybrid would be appropriate,
with some objects being identified as basically passive and message-like, and other being identified as more
procedure-like.

6.2. Evaluating changes

One would like to be able to use the model to automatically evaluate changes to the system.
Although we can characterize global behaviour before and after a change, we have not developed means for
comparing the characterizations. There are two good reasons for this. The first is that our modeling

6.2. Evaluating changes 68

technique necessarily loses information. By abstracting messages into sets of values called "message
states" we may mask precisely the effect of any changes. Secondly, even if we could rely on the message
states as accurately capturing the global behaviour of the system we are modeling, we cannot effectively
evaluate the change. Recall that our analysis results in a Petri net interpretation of procedure interactions.
We would therefore have two Petri nets, representing the system before and after our change. Petri net
equivalence is known to be an undecidable problem, however [Pete83].

On the other hand, Petri net equivalence is undecidable only for arbitrary nets. The changes that we
are likely to want to evaluate will undoubtedly involve only a few procedures and station at most. Conceiv-
ably, one may be able to evaluate certain classes of small changes that are intended to not disrupt the overall
behaviour of the system.

Recall that each message state represents messages at at most one location. Similarly procedures
reside at given workstations, and may only accept inputs belonging to that station or one of its mailboxes.
We may therefore partition our Petri net of message flow into a collection of subnets each representing the
procedure interactions at one station. The subnets would be linked by procedures at one station that mail
messages to other stations. Procedure output places at one station would therefore be linked to places of
message states at other stations.

To evaluate the global consequences for a small change at one station, or at a small number of sta-
tions, one need only consider the corresponding subnets. If the subnet behaviour is "substantially the same"
(i.e. no deadlocks or procedure loops are introduced), and if the connections between those subnets and oth-
ers are not interrupted, then we may be assured that the global behaviour will not be radically altered.

It may be possible to do some of this analysis automatically by generating the new subnets, checking
for deadlock and local procedure loops, and by checking the subnet interconnections. The final evaluation
should nevertheless be carried out manually since the Petri net and its subnets carry incomplete information
about global behaviour. The Petri net representation may, of course, be a useful aid in this analysis.

6.3. Message states

Another area for further investigation is the generalization of message states. Message states in this
thesis may be thought of as "hypercubes", where the control attribute domains are the dimensions of the
state-space. Since the attribute domains are partitioned into subdomains and ranges, the states are n-dimen-
sional "boxes" or "hypercubes" (or sets of hypercubes).

This choice of message state partition is, of course, not the only possible one. In fact, such message
states make it impossible to accurately represent trigger conditions involving more than one attribute. (If a
trigger condition is expressible in disjunctive normal form as a composition of simpler conditions, it is
these simpler conditions that we are interested in.) The hypercube message states are defined by conjunc-
tions of simple conditions each involving at most one attribute. Message states defined by simple condi-
tions that compare linear functions of attributes to some constant would define n-dimensional polyhedra
(we are specifically considering numeric attributes here). Conditions like xi + x j ≤ 500 would result in
message states with very different "shapes".

In our analysis of message state transitions, we are faced with two problems. The first is determining
what the image is of a given message state under the transformation defined by a procedure action and the
possible coordinating messages. The second problem is to decide what other message states may possibly
intersect that image. This will tell us what the state transitions are.

If we can solve these problems for differently shaped message states, then we can more accurately
represent the messages that satisfy trigger conditions, and therefore more honestly capture global behav-
iour.

6.4. Related work

There is a strong analogy between operating systems and office systems. Messages can alternatively
be viewed as resources for which procedures contend, or as jobs flowing from one processor (procedure) to
another. Flow expressions [Shaw78] and message transfer expressions [Ridd73], can be compared to the

6.4. Related work 69

message flow expressions in this thesis.

Flow expressions are regular expressions for describing the flow of entities such as control, jobs and
messages through programs, processes and other system software components. Lock symbols, and wait and
signal symbols are embedded in these regular expressions to provide mutual exclusion and synchronization
primitives. These expressions can then be shuffled together to indicate possible interleavings of the flows in
each expression. The entities in the shuffled expressions must obey the locks, waits and signals in a con-
current execution. The shuffle operator generates the valid interleavings.

An alternative to generating Petri nets from message flow expressions to recapture coordination may
be to introduce waits and signals. A message would generate a signal to indicate that it is in a certain state.
Procedures, on the other hand, would have waits associated with their trigger conditions, and signals associ-
ated with their actions to represent the possible input and output message states. A particular system state
could possibly be represented by a collection of signals, one for each message instance in the system. The
shuffle of message flow expressions with embedded waits and signals would then yield the possible inter-
leaved message flows with coordination.

Note that this approach would only work for single message instances of each type, since signals do
not "stack". Tw o instances siumltaneously in the same state would effectively generate only a single signal.
Since messages are not a limited, finite resource, it is not clear how useful waits and signals may be in rep-
resenting message state transitions.

A number of interesting problems can be approached with flow expressions, including certain dead-
lock problems. Further research into flow expressions is reported in [Gisc81].

6.5. Other topics

There are several closely related topics that are not addressed by this thesis, but are of considerable
interest.

One important issue is the design of systems that enable "naive" users to write their own automatic
message-handling procedures. What should the power of these procedures be? Should their power be lim-
ited in any special ways? Should the specification of the procedures be limited in such a way as to more
easily facilitate the analysis of global behaviour?

The systems described in chapter 2 suggest some trends, but these are still early approaches to the
problem. Most of these systems are prototypes, and have not proven themselves in the marketplace. The
assumptions inherent in our model may therefore not be truly representative of what is yet to come (as we
mentioned earlier in this chapter).

Another important issue is performance analysis. Queueing network analysis is a possible approach.
Messages can be thought of as jobs awaiting service at procedures. We do not, however, think of messages
as being queued for service. Rather, they are serviced when combinations of messages appear that satisfy
trigger conditions. Coordination does not traditionally have a place in queueing network models.

An approach that is perhaps more promising is that of stochastic Petri nets. They are used in
[Mall81] to model communications networks. Some of Malloy’s results may possibly carry over into the
message system domain.

Related to performance analysis is the issue of restructuring the system. We may wish to maintain
the current system behaviour, yet split a workstation into two to redistribute some of the load between sev-
eral workers. The message flow model may be of use in deciding what transformations will guarantee the
same overall behaviour. Rather than evaluating arbitrary changes, however, we would like to hav e some
guaranteed ways of redistributing the load without having any net change. By analogy, we would like to
have the same Petri net of system behaviour, but change the distribution of the subnets by moving some
message states and procedures to different stations.

Appendix A : Glossary

action :
the functional part of a procedure that modifies or routes a message. The action takes place when the
procedure’s trigger condition is satisfied. A(p) is the action of procedure p.

attribute :
a field of a message. A message domain is assumed to be the Cartesian product of the attribute
domains. The location and unique identifier of a message are two attributes of any message type. Xij

is the jth attribute of Xi . Xi0 and Xi1 are reserved for the identifier and location of a message,
respectively.

augmented Petri net :
a Petri net in which each transition is associated with an additional set of rules, productions or pre-
conditions and actions. See appendix C.

blocking :
A message is blocked if it is waiting for processing at a procedure that is blocked. A procedure is
blocked if one of its inputs will not arrive (i.e. the procedure cannot be triggered).

conflict :
can occur in a Petri net when transitions share inputs. See appendix C. Both transitions may be
enabled, but the firing of one may disable the other. Similarly, procedures that share input messages
may conflict.

contents :
the information contained in a message. The location is not usually considered part of the contents
of a message.

control attribute :
any message attribute that affects the routing of messages of that type. This includes selection
attributes, routing attributes, and any attribute that is used in the action of a procedure to compute the
new value of any control attribute.

daemon :
a formalism for identifying the chain of events that results from some user action, or some other out-
side event. It is characterized by a unique identifier, and a daemon path consisting of the alternating
sequence of procedures and messages encountered in the chain of events. Since one event may initi-
ate several other events, we allow daemons to split, with each child inheriting the daemon path up to
the splitting point. A daemon dies if no new event is triggered. A procedure loop exists if there are
daemons that never die.

dead end :
any location at which certain message instances get blocked because there is no procedure which it
can potentially trigger.

Appendix A : Glossary 71

dicomponent :
a set of mutually reachable nodes in a directed graph. See also condensation.

enabled transition :
a transition in a Petri Net that has at least one token in each input place. See appendix C.

input :
any of the messages modified by a procedure. The list of types of the inputs of procedure p is
I (p) = < I p1, . . . I pl p

>.

input tuple :
a tuple of message values satisfying the trigger condition of a procedure. Often represented by τ ,
where x = τ [j] is the jth message.

location :
a unique attribute of any message instance. Every message has a location which is either a mail box
or a station. The set of all locations is L. Every procedure is owned by a station and may be trig-
gered by and modify only messages at that station or one of its mail boxes. L(s) is the set of loca-
tions that procedures at s may access.

mail box :
the (temporary) location of a message that has been mailed from one station to another. Though
there may or may not be true mail boxes implemented in a message management system, this formal-
ism allows us to keep track of which messages have recently been mailed, and who their sender was.
mij is the mail box for messages sent from si to s j .

message :
synonymous with message instance.

message class :
an equivalence class of message instances that can potentially encounter the same sequences of loca-
tions and procedures. Message states are useful in identifying these classes.

message domain :
the set of possible message values for messages of a given message type. The message domain is
assumed to be the Cartesian product of the attribute domains. dom(Xi) is the domain of messages of
type Xi .

message flow expression :
a regular expression that describes the non-deterministic finite automaton obtained by partitioning
message domains into a state space and noting how procedures effect state transitions. A message
flow expression approximates the message paths taken by messages in the same message class.

message flow language :

the set of sequences of procedures a message x may potentially encounter, denoted by l̂ (x).

message instance :
a message instance is an entity that may take on values from a message domain. The value is a tuple
consisting of one value for each message attribute. To identify individual instances as they take on
these values, we insist that each instance have one attribute which is a unique identifier.

message loop :
a loop in the message path. If a message can attain the same value or value in the same equivalence
class (message class) then that portion of its path may possibly be repeated indefinitely.

message management system :
a computerized system for managing (in the sense of a database management system) structured mes-
sages and for automating some of the activities involving these messages.

message path :
the alternating sequence of message values and procedures a message instance encounters from the
time of its creation on.

Appendix A : Glossary 72

message state :
a block in a partitioned message domain. Two messages are deemed to be equivalent if they are in
the same block or "message state". A finite automaton can then be constructed with procedures map-
ping states to states. Ideally the partition is made so as to identify messages in the same message
class. Message states that work well in practice are obtained by partitioning the individual attribute
domains and considering the Cartesian product of blocks in the attribute partitions.

message type :
a descriptor for all messages chosen from the same message domain. The message type determines
the attributes, attribute domains and, consequently, the message domain. X = {X1, . . . XK } is the set
of all message types.

message value :
an element in the message domain. A possible value held by a message instance consisting of the
tuple of attribute values. The identifier, x[0], of a message instance may never change.

office activity :
a possibly long-term task to be accomplished in an office. An office activity is broken into individual
steps called office procedures, or simply "procedures".

office information system :
an integrated computer system that supports the functions and goals of an office.

office procedure :
same as procedure.

ownership :
indicates what station has control over mail-boxes, procedures and messages. Similar to location,
except that messages whose location is a mail box are owned by the station owning that mail box.

path :
See message path.

path equivalence :
Tw o message are path-equivalent if they hav e the same message flow language. That is, they both
may potentially encounter the same sequences of procedures, given the right coordinating messages.

Petri net :
a formalism for modeling process synchronization. See appendix C.

place :
a node representing a resource in a Petri net graph. See appendix C.

priority :
a partial ordering on the set of procedures. If two procedures are enabled for input tuples including a
common messages, then the "greater" procedure must fire first. This may disable the second proce-
dure.

procedure :
usually, synonymous with "office procedure". A procedure is a single step in a more complex office
activity. A procedure is assumed to be atomic in the sense that it either runs to completion or does
not run at all. Every procedure consists of inputs (the messages it is expected to transform), trigger
conditions on its inputs, and actions tranforming those messages if or when the procedure is trig-
gered. Since some procedures may not be completely algorithmic in nature, user input may be part
of the procedure’s actions. P is the set of all procedures; P(s) the set of procedures at station s.

procedure loop :
an execution loop that can occur if a collection of procedures is capable of generating its own input.
This is analogous to a Petri net that can fire forever See appendix C.

pseudo-station :
stations that represent the creation or destruction of messages. These are denoted by α and ω .

Appendix A : Glossary 73

reachability set :
the set of all markings of a Petri net that can be reached from a given marking by repeatedly firing
enabled transitions. See appendix C.

routing attribute :
any message attribute that is used in the action of a procedure to determine the next location of one of
the input messages.

selection attribute :
any message attribute that is used in the evaluation of the trigger condition of a procedure.

splitting :
an instance of dividing a collection of messages into groups that will follow different paths. This
may happen as a consequence of triggering different procedures or being routed in different direc-
tions.

splitting history :
part of a symbolic message. The splitting history distinguishes the children of an original symbolic
message by marking their position in a tree. The splitting histories can be examined to determine if
all of the children have returned.

state :
See message state and system state.

state transition :
a triple (p, σ , σ ′), such that procedure p can map some message in message state σ to state σ ′. Also
written p: σ |→σ ′.

station :
a location with control over a collection of mail boxes, procedures and messages. Abbreviation for
"workstation". S = {s1, . . . sN } is the set of all workstations.

symbolic message :
A symbolic message is used to gather reachable state transitions. It simultaneously represents a set
of message states, and it gathers transitions from those states as it travels from station to station. A
symbolic message splits when transitions lead to different stations.

system state :
the collection of all message instances and their current values at any giv en point in time.
D = < D1, . . . DK > is the system state where Di is the set of instances of type Xi .

token :
a dot in the place of a Petri net used to represent the availability of a resource. In a Petri net interpre-
tation of message flow, a token is used to denote the presence of a message. See appendix C.

transition :
a node representing a process in a Petri net graph. See appendix C.

trigger :
a precondition on the firing of a procedure. A set of input messages that satisfies the trigger must be
available. T (p) is the set of input tuples satisfying the trigger.

unmoderated triggering sequence :
a formalism for detecting message loops. Similar to a daemon path, except that it traces an unbroken
chain of events for only a single message. The triggering sequence is the sequence of procedures
encountered and triggered without any intermediate waiting. If such a sequence does not terminate,
then we have a message loop.

workstation :
synonymous with station.

Appendix B : Notation

A : A(p): T (p) →
l p

j=1
Π dom(I pj) is the action of procedure p, mapping the messages of the input tuples in

T (p) to their new values. The input tuple τ is mapped to the output tuple τ ′ = A(p)(τ). Individual
attribute mappings are represented by a jk , where a jk : τ |→τ ′[j][k]. A(p) may not change the identity,
τ [j][0] of any message τ [j], i.e. a j0 is always an identity mapping. Messages may only be routed to
valid locations: a j1(τ) ∈ R(s), where p∈P(s).

âp : âp(x) = {A(p)(τ)[j]|τ ∈T (p), Xi = I pj , x = τ [j]} is the set of values that x ∈dom(Xi) may be mapped
to after triggering p.

D : D = < D1, . . . DK > is the system state. Di⊆dom(Xi) is the set of values of all currently existing
message instances. There must be at most one message with any giv en identifier in Di (i.e.
V-x ∈Di , y∈Di , y[0] = x[0] => y = x). D(I) denotes Di , where I = Xi (this is useful when we do not
wish to explicitly refer to the subscript i of Xi).

I : I (p) = < I p1, . . . I pl p
>, where Ipi ∈X , is the list of message types of the inputs to procedure p. l p is

the number of inputs to p. One message of each type must be available to the procedure’s local
scope before the trigger condition can be evaluated.

K : The number of message types, i.e. the size of X .

L : L = S ∪ M is the set of all locations in the system, that is, all stations and mail trays. It is equal to
dom(Xi1) for all message types Xi . L+ = S+ ∪ M includes the pseudo-stations α and ω .
L(si) = {α , si} ∪ {mki |1 ≤ k ≤ N} represents the local scope of station si -- the locations from which
procedures at si may take messages. The L(s)\α) partition L.

l̂ :

l̂ (x) =

{pl̂ (x′)|p∈p̂ (x), x′∈âp(x)}

λ (the empty string)

if x1 ≠ ω and p̂ (x) ≠ ∅
otherwise

,

the message flow language of x, is the set of possible sequences of procedures that x may trigger.

Tw o messages x and y are path-equivalent l̂ (x) = l̂ (y). We write x˜ y. We extend l̂ to message
states in the obvious way.

M : M = {mij |1 ≤ i ≤ N , 1 ≤ j ≤ N} is the set of mail trays in the system, one for each pair of stations in
S. Messages with location mij have been sent from si to s j .

N : The number of stations, i.e. the size of S.

P : P = {pij |1 ≤ i ≤ N , 1 ≤ j ≤ ki} is the set of all procedures in the system. P(si) = {pij |1 ≤ j ≤ ki} is

the set of procedures at station si , so P =
N

i=1
∪ P(si). ki is the number of procedures at si .

Appendix B : Notation 75

p̂ : p̂ (x) = {p∈P|Xi ∈I (p), Xi = I pj , ——
— τ ∈T (p) such that x = τ [j]} is the set of procedures that may be

triggered by x ∈dom(Xi).

R : R(si) = {ω , si} ∪ {mik |1 ≤ k ≤ N} represents the valid locations to which procedures at si may route
messages.

S : S = {s1, . . . sN } is the set of workstations, or simply stations, in the system. S+ = S ∪ {α , ω }
includes the pseudo-stations α and ω representing creation and destruction of messages.

T : T (p)⊆
l p

j=1
Π dom(I pj) is the set of input tuples satisfying the trigger condition of p. In addition, if

τ ∈T (p), then V- j τ [j][1]∈L(si) and I pj = I pk // \\ j ≠ k => τ [j][0] ≠ τ [k][0] (the input messages must be
in the local scope of si and no message may play a duplicate role in the procedure). Tuple τ can thus
trigger p if τ ∈T (p) and for all I pj ∈I (p) τ [j]∈D(I pj) or τ [j] is created by p.

X : X = {X1, . . . XK } is the set of all message types. Xij is the jth attribute of type Xi .

dom(Xi) =
ni

j=0
Π dom(Xij) is the domain of messages of type Xi . There are ni + 1 attributes, including

identity and location. x ∈dom(Xi) is the current message value of a message instance of type Xi . x j

or x[j] is the jth attribute of message x. x0 is its identity and x1 is its current location. Its identity
never changes.

γ : γ (Xij , p) = ∪ {arg(akj)|I pk = Xi} represents the set of attributes that affect the computation of any
action in procedure p that modifies attribute Xij . It is used recursively to find the control attributes
of message type Xi .

ν : ν = (s, Θ, Σ, χ) is a symbolic message. It is used to collect all message state transitions for a given
message type starting at procedures at s. The state transitions are collected in Θ. Σ is the set of mes-
sages states currently represented by ν . Symbolic messages may split if a state has two transitions
leading in different directions. The splitting history χ identifies the children of the original symbolic
message as nodes of a tree.

π : a message state path, consisting of an alternating sequence of message states and procedures, for
example, π = α p1 σ1 p2

. . . σ n.

ρ :

ρ kp(j) =

{τ ∈T (p)|ak1(τ) = si} if j = 0

{τ ∈T (p)|ak1(τ) = mij} if 1 ≤ j ≤ N

{τ ∈T (p)|ak1(τ) = ω } if j = ω

represents the set of input tuples to procedure p for which the kth message is sent to station s j .
ρ kp(0) and ρ kp(ω) are used to represent the case where message k is not forwarded or is destroyed,
respectively.

σ : σ ⊆ dom(Xi) is a message state, being a block of a partition of dom(Xi). Also, if π is a message
state path, then σ (π) denotes the last state in the string π .

τ : τ p(σ) = {τ |τ ∈T (p), τ [k]∈σ } where σ ⊆dom(Xi) and Xi = I pk) is the set of input tuples triggering p
that contain some message in state σ . For simplicity, Xi and k are understood.

χ : χ is the splitting history of a symbolic message. It distinguishes the children of an original symbolic
message by marking their position in a tree. The history is a sequence of pairs (j, n) each represent-
ing a node in the tree. n is the number of branches at that node, and j is the branch followed by that
child. Splitting histories can be analyzed to tell if all the children of a symbolic message have termi-
nated and returned.

φ :

φ (σ) =

{σ pφ (σ ′)|p∈p̂ (σ), âp(σ) ∩σ ′ ≠ ∅}

ω
if σ ≠ ω and p̂ (σ) ≠ ∅
otherwise

Appendix B : Notation 76

represents the message paths taken by messages in state σ . The strings in φ (σ) are alternating

sequences of message states and procedures. They are reducible to l̂ (σ) by mapping the procedures
to the empty string.

>> : An optional priority may be placed on procedures to disambiguate conflict. If pi >> p j and both are
enabled for overlapping input tuples, then pi must fire first. If p j is still enabled after pi no longer
is, then it may fire.

Appendix C : Petri nets

Petri nets are formalisms for modeling process synchronization and information flow [Pete83]. A
Petri net is a directed bipartite graph. Nodes are either transitions, represented by bars, or places, repre-
sented by circles. Figure C.1 shows a simple Petri net.

Figure C.1 : A simple Petri net

Transitions usually represent processes and circles represent resources needed by the processes. We
can formally represent a Petri net as C = (P, T , I , O). P is the set of places and T is the set of transitions.
I and O are both mappings from T to 2P , the power set of P. I (t) is the set of inputs of transition t ∈T and
O(t) is the set of outputs of t. There is an edge from place p to transition t if p∈I (t) and there is an edge
from t to p if p∈O(t).

A marked Petri net is a Petri net with a number of tokens in each place, represented by black dots. A
marking µ, of a Petri net is a mapping from P to the non-negative integers. (µ is usually represented by an
n-vector, where P = {p1, . . . , pn} and T = {t1, . . . , tm}.) Tokens indicate the availability of a resource or the
completion of some event. The marking of a Petri net is its current "state". A marked Petri net is shown in

Appendix C : Petri nets 78

figure C.2.

µ = (1, 1, 0, 1, 1)

Figure C.2 : A marked Petri net

If there is a token in each input place of a transition t, then we say that t is enabled. That is, µ(p) > 0
for all p∈I (t). Transitions t1, t2, t4 and t5, are enabled in figure C.2.

A Petri net may change state by firing enabled transitions. When a transition is fired, the Petri net
acquires a new marking. If transition t is enabled in marking µ, then t may be fired, and the Petri net
changes state to δ (µ, t) = µ′, where

µ′(p) =

µ(p) − 1

µ(p) + 1

µ(p)

if p∈I (t) − O(t)

if p∈O(t) − I (t)

otherwise

This is represented graphically by removing a token from each input place of t and adding a token to
each output place of t. In figure C.3 we see the Petri net of figure C.2 after transition t1 has been fired.

Petri nets are capable of modeling parallelism, contention for resources and coordination of events.
In figure C.3, transitions t2 and t3 may fire in either order. After t1 fires, t2 and t3 may execute in parallel.
Transitions t4 and t5 compete for tokens in place p5. Furthermore, since neither returns tokens to p5, the
firing of either t4 or t5 may disable the other transition (if both are enabled, and there are only enough
tokens to fire one of them). Finally, we witness coordination in t4, which can only fire if there are tokens in
both p4 and p5. The parallel activities of t2 and t3 must both be completed.

Petri nets are typically non-deterministic in the sense that many firing sequences are possible from a
given marking. The reachability set R(µ, C) of a Petri net C is the set of all markings that can be reached
from a given marking µ by repeatedly firing enabled transitions. Since there may be a choice of enabled

Appendix C : Petri nets 79

µ′ = (0, 2, 1, 1, 1)

Figure C.3 : Transition t1 is fired

transitions at any point, R(µ, C) must be generated in a non-deterministic fashion. R(µ, C) may be infinite.
The Petri net in figure C.2 has an infinite reachability set since the firing sequence t1t3t5 may be repeated
indefinitely, causing the number of tokens in p2 to become unbounded. We can characterize R(µ, C) by
using a "reachability tree".

A reachability tree is a labelled, directed tree with some initial marking µ as its root. An arc (µ′, µ′′)
is labelled with transition t if t is enabled in µ′ and µ′′ is the result of firing t. The following two conven-
tions are used to guarantee that the tree be finite [KaMi69]:

1 if µ′′ is identical to one of its ancestors (along the path from µ), then µ′′ is made a terminal node
since the transition firing sequence along that path can be repeated indefinitely

2 if µ′′ is greater than or equal to one of its ancestors (element-by-element) then the elements that are
greater in µ′′ are represented by the symbol ω (representing an integer that may be come arbitrarily
large).

R(µ, C) is infinite if and only if the reachability tree contains the symbol ω .

An equivalent representation of a Petri net is as a vector addition system [KaMi69]. I and O are rep-
resented by matrices A− and A+ respectively, where the former consists of entries in { − 1, 0} and the latter
of entries in {0, 1}. Both are n by m matrices, with one column for each transition. The jth entry of col-
umn A+

i = 1, for example, if and only if p j ∈O(ti). The matrix A = A− + A+. For the Petri net of figure
C.1,

Appendix C : Petri nets 80

A =

−1

1

1

0

0

0

−1

0

1

0

0

0

−1

0

1

0

0

0

−1

−1

1

0

0

0

−1

Many ideas can now be easily expressed in matrix terms. Transition ti is enabled in marking µ if
µ + A−

i ≥ 0 (element-by-element). The result of firing ti is µ′ = µ + Ai . The result of firing a sequence of
transitions is µ′ = µ + Ax where x is an m-vector and xi is the (integral) number of times ti is fired in the
sequence.

Variations on Petri nets permit multiple arcs between pairs of places and transitions, inhibitor arcs
that inhibit the firing of a transition if the connected place contains any tokens, and others.

Petri nets with exactly one input and one output per transition are finite state machines. They can be
viewed as finite automata by considering the transitions as next-state functions mapping places to places. A
single token is needed to represent the initial state of the automaton. The strings accepted are the transition
firing sequences (or equivalently alternating sequences of transitions and places, since transitions have
unique outputs).

An augmented Petri net is a Petri net in which each transition is associated with an additional set of
rules, productions or preconditions and actions.

D. Bibliography and references

[AhHU74] A.V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algo-
rithms, Addison Wesley, 1974.

[AtBS79] G. Attardi, G. Barber and M. Simi, "Tow ards an Integrated Office Work Station", AI Labora-
tory, MIT, Cambridge, 1979.

[Barr82] John L. Barron, "Dialogue and Process Design for Interactive Information Systems using
Taxis", Proceedings ACM SIGOA, pp. 12-20, Philadelphia, June 1982.

[BoMu76] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North Holland, New York,
1976.

[BySJ82] Roy J. Byrd, Stephen E. Smith and Peter de Jong, "An Actor-Based Programming System",
Proceedings ACM SIGOA, pp. 67-78, Philadelphia, June 1982.

[BYTE81] Special issue on Smalltalk, Byte, 6(8), Aug 1981.

[Cheu79] C. Cheung, OFS -- A Distributed Office Form System with a Micro Relational System, M.Sc.
thesis, Department of Computer Science, University of Toronto, 1979.

[Cook80] C.L. Cook, "Streamlining Office Procedures -- an Analysis using the Information Control
Net Model", Proceedings of the NCC 1980, pp. 555-565.

[deBy80] Peter de Jong and Roy J. Byrd, "Intelligent Forms Creation in the System for Business Auto-
mation", IBM Research Report, RC 8529, Yorktown Heights, N.Y., 1980.

[deJo80] Peter de Jong, "The System for Business Automation: A Unified Application Development
System", Proceedings of IFIP Congress 80, pp. 469-474, Tokyo, 1980.

[deZl77] Peter de Jong and Moshe Zloof, "The System for Business Automation (SBA): Program-
ming Language", Communications of the ACM, 20(6), pp. 385-396, June 1977.

[Eile74] S. Eilenberg, Automata, Languages and Machines, Volume A, Academic Press, New York,
1974.

[Elli79] Clarence A. Ellis, "Information Control Nets", Proceedings of the ACM, Conference on Sim-
ulation, Measurement and Modification, Boulder, Colorado, pp. 225-240, Aug 1979.

[ElNu80] Clarence A. Ellis and Gary J. Nutt, "Computer Science and Office Information Systems",
ACM Computing Surveys, pp. 27-60, March 1980.

[FiHe80] R.E. Fikes and D.A. Henderson, "On Supporting the Use of Procedures in Office Work",
MIT workshop, Cambridge, 1980.

[Geha82] N.H. Gehani, "The Potential of Forms in Office Automation", IEEE Transactions on Com-
munications, 30(1), pp. 120-125, Jan 1982.

[Gibb79] Simon Gibbs, OFS: An Office Form System for a Network Architecture, M.Sc. thesis,
Department of Computer Science, University of Toronto, 1979.

D. Bibliography and references 82

[Ginz68] A. Ginzburg, Algebraic Theory of Automata, Academic Press, New York, 1968.

[Gisc81] Jay Gischer, "Shuffle Languages, Petri Nets, and Context-Sensitive Grammars", Communi-
cations of the ACM, 24(9), September 1981.

[HaKu80] M. Hammer and J.S. Kunin, "Design Principles of an Office Specification Language", Pro-
ceedings of the NCC, pp. 541-547, 1980.

[HaSi80] M. Hammer and M. Sirbu, "What is Office Automation?", Office Automation Conference,
Georgia, pp. 37-49, 1980.

[HeBa77] Carl Hewitt and H. Baker, "Laws for Communicating Parallel Processes", Information Pro-
cessing 77, ed. G. Gilchrist, pp. 987-992, North-Holland, 1977.

[Hewi77] Carl Hewitt, "Viewing Control Structures as Patterns of Passing Messages", Artificial Intelli-
gence, 8(3), pp. 323-364, June 1977.

[HHKW77] M. Hammer, W.G. Howe, V.J. Kruskal and I. Wladawsky, "A Very High Level Programming
Language for Data Processing Applications", Communications of the ACM, 20(11), pp.
832-840, Nov 1977.

[HMGT83] John Hogg, Murray Mazer, Stelios Gamvroulas and Dennis Tsichritzis, "Imail, an Intelligent
Mail System", IEEE Database Engineering, 6(3), pp. 36-42, Sept 1983.

[Hogg81] John Hogg, TLA: A System for Automating Form Procedures, M.Sc. thesis, Department of
Computer Science, University of Toronto, 1981

[Holt72] Richard C. Holt, "Some Deadlock Properties of Computer Systems", ACM Computing Sur-
veys, 4(3), pp. 179-196, September 1972.

[HoUl79] John E. Hopcroft and Jeffrey D. Ullman, Introduction to Automata Theory, Languages and
Computation, Addison-Wesley, 1979.

[KaMi69] R.M. Karp and R. Miller, "Parallel Program Schemata", J. Computer and Systems Science 3,
pp. 167-195, May 1969.

[LaTs80] Ivor Ladd and Dennis Tsichritzis, "An Office Form Model", Proceedings AFIPS NCC, Ana-
heim, California, pp. 533-540, 1980.

[Loch83] F. Lochovsky, "Improving Office Productivity: A Technology Perspective", Proceedings of
the IEEE, 71(4), pp. 512-518, April 1983.

[LuYa81] D. Luo and S.B. Yao, "Form Operation By Example", Proceedings of the ACM SIGMOD
Conference, Ann Arbor, pp. 212-223, 1981.

[Mall81] Michael Karl Malloy, On the Integration of Delay and Throughput Measures in Distributed
Processing Models, PhD dissertation, University of California, Los Angeles, 1981.

[MiYa77] R. Miller and C.K. Yap, "Formal Specification and Analysis of Loosely Connected Pro-
cesses", IBM Research Report #28917, Yorktown Heights, N.Y., 1977.

[Morg78] Howard L. Morgan, "Control and Tracking of Office Documents", MIDCON Proceedings,
Dallas, Texas, 1978.

[Morg80] Howard L. Morgan, "Research and Practice in Office Automation", Proceedings 1980 IFIP
Congress, pp. 783-789.

[MyBW80] John Mylopoulos, P.A. Bernstein and H.K.T. Wong, "A Language Facility for Designing
Interactive Database-Intensive Applications", ACM TODS, 5(2), pp. 185-207, June 1980.

[Nier81] Oscar M. Nierstrasz, Automatic Coordination and Processing of Electronic Forms in TLA,
M.Sc. thesis, Department of Computer Science, University of Toronto, 1981.

[NiMT83] Oscar M. Nierstrasz, John Mooney and Ken Twaites, "Using Objects to Implement Office
Procedures", CIPS conference proceedings, Ottawa, pp. 65-73, May 1983.

[PaSt82] Christos H. Papadimitriou and Kenneth Steiglitz, Combinatorial Optimization, Prentice-
Hall, 1982.

D. Bibliography and references 83

[Pete77] James L. Peterson, "Petri Nets", ACM Computing Surveys, 9(3), pp. 223-252, Sept 1977.

[Pete83] James L. Peterson, Petri Nets Theory and the Modeling of Systems, Prentice-Hall, 1983.

[Pott78] D. Potts, Specifications Language for Office Procedures Execution, Thesis, The Wharton
School, University of Pennsylvania, Philadelphia, 1978.

[Ridd73] William E. Riddle, "A Method for the Description and Analysis of Complex Software Sys-
tems", ACM SIGPLAN Notices, 3, pp. 133-136, Sept 1973.

[Ruli79] J.F. Rulifson, "Information Systems Management and Misapplied Methodologies", Inter-
office memo, XEROX PARC, March 21, 1979.

[Shaw78] Alan C. Shaw, "Software Descriptions with Flow Expressions", IEEE Transactions on Soft-
ware Engineering, SE-4(3), pp. 242-254, May 1978.

[SSKH82] M. Sirbu, S. Schoichet, J. Kunin and M. Hammer, "OAM: An Office Analysis Methodol-
ogy", in Office Automation Conference 1982 Digest, pp. 317-330, AFIPS, 1982.

[TRGN82] Dennis Tsichritzis, Fausto Rabitti, Simon Gibbs, Oscar M. Nierstrasz and John Hogg, "A
System for Managing Structured Messages", IEEE Transactions on Communications, 30(1),
pp. 66-73, January 1982.

[Tsic82] Dennis Tsichritzis, "Form Management", Communications of the ACM, pp. 453-478, July
1982.

[Zism77] M.D. Zisman, Representation, Specification and Automation of Office Procedures, PhD the-
sis, Wharton School, University of Pennsylvania, Philadelphia, 1977.

[Zloo80] Moshe M. Zloof, "A Language for Office and Business Automation", in Proceedings of the
AFIPS Office Automation Conference, March 1980.

