
66 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-30, NO. 1, JANUARY 1982

A System for Managing Structured Messages
DENNIS TSICHRITZIS, FAUSTO A. RABITTI, SIMON GIBBS, OSCAR NIERSTRASZ, AND JOHN HOGG

Abstract—Message systems send and receive messages but do not
manage the information the messages contain. Database management
systems manage the information of a global database but do not have a
notion of address. In this paper we outline a prototype system which
integrates the facilities of message systems and database management
systems. The system manages structured messages according to their
contents. The messages can be stored within a station and transferred
between stations. Information present in the messages can be queried
in a distributed manner. Message structure can also be exploited by
automatic procedures which recognize triggering conditions and
perform user specified actions.

I. INTRODUCTION

THE main purpose of message systems is to enable users to
send and receive messages [7]. In current message systems,

the messages remain uninterpreted (consisting of a header and
body) [8]. The header incorporates structural data needed to
identify and route the message. The body is a series of bytes
which the message system is supposed to deliver intact. The
main function of the system is to deliver each message to the
right destination quickly and without error. The system is not
expected to understand or care about what information the
message contains. This situation, however, presents a major
limitation on the flexibility and usefulness of the system. The
system delivers the messages but does not manage the mes­
sages. Other systems are supposed to manage the information
that the messages represent.

In order to enhance their functionality, message systems
have to interpret, at least partially, the messages which they
handle. In this way, users can query the message system to
find messages, to accumulate data that the messages contain
or to specify automatic processing and routing procedures
which make use of the contents of messages. To interpret
messages, the message systems need some guidance. Such
guidance can be provided by superimposing some structure
on the messages. This structure is known to the system and
used for the interpretation of the message.

It can be argued that the separation of the header and its
fields provides a certain structure which can be used for finding
and routing messages. We claim, however, that this structure
is not sufficient for two reasons. First, since the header struc­
ture is uniform for all messages, it cannot provide an adequate
interpretation of all messages. Second, since the header struc-

Manuscript received May 7,1981; revised November 7,1981.
D. Tsichritzis, S. Gibbs, 0. Nierstrasz, and J. Hogg are with the

Computer Systems Research Group, University of Toronto, Toronto,
Oiit., Canada.

F. A. Rabitti was with the Computer Systems Research Group, Uni­
versity of Toronto, Toronto, Ont., Canada. He is now with the In­
stitute Elaborazione Informazione, Pisa, Italy.

ture is fixed it cannot evolve with time; this may prove to be
inadequate as the system and its messages evolve. As an
alternative to this fixed structure, we propose that messages
be structurally typed. Thus, their structure can be declared
and used to guide their interpretation. The partial interpreta­
tion of the messages enables the system to manipulate the
message's contents, to find messages, and to route messages.
In this way, message systems will manage the information
that the messages contain.

We will outline an experimental message management
system. The system enables users to enter messages in stations
and send and receive messages through mailboxes. Users can
utilize the contents of the messages to:

1) file and retrieve messages within their own stations;
2) locate messages in the message management system; and
3) query and obtain data present in messages distributed in

a group of stations.
Users of our experimental system can also specify proce­

dures which automatically operate upon messages on the
basis of their contents. For instance, users can specify proce­
dures which:

1) coordinate messages, i.e., act only when a related set of
messages has been assembled;

2) modify and create messages;
3) file messages in dossiers; and
4) automatically forward received messages to other sta­

tions according to their contents.
The ability to manipulate messages and procedures is pro­

vided through a uniform user interface. This interface is based
upon specification by example [18] f Users find and query
messages by partially specifying the contents of the messages.
The automatic procedures are also specified by giving the
system some indication of the contents of the messages and
what the system should do with the messages.

These facilities provide an added-value message system
which treats messages according to their content and not as
"sealed letters." This approach encourages the integration of
message systems with office procedures performed on mes­
sages. For example, we can incorporate some of the functions
of a secretary (who opens the mail) as part of the message
system. In addition, systems with structurally typed messages
allow the integration of message and database facilities [2].
Such versatility is one of the goals of office automation
[5] .[14].

n . SYSTEM OVERVIEW

The overall structure of the system is shown in Fig. 1. The
system is composed of a number of logical units called stations
which may be grouped together on physical units called nodes.

M90:6778/82/0100.0066$00.75 © 1982 IEEE

TSICHRITZIS era/.: SYSTEM FOR MANAGING STRUCTURED MESSAGES 67

Contioi Node

commriccation patn

aaiaoase access

C communcalcns manager

N node manage'
Q rjuety manager
S station process

I interpreter process

Fig. 1. System architecture.

A control node is chosen to perform synchronization and con­
trol activities; the remaining nodes arc known as satellite
nodes. A star-configured network is a natural choice for such
an organization. In our prototype system each node is aPDP-
11/23 processor. These are connected by a high bandwidth
(6.4 Mbits/s) interprocessor communication link.

Each node supports a number of processes which are
either associated with the node itself or a particular station
on the node. The three per-node processes are as follows.

Communication manager acts as an intermediary when
data must be transferred between processes located on sepa­
rate nodes and hides the network from these processes.

Node manager is responsible for the activation of certain
processes on the node. In addition, on the control node, the
control node manager switches control information between
processes and responds to a variety of service requests.

Query manager performs global queries on a single node.
The two per-station processes are as follows.
Station process accepts commands from the user and

displays the results of performing these commands.
Interpreter process executes automatic procedures.
Each station contains a Station Database that is used to

store information associated with the station. The MRS re­
lational database management system [9] is used for all
Station Databases. For each message type (such as a meeting
announcement or a referee report) that is known by the sys­
tem there is a relation in each Station Database. Tuples within
such a relation correspond to instances of the message type.
Attributes of this relation correspond to the fields of the
message type.

IH. MANUAL MESSAGE OPERATIONS

We assume that each user of the system operates a single
station. Each station is characterized by a unique global iden­
tifier which distinguishes it from all other stations. Typically
a station process is activated when a user logs on by supplying
the station's identification and a password.

A user defines a message type by creating a display tem­
plate. Once the type has been defined users may create mes­
sage instances by "filling in" the template. During message
instance creation the system generates a globally unique
identifier for the new message instance. This identifier (known
as the message key) is permanently attached to the message
instance and cannot be modified. A message template and
message instance are shown in Figs. 2 and 3.

Besides creating messages a user may also copy messages.
If N copies are to be made of a particular message, then N
new tuples are inserted into the Station Database. The new
tuples are identical to the original except for their message
keys. These are assigned in such a manner as to maintain
global uniqueness.

Message creation and copying require inserting into the
Station Database. It is also possible for a station to update
tuples present in its Station Database. This operation is strictly
controlled to prevent one station from modifying the con­
tents of another's Station Database. Also there are constraints
upon the modification of particular message fields. There are
four types of message fields. The first three types are all
user supplied. Fields of the first type must be entered during
message creation and then cannot be modified. Fields of the
second type cannot be modified once entered. Fields of the
third type have no restrictions in terms of operations. The
fourth type is used for automatic fields (such as dates, "sig­
natures," message keys, and other functionally determined
fields) which are generated by the system when required and
cannot be modified by the user.

In order to modify or copy a previously created message
it is first necessary to retrieve the message that is to be oper­
ated upon. Retrieval is performed either selectively by specify­
ing a selection condition, or sequentially by message key. In
neither case need the user be aware of physical access paths
within the Station Database.

A station can mail messages from its Station Database to
another station. The transfer is actually performed in two
stages. During the first stage, known as the ship operation,
a message is deleted from the Station Database of the issuing
station and inserted into a special Mailbox database. The
Mailboxes are located on the control node; this allows mes­
sages to be sent to a disconnected satellite. Tuples in a Mail­
box are tagged with the identification of the destination
station. The second stage of message transfer, known as the
get operation, deletes the message from the Mailbox and in­
serts it into the Station Database of the issuing station. Thus a
station must explicitly request its mail.

Whenever a ship or get operation is performed, an entry is
appended to a log file. This file records the time of the opera­
tion as well as the source and destination stations and the key
of the message being transferred. When the key of a message

68

MEETING ANNOUNCEMENT

T o : .

From: -

KEY:

DATE:

Subject: .
Remarks:.

Meeting Date:.
Meeting Time: _

Meeting Location:.

Response: -

Fig. 2. A message template.

MEETING ANNOUNCEMENT

To: Simon—

From: Dennis.

KEY: 00004 00001

DATE: Aug 19. 1981.

Subject: office automation project—
Remarks: there are a few new features—

I would like to add to the system-

Meeting Date: Aug. 21. 1981-
Meeting Time: 10 am

Meeting Location: rm 211.

Response:.

Fig. 3. A message instance.

is known it is possible to locate the message by examining
the message's most recent log entry. Similarly, it is possible to
produce a trace of a message, that is, a list of the stations it
has visited. This is useful for the analysis of information
flow within the office [10]. Both of these operations, locate
and trace, can be issued by any station.

The Mailboxes, log file, and counters from which message
keys are dispensed are located at the control node. Thus
certain operations may be considered as requests for services
from the control node. Requests issued from processes run­
ning on a satellite node are served by the node manager of
the control node. (If the issuing process is on the control
node these operations are much simpler since no communica­
tion over the network is involved.) As an example, consider
message creation. In this case a station process sends a re­
quest for a new message key. The control node manager then
obtains a key from one of its counters, increments the
counter, and sends the key to the station process. As another
example, during the ship operation the control node manager
receives a message plus the identification of the destination
station. The control node manager then inserts the message,
now tagged with the destination, into a Mailbox and updates
the log file.

Two major constraints on messages and their operations
have been built into the system. First, all message instances
are unique (both logically and physically). Second, a par­
ticular station can only operate on messages within its Sta­
tion Database. The first constraint allows us to think of mes­
sages as objects, that is, they have a single location. The second
constraint allows us to talk of message "ownership"—a
message is owned (i.e., accessible) by the station in whose
Station Database it resides. These two constraints force the
system's electronic messages to behave like ordinary paper
messages. In this way the system is in some sense "predict-

IEEE TRANSACTIONS ON COMMUNICATIONS. VOL. COM-30, NO. J, JANUARY 1982

able," i.e., the operations of the system correspond to opera­
tions within the user's conceptual model of the office.

IV. MESSAGE QUERIES

Some office activities may require information which is
spread in messages over more than one station. In such cases
queries of information present in messages are useful. We
will discuss how a station user specifies a query and how the
result of a query is presented to the user. We will then present
an outline of the implementation of the processing of queries.

As the fust step in query specification the user selects the
message type on which the query is to be performed. The
message template is then displayed on the screen. A query
sketch is then created by partially filling the template. This
serves as an example and informs the system of the kinds of
messages qualifying for the query. This approach has been
used in FOBE.QBE, and OBE [11], [18], [19]. The user
may fill in zero or more fields of the template; values entered
into the fields are interpreted as selection conditions. For
example, if the user enters ">10" into a field, then all mes­
sages which satisfy the query will have values greater than 10
in this field. In addition to ">" one can also specify "<",
or "=", etc., as well as a pattern match. Such a condition is
known as a simple condition. For each field it is possible to
specify a field condition which is a disjunction of simple con­
ditions. The messages that satisfy the query will satisfy the
conjunction of all field conditions.

Once a query sketch has been created the user next speci­
fies the scope of the query. The allowable choices are as fol­
lows.

Local: in this case the query is performed on the Station
Database of the issuing station.

Croup: In this case the query is performed on all Station
Databases on the same node as the issuing station.

Global: In this case the query is performed on all databases
in the network (this includes the Mailboxes at the control
node).

Explicit: In this case the user lists the station names of
the Station Databases that are to be searched.

After specifying the scope the query can be processed.
The results are stored in a temporary database belonging
to the issuing station. This database contains message images
rather than messages; the messages themselves still reside in
their respective Station Databases. A message image differs
from a message in that it is temporary and read-only. It is
also invisible to any of the automated procedures that process
messages. The tuples from this temporary database may be
displayed by the station. When this occurs the identification
of the Station Database in which the message was found is
also indicated.

Each query involves a single message type. It is not pos­
sible to directly specify operations involving more than one
message type. However, arbitrarily complex multiple-type
joins may be performed by first individually constructing
complete temporary databases. The station user can then in­
voke a relational database system and express his query (now
over the local temporary database) using a high-level set-
oriented relational query language.

TSICHRITZIS etal: SYSTEM FOR MANAGING STRUCTURED MESSAGES 69

MEETING ANNOUNCEMENT

From: Fausto—

KEY:.

DATE:.

Subject: "office auiomstton*°distributed database*.
Remarks:

Meeting Date:.
Meeting Time:.

Meeting Location:.

Response:

Fig. 4. A query sketch.

An example of a query sketch is shown in Fig. 4. This
query will search for meeting announcements from "Fausto"
and on the subject "office automation" or "distributed data­
base." If this query is performed with a local scope then the
meeting announcements sent to the station user (or at least
residing at his station) will be searched. If this query is per­
formed with a global scope then all meeting announcements
in the system will be searched. By using the "Response" field
of this message type it is also possible to determine who has
replied to the meeting announcement.

V. QUERY PROCESSING

The strategy for processing a query is deteimined by the
scope of the query. Again we distinguish the following cases.

Local. In this case the query manager is not used and the
station process itself performs the query on its Station Data­
base.

Group: In this case the station process sends the query to
the query manager for the node. It then waits for an answer
from the query manager.

Global/Explicit: In this case the station process sends the
query to the control node manager. The control node manager
then passes the query to all query managers within the scope of
the query. This may include the query manager on the control
node. The various query managers perform the query on then-
node and send the answer back to the control node manager.
The control node manager assembles' the answers in a tem­
porary database and may also perform the query on the
Mailboxes if they are included in the query's scope. Finally,
the control node manager sends the temporary database to
the station process which issued the query.

Two problems arise in the processing of queries: concur­
rency control of interfering global or local operations and
control of data movement due to mailing operations. Two
algorithms, the centralized concurrency control algorithm and
the centralized movement control algorithm [13], are used to
circumvent these problems. These algorithms are concerned
with queries with a scope of more than one node.

The concurrency control problem [12] refers to the sched­
uling of operations which may conflict with queries. There are
two such sources of interference, local updates and other
queries. The system gives precedence to all local updates.
Stations are allowed to modify, create, or copy messages even
while queries are in progress. In addition, separate queries can
operate concurrently. However, in this case, scheduling of the
queries is required. For example, suppose data item X on

station / initially has value ax and then is changed, by a local
update operation, to value a2. Similarly, on station / the data
item Y is changed from bt to b2. If we have two queries <?<
and t72, it is possible that qx will see X as ax and Yasb2 while
t72 will see X as a2 and Y as bx. Whether we consider qt as
occurring before or after q2 this result is inconsistent with the
history of X and Y.

The source of this problem is that two distinct queries with
overlapping scopes may be performed in different orders on
different nodes. This problem can be solved by having the
control node manager serialize query requests. Each query,
when accepted by the control node manager, is given a pro­
gressive sequence number: Se^query). This is similar to the
use of timestamps [1] . However, since the Seq numbers are
generated from a single node any sequential ordering can be
used. Queries are sent by the control node manager to the
satellite nodes in this order. The network protocol ensures
that the order of queries sent from one node to another is
equal to the order received. Since there is a single query
manager at each node the queries are performed in this order,
i.e., that of their Seq numbers.

The movement of messages from one Station Database to
another (or for the Mailboxes) also introduces difficulties
with query processing. In particular, the following patho­
logical situations must be avoided.

The message M is missed by a query.
1) The query is performed on node / while the message

Mis on node/.
2) Message M is transferred to node i.
3) The query is performed on node /'.

The message M is counted twice.
1) The query is performed on node i where it sees the

message M.
2) Message M is transferred to node /.
3) The query is performed on node / where it again sees

the message M.
A query is first performed on the Station Databases by the

query managers and then on the Mailboxes by the control
node manager. However, for messages that are transferred it
is still necessary to keep track of the sequence number of
the last query that has seen the message. For this purpose
the following control relations are used to store the images
of messages that have been transferred:

SEE (message, station, has-seen, will-see)
HIDE (message, has-seen)
HIDE/ (message, has-seen)

The SEE relation is found on the control node and used
for messages transferred from a Mailbox to a Station Database.
Message images which appear in this relation will be found by
the control node manager even though they reside at the sta­
tion specified in the relation. The field will-see is the sequence
number of the next global query to be performed on the node
to which the message has been transferred.1 Has-seen is the

1 This interpretation of the control relations assumes that a particu­
lar message instance is transferred at most once during the processing of
any query. In the more general case the interpretation is not as simple;
however, the algorithms are unaffected [13].

70 '.EEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-30, NO. 1, JANUARY 1982

sequence number of the most recent query that has seen the
message (at any node). Any queries between has-seen and
will-see must see the message at the control node.

The relations HIDE and HIDEj are similar except that the
first is managed by the control node manager while HIDEj
is managed by the query manager of the ith node. Thus there
is a version of HIDEj on every node and a single HIDE on the
control node. The field has-seen is the sequence number of
the most recent query that has seen the message (at any
node). Message images which appear in these relations will be
overlooked even though the messages are present at the node.

Let (7/ be the last query performed on node i and qc the last
query performed at the control node. The message ship and
get operations are then

Procedure ship (message) /*from node /*/

At node / (performed by a station process):
if the message is in HIDEj then

obtain has-seen from HIDEj
delete the message from HIDEj

else
set has-seen equal to Seq(qt)

ft
send the message and has-seen to the control node
delete the message from the Station Database

At the control node (performed by the node manager):
insert the message into the Mailbox
if has-seen is greater than Seq(qc) then

insert (message, has-seen) into HIDE
ft

Procedure get (message) /* to node /*/

At the control node (performed by the node manager):
if the message is in HIDE then

obtain has-seen from HIDE
delete it from HIDE

else
set has-seen equal to Seq(qc)

ft
send the message and has-seen to node i
receive 5&7(t7,) from node i
if Seq(qi) is greater than has-seen then

insert (message, /, has-seen, Seq(q{) + 1)
into SEE

ft
delete the message from the Mailbox

At node / (performed by a station process):
insert the message into the Station Database
if has-seen is greater than Seq(qj) then

insert (message, has-seen) into HIDE)
fi

It is important to note that no query will be performed on the
Mailboxes in the midst of a get or ship operation. This is
because the single control node manager is responsible for

these three operations. Moreover, the control node manager
performs queries on the Mailboxes in the order of their Seq
numbers. Assuming that the above conventions are followed
by the get and ship operations, we may perform queries as
follows:

Procedure query (q)

At node i (performed by the query manager):
set Rj to the result of performing q on all

Station Databases on the node that
are within the scope of the query

subtract from Rj messages found in HIDEj
send Rj to the control node
delete from HIDEj all messages for which

has-seen equals Seq(q)

At the control node (performed by the node manager):
send q to each node within the scope of the query
/•
* serve other requests until all
* nodes have returned /?,•
•/
set Rc to the result of performing q on

the Mailboxes
subtract from Rc messages found in HIDE
add to Rc those messages in SEE which

satisfy q and for which
has-seen < Seq(ef) < will-see

add to Rc the results from the query managers
and send Rc to the issuing node

delete from HIDE all messages for which
has-seen equals Seq(q)

delete from SEE all messages for which
will-see equals Seq(q) + 1

VI. AUTOMATIC PROCEDURES

An automatic office procedure [4], [17] captures the
notion of an office worker collecting messages at his desk
until a "complete set" is compiled. He can then process the
messages and file them or send them on their way. By allow­
ing automatic procedures the messages become "active" [16]
and require less processing by the user.

The specification of an automatic procedure indicates to
the system that it should look for certain messages and act
on them appropriately. The specification is nonprocedural.
The user indicates what messages are to be collected, and
what is to be done with them. He does not specify how they
are to be collected or how the actions are to be performed.

Procedures are specified by completing sketches. Message
templates are used to create, display, and edit sketches;
however, a completed sketch is not a message instance. Sket­
ches specify both preconditions and actions. A precondition
sketch indicates a request to the system to "collect messages
which look like this." For example, specifying a pattern in
a field of a precondition sketch indicates to the system to
collect messages with a field matching the pattern. An action
sketch indicates a request to operate upon a message that has

TSICHRITZIS etal: SYSTEM FOR MANAGING STRUCTURED MESSAGES 71

already been collected. Simple action operations are to set a
field to some constant value or ship a message to a particular
station. Action sketches are triggered [3], [4], that is, exe­
cuted, when precondition sketches are matched.

Every message manipulated by an automatic procedure is
associated with a precondition sketch and an action sketch.
The message's action sketch indicates all insertions and up­
dates to the message. The values to be inserted may be con­
stants, e.g., an authorization, or copied from other fields, or
possibly returned from function calls to application programs.
We distinguish, therefore, between the original and the up­
dated value of any field. A field which must be copied to
another message may itself be modified, and the wrong value
must not be used. Furthermore, the function calls may access
both the original and updated values of fields. In fact, the
original value of a field will often be one of the arguments to
the function providing the updated value for the field.

Actions and preconditions may refer to information not
found on a message but nevertheless available to the user.
These are specified by pseudosketches of "pseudomessages."
For example, the restriction that a procedure process only
messages coming from a particular user is indicated on a
special origin pseudosketch. Messages may thus be processed
differently depending upon their point of origin. Alterna­
tively, the special value not may be used to indicate that
only messages coming from stations not listed in the pseudo-
sketch should be processed by the procedure. The special
value me is also available to indicate that messages must (or
must not) come from within the station's own Station Data­
base.

Actions which do not concern themselves with field values
are expressed via destination pseudosketches. A common
operation is to make a copy of the message being manipulated
by the procedure. The message copy to which the destination
pseudosketch applies is specified in the pseudosketch's
"COPY" field. Copy 0 is the message manipulated by the
procedure; copies that have been generated by the procedure
are referred to by successive integers. The operations available
are leave, ship, and dossier. The first of these requires no
argument and simply leaves the message in the Station Data­
base. The second operation transfers the message to the Mail­
box database. Finally, the third operation inserts the mes­
sage into a dossier. (A dossier is a named collection of mes­
sages, possibly of different types, that are somehow related.)
Both ship and dossier take an argument, the name of a station
or a dossier, respectively. This may be given as a simple con­
stant or a field or function value, just as in action sketches.

Each active automatic procedure has a working set of
messages. This is the set of messages manipulated by the
procedure and required to activate the procedure. Sketches
capture the constraints imposed on the messages in a working
set. We may distinguish two classes of such constraints. Selec­
tion constraints are constant field values, sets or ranges of
values, and relations between values of the fields on a single
message. Such constraints describe selection criteria on candi­
date messages for a working set. Join constraints are the
matching conditions between values of fields appearing on
different messages. These describe the join criteria between

MEETING ANNOUNCEMENT

To: John—

From:

KEY:.

DATE:.

Subject:.
Remarks:.

Meerinu Dale .
Meeting Time:.

Meeting Location:.

Response:

Fig. 5. The pre-holiday precondition sketch.

MEETING ANNOUNCEMENT

To:

From:

KEY:

DATE:.

Subject:
Remarks:

Meeting Date: -
Meeting Time: .

Meeting Location: _

Response: Sorry, on holiday till Aug. 30, sec (.Hear.

Fig. 6. The act-holiday action sketch.

messages within a working set and candidate messages for
inclusion in the set. One expects all the messages in a proce­
dure's working set to be linked by certain common field
values. Matching field values are therefore probably adequate
to model many applications of automatic procedures. How­
ever, simple inequality constraints may also be specified.

As a simple example suppose that the user "John" specifies
a procedure which replies to meeting announcements while
he is away on vacation. The procedure contains a precondi­
tion sketch named pre-holiday, an action sketch named act-
holiday, and two destination pseudosketches-^pO-fto/tday
and cpl-holiday. Fig. 5 shows the pre-holiday sketch; this
sketch allows only messages sent to "John" to trigger act-
holiday. This action sketch, shown in Fig. 6, simply causes
the value "Sorry, on holiday till Aug. 30, see Oscar" to be
entered in the "Response" field. The two destination pseudo-
sketches, cpO-holiday and cpl-holiday, are shown in Figs. 7
and 8. These are used to return the message and save a copy
in a dossier named "missed."

Vn. IMPLEMENTATION OF AUTOMATIC PROCEDURES

An automatic procedure in the system is specified by a
collection of sketches, and as such describes what is to be
done rather than how to do it. The sketch representation is
very convenient for the user but is unsuitable for processing.
The sketches must be parsed and translated for greater run­
time efficiency. During translation the legality of actions is
checked. The translator also determines whether a legal
order of action execution exists. No further runtime analysis
of sketches is performed.

Automatic procedures are meant to run regardless of
whether the user who specified the procedure has activated
his station. The station's automatic procedure interpreter may
be activated upon receipt of mail, message creation, or message

72 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-30. NO. t, JANUARY 1982

DESTINATION PSEUDO-SKETCH COPY

Operation: ship-
Where: 'pre.holidaj From-

Fig. 7. The cpO-hoUday destination pseudosketch.

DESTINATION PSEUDO-SKETCH

Operation: dourer—
Where: missed-

Fig. 8. The cpl-holiday destination pseudosketch.

modification. Message creation and modification are per­
formed by the station process and it may then activate the
interpreter. In the case of a mail operation, however, it is
the node manager which activates the interpreter. Only one
interpreter may run at any time for a given station. In this
way we eliminate interference problems between interpreters.
Once activated, the interpreter communicates with the control
node manager, requesting images of messages in the station's
Mailbox. These images are maintained in a temporary data­
base of partially completed working sets and are available only
to the interpreter.

We cannot predict when the messages required to trigger a
message procedure may arrive. The processing must, therefore,
of necessity be broken into distinct parts. The specification
in terms of sketches contains information of four basic kinds:
selection constraints, join constraints, duplicate message type
constraints (so that one message is not used to match two sket­
ches within a single working set), and actions. The execution
of a automatic procedure makes use of these- four kinds of
information at different stages.

Suppose that the interpreter is notified of the availability
of a message for automatic processing. It first checks whether
the message matches the selection constraints of any pre­
condition sketch for that message type. If this is successful
and an origin pseudosketch is applicable then the origin
restriction condition is tested. If a message does not match
the selection constraints of any precondition sketch, then the
interpreter assumes that no procedure is prepared to handle
it. Suppose that a message does match the selection constraints
of one or more precondition sketches. The menage is then a
candidate for inclusion in the working set for some procedure.
At this point a graph searching algorithm [6] is applied to
the current working sets. This algorithm determines whether a
message may be added by checking join constraints between
the message and the working sets.

It is immaterial whether or not a working set is complete
since there is always the possibility that at some later time the
missing messages may. arrive. Even if messages arrive together,
the processing of the messages is sequential. The system treats
each message individually. A locking algorithm guarantees that
two messages cannot be processed at once at a given station.
Generally, however, messages will not arrive simultaneously.
One can expect a considerable delay between the establish­
ment of selection and join constraints.

Once a working set has been completed the action sketches
are executed. Actions are uninterruptible and run to comple­
tion. The final step in automatic procedure processing is to

execute the destination pseudosketches. This 'may result in
the routing of messages within the working set to other sta­
tions and the triggering of procedures at these stations.

The following is an algorithmic summary of the steps
followed by an interpreter process:

Procedure Interpret()

while a message is available for processing do
obtain an image of the message (either

from the Mailbox or Station Database)
if origin and selection constraints are

satisfied for some procedure
then

check join constraints
if a working set is completed then

if all messages in the working
set are still available

then
obtain the real messages
execute action sketches
execute pseudodestination

sketches
fi
cleanup

fi
fi

od

VIII. CONCLUDING REMARKS

In this paper we have outlined an experimental system
which manages messages. The system manages messages as
typed objects which can be sent from station to station. In
addition the system enables the user to exploit any message
structure to find the messages and to query the information
they contain. Finally, the system permits the specification of
automatic procedures which are triggered by the presence of
messages and manipulate the messages.

The methods of specification of queries, preconditions and
actions are similar in our system, i.e., by example. The opera­
tions specified, however, are quite different. A query is serv­
iced as soon as it is specified. A precondition results in the
system continuously looking for the specified messages so it
can trigger a procedure. Finally, an action indicates to the
system what it should do with the messages.

Our prototype system differs from most message systems.
It uses heavily the informal structure present in messages. It
manipulates messages according to content. It handles data
inherent in messages in a uniform manner with the message
operations. Messages reside in databases. There is a natural
way in which information present in them can be tapped for
further processing. In this way message processing and data
processing can be completely integrated.

Our prototype system differs from most distributed data­
base systems. Most distributed databases assume a complete
logical integration of data. Data are distributed physically
mainly for performance reasons. In our system there is a logi­
cal partitioning of the global database into Station Databases.
The concepts of locality and ownership of messages are very

TSICHRITZIS et at: SYSTEM FOR MANAGING STRUCTURED MESSAGES 73

important to the processing of queries. The uniqueness of
messages implies that a message is always located at a single
station, so there is no replication of data at different stations.
The location of a message may also change dynamically, so
it is not possible to predict a priori where a message resides.
This is in contrast to other distributed database systems
which often contain much information about the distribution
of data items. Finally, updates are restricted to the station at
which a message temporarily resides. In this way updates from
different stations do not conflict.

Our system is operational [IS]; however, changes are being
made to the routines for automatic procedure activation and
message type definition. We are hoping to expand the system's
capabilities in several important directions. First, we hope to
integrate more completely the word processing and message
capabilities of the system. Second, we are working on multi­
media interfaces to the system both for the specification of
operations and the presentation of messages. Finally, we are
working on the requirements specification, the modeling and
analysis of such systems.

Dennis Tsichritzis received the Diploma in engineering from the National
Technical University of Athens, Athens, Greece, in 1965, and the M.A.
and Ph.D. degrees from Princeton University, Princeton. NJ, both in
computer science, in 1967 and 1968, respectively.

He has widely published in different areas of computer science in­
cluding operating systems and database management systems. His current
interests are in the area of database management systems, data models,
and office information systems. He is presently with the "omputer
Systems Research Group, University of Toronto. Toronto, Ont., Canada.

Fausto A. Rabitti received the Doctor's degree
in computer science from the University of Pisa,
Pisa. Italy, in 1976.

After receiving his doctorate he obtained a
fellowship at the Information Processing Institute
(IEI) of Pisa for research on centralized/dis­
tributed operating systems and computer com­
munication systems. Since 1980 he has been at
the Computer Systems Research Group of the

J University of Toronto, Toronto, Ont., Canada,
with a two-year fellowship for research in the

field of distributed databases with applications to office information
systems.

REFERENCES
[1] P. Bernstein and N. Goodman. "Fundamental algorithms for

concurrency control in distributed database systems." Comput.
Corp. Amer., Tech. Rep. CCA-80-05, 1980.

(2) M. S. Broos, S. W. Galley, and A. Vezza. Data-Based Message
Service—User's Manual. Cambridge, MA: M.I.T. Press, 1978.

[3] J. M. Chang and S. K. Chang, "Database altering techniques," in
SIGMOD Proc, Los Angeles, CA. 1980.

(4] P. De Jong,' "The system for business automation (SBA): A unified
application development system." in Proc. 1980 IFIP Congr.,
Tokyo, Melbourne, pp. 469-474.

[5] C. Ellis and G. Nutt, "Computer science and office automation,"
Comput. Surveys, vol. 12, no. I, pp. 27-60. 1980.

(6) J. Hogg, O. Nierstrasz, and D. Tsichritzis, "Form procedures,"
submitted for publication.

[71 IFIP TC-6 Int. Symp. Comput. Message Syst.. Ottawa. Canada.
1981.

[8] P. Kirstein, "New text and message services," in Proc. 1980 IFIP
Congr., Tokyo, Melbourne, pp. 521-535.

19) J. Komatowski, "The MRS user's manual." Comput. Syst. Res.
Group. Univ. Toronto. 1979.

[10] I. Ladd and D. Tsichritzis, "An office form flow model," in
Proc. NCC. Anaheim, CA. 1980.

[II] D. Luo and S. Yao, "Form operation by example—A language for
office information processing," in SIGMOD Proc, Ann Arbor,
Ml. 1981.

[12] C. Papadimitriou. "Serializability of concurrent database up­
dates," J. Ass. Comput. Mach., vol. 26, no. 4. pp. 631-653, 1979.

[13] F. Rabini, "Distributed query facilities for office information
systems." Univ. Toronto, Tech. Rep. CSRG-127, pp. 201-234.
1981.

[14] D. Tsichritzis. "OFS: An integrated form management system." in
Proc. 1980 VLDB Conf.. Montreal, pp. 161-165.

JI5] . "Omega Alpha," Univ. Toronto. Tech. Rep. CSRG-127, 1981.
[16] J. Vittal, "Active message processing: Messages as messengers,"

presented at the IFIP TC-6 Int. Symp. Comput. Message Syst., Ottawa,
Canada. 1981.

[17] M. Zisman, "Representation, specification and automation of office
procedures," Ph.D. dissertation, Wharton School, Univ.
Pennsylvania, 1977.

[18] M. Zloof, "Query by example: A data base language," IBM Syst.
J., vol. 16, no. 4, pp. 324-343, 1977.

119] . "A language for office and business automation," IBM T. J.
Watson Res. Center, Tech. Rep. RC8091. 1980.

Simon Gibbs received the B.Sc. degree in
physics from the University of Alberta.
Edmonton, Alta., Canada, in 1976, the M.Sc.
degree in physics from McGill University,
Montreal, P. Q., Canada, in 1978, and the M.Sc.
degree in computer science from the University
of Toronto, Toronto, Ont., Canada, in 1979.

Since 1979, he has been with the Computer
Systems Research Group, University of Toronto,
and is currently working towards the Ph.D.
degree. His research interests include data

models and their use within office information systems.

Oscar Nierstrasz was bom in The Netherlands in 1957. He has spent
most of his life in Canada. He developed an early enthusiasm for
computers at his high school in Toronto, but he spent his undergraduate
years studying pure mathematics and combinatorics at the University of
Waterloo, Waterloo, Ont., Canada. After coming to the University of
Toronto, Toronto, Ont., he became interested in computers in automation,
writing his Master's thesis on a system for writing automatically triggered
office procedures. He is currently doing his doctoral research at Toronto in
modeling and analysis of information flow in an electronic office network.

John Hogg received the B.Sc. and M.Sc. degrees
in computer science from the University of
Toronto, Toronto, Ont., Canada, in 1978 and
1981. respectively.

He is presently working toward the Ph.D.
degree at the University of Toronto. His interests
include office automation and local networks. /"•*--W

J j $ Ftiii

