
10. Software Architecture

Introduction to Software Engineering

Andrea Caracciolo

Adapted from slides by Oscar Nierstrasz and Mircea Lungu

Roadmap

2

> What is Software Architecture?
> Coupling and Cohesion
> Architectural styles
> UML diagrams for architectures

Roadmap

3

> What is Software Architecture?
> Coupling and Cohesion
> Architectural styles
> UML diagrams for architectures

4

Example Architecture

Probo

5

Batch Process

ST image

Parser

reasoner

tool
handler

report
generator

Probo

6

Rest

CLI

Client/Server

Client Server

7

Rest

CLI

Integration - Analysis as service

broker

Java

plugin

PHP

Java

plugin

8

Rest

CLI

Integration - Analysis as service

broker

Java

plugin

PHP

Java

plugin

Java

plugin

9

CLI

Scalability

Tomcat

CLI

Rules

Rest

Probo

Probo

What is Software Architecture?

10

Architecture: The set of design decisions
about any system (or subsystem) that keeps its
implementors and maintainers from exercising
needless creativity.

What is Software Architecture?

11

design decisions resulting in element properties
that are not visible (make no difference outside
the element) are non-architectural.

12

What is Software Architecture?

The architecture of a system consists of:
1. the structure(s) of its parts

e.g. design-time, test-time, and run-time software and hardware parts

2. the externally visible properties of those parts
e.g. provided services, performance, fault handling, shared resource usage

3. the relationships and constraints between them
 — Bass & Clements, IEEE 1471

Rationale: Design Decisions

13

architectural decisions are ones that permit a system to
meet its quality attribute and behavioral requirements.

Rationale: Design Decisions

14

http://en.wikipedia.org/wiki/Zachman_Framework

http://en.wikipedia.org/wiki/Zachman_Framework

Code

Non-Architectural Design

Architectural Design

Business Process

17

Non-Architectural Design

Objects, Functions, DB tables, ..

18

Architectural Design

IT System

Components, Processes, .. - performance
- security
- maintainability
…

19

Architectural design: WHO

• identify actors (human/not human)
• what kind of information do they need/produce?

20

Architectural design: WHO

Tomcat

Rules

Probo

Probo

21

Architectural design: WHAT

• domain abstraction model

22

Architectural design: WHAT

Rule

Violation

Predicate

23

Architectural design: HOW / WHEN

• How/When is information generated, processed
and transmitted (activities and information flows)

24

Architectural design: HOW / WHEN

tool
handler

~ T < 1min * MLOC

~ T < 10min

25

Architectural design: WHERE

• Where actors, sources and sinks are physically
and logically located

- tech. infrastructure
- network topology
- …

26

Rest

CLI

Architectural design: WHO / WHERE

Analysis serverReporting clients

HTTP
Json/XML

HTTP
HTML

Describing Software Architecture

27

Architecture

View Style

Viewpoint

ADL

represented
through

conforms to

instance of

notation

Variable range of complexity
(structure -> rationale)

Architectural Viewpoints

28

Run-time How are responsibilities distributed amongst run-time entities?

Process How do processes communicate and synchronize?

Dataflow How do data and tasks flow through the system?

Deployment How are components physically distributed?

Module How is the software partitioned into modules?

Build What dependencies exist between modules?

29

How Architecture Is Usually Specified

> “Use a 3-tier client-server architecture: all business logic
must be in the middle tier, presentation and dialogue on
the client, and data services on the server; that way you
can scale the application server processing independently
of persistent store.”

Jeff Bezos - 2002 Email

All teams will henceforth expose their data and
functionality through service interfaces
Teams must communicate exclusively through these
interfaces with each other.
It doesn’t matter what technology they use.
There will be no other form of inter-process
communication allowed: no direct linking, no direct
reads of another team’s data store, no shared-memory
model, no back-doors whatsoever.
Anyone who doesn’t do this will be fired.
Thank you; have a nice day!

30

#18

Architectural Description Languages
or how architecture could be specified...

31

Formal languages for representing
and reasoning about software
architecture.

Provide a conceptual framework and
a concrete syntax for characterizing
architectures.

Some are executable, or implemented
in a general-purpose programming
language.

Wright
underlying model is CSP,
focuses on connectivity of
concurrent components

Darwin
focuses on supporting
distributed applications.
Components are single-
threaded active objects

ADL example

32

Roadmap

33

> What is Software Architecture?
> Cohesion and Coupling
> Architectural styles
> UML diagrams for architectures

34

Sub-systems, Modules and Components

> A sub-system is a system in its own right whose operation
is independent of the services provided by other sub-
systems.

> A module is a system component that provides services to
other modules but would not normally be considered as a
separate system.

> A component is an independently deliverable unit of
software that encapsulates its design and implementation
and offers interfaces to the out-side, by which it may be
composed with other components to form a larger whole.

35

Cohesion

Cohesion is a measure of how well the parts of a
component “belong together”.

> Cohesion is weak if elements are bundled simply because
they perform similar or related functions (e.g.,
java.lang.Math).

> Cohesion is strong if all parts are needed for the
functioning of other parts (e.g. java.lang.String).
—Strong cohesion promotes maintainability and adaptability by

limiting the scope of changes to small numbers of components.

There are many definitions and interpretations of cohesion.
Most attempts to formally define it are inadequate!

36

Coupling

Coupling is a measure of the strength of the
interconnections between system components.

> Coupling is tight between components if they depend
heavily on one another, (e.g., there is a lot of
communication between them).

> Coupling is loose if there are few dependencies between
components.
—Loose coupling promotes maintainability and adaptability since

changes in one component are less likely to affect others.
—Loose coupling increases the chances of reusability.

37

Tight Coupling

© Ian Sommerville 2000

Subsystem A Subsystem B

Subsystem C Subsystem D

Shared data
area

38

Loose Coupling

© Ian Sommerville 2000

Subsystem A

A’s data

Subsystem B

B’s data

Subsystem D

D’s data

Subsystem C

C’s data

Roadmap

39

> What is Software Architecture?
> Coupling and Cohesion
> Architectural styles

—Structure
—Shared Data
—Communication
—Distribution

> UML diagrams for architectures

40

Architectural Styles

An architectural style defines a family of systems in
terms of a pattern of structural organization. More
specifically, an architectural style defines a vocabulary of
components and connector types, and a set of
constraints on how they can be combined.

— Shaw and Garlan

Architectural Style “Catalogues”

41

Roadmap

42

> What is Software Architecture?
> Coupling and Cohesion
> Architectural styles

—Structure
—Data flow
—Call-return
—Event-driven

> UML diagrams for architectures

43

"Big Ball of Mud"

The system is organized as a single
element. No modularity. No constraints.

Example:
Mainframe application

Qualities:
- Poor Extensibility
- Poor Maintainability

44

Component-based

Components have well defined
interfaces and communicate via
connectors linking their interfaces

Example:
Modules, WebServices, ..

Qualities:
+ Separation of concerns
+ Reuse

45

Layered

The elements in each layer
communicate only with entities that are
in the layers above and below

Example:
OSI, web-apps (MVC)

Qualities:
+ Exchangeability
+ Limited error propagation
- Performance overhead

Physical

Data link

Network

Roadmap

46

> What is Software Architecture?
> Coupling and Cohesion
> Architectural styles

—Structure
—Data flow
—Call-return
—Event-driven

> UML diagrams for architectures

47

Pipes & Filters

One element reading data at one end
and writing it at the other end. Pipelines
do not have to be linear.

Example:
Image processing, Compilers

Qualities:
+ Flexibility by recombination
- Performance (state/data sharing)
- Error handling

sort -d

grep "\.txt$"

ls -l

ls -l |
grep "\.txt$" |
sort -d

48

Blackboard

Elements share, post, update data
written on the blackboard in order to
collectively work on a solution to the
problem.

Example:
Sensor network, distributed computing

Qualities:
- Difficult to test / Lack of control
- Semantic coupling

Data Store

Roadmap

49

> What is Software Architecture?
> Coupling and Cohesion
> Architectural styles

—Structure
—Data flow
—Call-return
—Event-driven

> UML diagrams for architectures

50

Client-server

Server

One or more clients send
requests to the server, which processes
them before sending them back a
response

Example:
Web browser, email reader, DB-app

Qualities:
- Communication overhead
+ Cheap infrastructure
- Single point of failure

client

thin/fat

51

Service oriented

Distributed components
have well defined interfaces and
communicate via specific connectors
linking their interfaces.

Example:
REST, SOAP

Qualities:
+ Loose structural coupling
+ Technology independent

provider

consumer

Registry

52

Peer to peer

There is no central server as all elements
can both act as client and as server and
send one another requests and response
messages

Example:
Torrent

Qualities:
+ Adaptability, Scalability
- Lack of control

client/
server

client/
server

Roadmap

53

> What is Software Architecture?
> Coupling and Cohesion
> Architectural styles

—Structure
—Data flow
—Call-return
—Event-driven

> UML diagrams for architectures

54

Publish-subscribe

Event Driven system where elements are
coupled by subscriptions and receive
notifications when some interesting event
happens

Example:
Message broadcasting, GUI

Qualities:
- Semantic coupling
+ Loose structural coupling

Msg BUS

55

Rule-based

attempts to derive execution instructions
from a starting set of data and rules

Example:
Financial system, Natural language

Qualities:
- Difficult to test / Lack of control
+ Convenient for certain domains

Rules

Roadmap

56

> What is Software Architecture?
> Coupling and Cohesion
> Architectural styles
> UML diagrams for architectures

57

UML support: Package Diagram

Decompose
system into
packages
(containing any
other UML
element, incl.
packages)

58

UML support: Deployment Diagram

Physical layout of run-time components on hardware nodes.

59

Sources

> Software Engineering, I. Sommerville, 7th Edn., 2004.
> Objects, Components and Frameworks with UML, D. D'Souza, A.

Wills, Addison-Wesley, 1999
> Pattern-Oriented Software Architecture — A System of Patterns, F.

Buschmann, et al., John Wiley, 1996
> Software Architecture: Perspectives on an Emerging Discipline, M.

Shaw, D. Garlan, Prentice-Hall, 1996

60

What you should know!

> What is software architecture
> What is the difference between non-architectural and

architectural design
> What are architectural viewpoints and architectural styles
> What are ADLs, components and connectors
> Advantages and disadvantages of classical architectural

styles

61

Can you answer the following questions?

> What kind of architectural styles are in your project?
> What are the characteristics of a multi tier architecture?
> How can you reduce coupling between software layers?
> How would you implement a dataflow architecture in

Java?

62

Exercise

> Customers can use the ATM from any bank to withdraw cash from
their bank account.

> Each bank has its own system to deal with accounts (checking access
rights, balance, etc…)

> Each ATM keeps a list of the transactions performed, so that banks
can keep track of the amount of money they owe each other

> At the end of each day, each ATM sends a report to the banks involved
in each transaction.

> Bank A customer goes to an ATM of a bank different from his/her own
bank to withdraw cash. The ATM machine (locally) verifies the
correspondence between customer’s card and PIN. The customer
asks for cash, the ATM connect the bank system, check the availability
on customer’s account, log the operation and give cash.

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

