IIIIIIIIIII

Introduction to Software Engineering

10. Software Architecture

Andrea Caracciolo

Adapted from slides by Oscar Nierstrasz and Mircea Lungu

Roadmap

&

> What is Software Architecture?
> Coupling and Cohesion

> Architectural styles

> UML diagrams for architectures

Roadmap

&

> What is Software Architecture?
> Coupling and Cohesion

> Architectural styles

> UML diagrams for architectures

Example Architecture

——SYSTEM cannot contain cycles
‘“‘Per51stencePackage cannot depend on ServicePackage
— - ImplClass must have annotation "@wService”

Batch Process

Probo
ST image

Client/Server

Client

Server

Rest

CLI

E=iN

Integration - Analysis as service

T s TeamCity

sonarqQube

Java

plugin

Java

plugin

est

Integration - Analysis as service

Java PHP
T s TeamCity plugin = broker |
Rest
Java
sonarqQube plugin
Java
Jenkins plugin

@9
ALY

— —

Scalability

Tomcat

Probo

T s TeamCity

+—>

sonarqQube

CLI

Probo

Rules

=
=_

CLI

What is Software Architecture?

Grady Booch ©@Grady Booch - Nov 14
. All architecture is design, not all design is architecture; architecture is
e 7

most significant design decisions

Architecture: The set of design decisions

implementors and maintainers from exercising
needless creativity.

about any system (or subsystem) that keeps its

4

10

What is Software Architecture?

Grady Booch @Grady Booch - Nov 14
L All architecture is design, not all design is architecture; architecture is
7 most significant design decisions

design decisions resulting in element properties
that are not visible (make no difference outside
the element) are non-architectural.

4

11

What is Software Architecture?

The architecture of a system consists of:

1. the structure(s) of its parts
e.g. design-time, test-time, and run-time software and hardware parts

2. the externally visible properties of those parts
e.g. provided services, performance, fault handling, shared resource usage

3. the relationships and constraints between them
— Bass & Clements, IEEE 1471

Rationale: Design Decisions

architectural decisions are ones that permit a system to

meet its quality attribute and behavioral requirements.

CTEEPANGLE
REDUCES SNQw LOAD

A
OVERHAVG
PROTECTS
WivDowS

13

Rationale: Design Decisions

D01-Extend B
to implement Isnm“

approval processing

-
D04-Rollout only new D02-Use message-based D03-Continue to use System A
marketing campaigns middleware platform database 1o store
on new platform for real-time interfaces product-specific data

- -
—— —
/-P/
o
—
",/

D06-Use XML DO7-All batch interfaces D08-Use API-based D05-Continue to populate

as message format will be replaced middleware data warehouse
| ; forcurrent clients from System A database |
]] | |
] |
D09-Create interfaces
between message-based

and API-based middleware |

14

List of things important to

Entty = Class of business
things

List of processes the
business performs

-
-

List of locations in which
the business operates

e
5 EEREAE

Node = Major business
locations

Process = Class of
business process

List of organisations

important to the business

People = Major business

unit

List of event cycles

signifcant to the business

End/Means = Major
Business Goal/Strategy

e.g., Semantic Model

g

Entity = Business Entity
Relationship = Business

oo

€.9.,.Business Logistics
System

e.9..Business Prjcess
Model

-
a

ocation
nkage

e.g..Workflow Model

L=
e

People = Organisation unt
Work = Work Product

e.g.,Master Schedule

Time = Business Event
Cycle = Business Cycle

Business Plan
——
2 I\ e,

End = Business Objective
Means = Business Sirategy

€.g., Physical Data Model

il
Entity = Segment/Table
Relationship = Pointer/key

€.g., System Design

i
——

i _

Node = Hiw /System s/w
Relationship = Line
Specifications

Architecture

cl
(. .
3)

People = User
Work = Screen Formats

e.g., Data Definition

Entity = Field

€.g., Network Architecture

Process = Language
Statement

€.9., Security Archtecture

€.g., Timing Defingion

€.g., Rule Specification

' Node = Address People = identty Time = Interrupt End = Sub-condition
Relationship = Address VO = Control Block Link = Protocol Work = Job Cycle = Machine Cycle Means = step
e.g DATA e.g FUNCTION e.g NETWORK e.g ORGANISATION e.q SCHEDULE e a STATEGY

htto://en.wikipedia.ora/wiki/Zachman Framework

http://en.wikipedia.org/wiki/Zachman_Framework

e.g.,Business Prgcess
Model

Business Process

—

Process = Busijess
VO = Business Regource

Architectural Design

Non-Architectural Design

Code

Process = Language
Statement
VO = Control Block

Non-Architectural Design

Objects, Functions, DB tables, ..

Diagram

e

sd Cash Chack)

bark : Bank

account : CneckingAccount

CanhChack (twCheck) I l

[|
Structure Behaviour
Diagram Diagram
& [
I I — 1
Class Component] Object Activity Use Case
Diagram Diagram Diagram Diagram | Diagram
Prénle | omposite Deplc;ymen Package ‘ Interaction State
l Diagram ‘%{a";f;’{ﬁ Diagram Diagram Diagram 8,%;'}3",%
' B
[I .
Sequence | Communication| Interaction|| Timing
Notation UMY Diagram Diagram %‘{55‘,’;‘;:‘ Diagram
.
C)
]
1

|
break
it |
[Balance < amount]
S S \n%’w ()

muﬁm?«‘ ($heCneck)

|
refumChed (eChidk)

il

1

amn’v"?;tn (chwck
Number |, &)

f

S P POONC th (aChack)

cash |

Architectural Design

Components, Processes, .. i performance

- security i
- maintainability =

~3

IT System

Architectural design: WHO

» identify actors (human/not human)
- what kind of information do they need/produce?

Online Shopping System

Architectural design: WHO

g -

T s TeamCity

sonarqQube o

Jenkins

Tomcat

_—

Probo

Probo

20

Architectural design: WHAT

« domain abstraction model

Person Address
Name Sgreet
Phone Number 0.1 lives at 1 |Gty
Email Address State
Postal Code
Purchase Parking Pass Country
T Validate
Output As Label
Student Professor
Student Number Salary

Average Mark

Is Eligible To Enroll
Get Seminars Taken

Architectural design: WHAT

Rule

Predicate

!

Violation

22

Architectural design: HOW / WHEN

- How/When is information generated, processed
and transmitted (activities and information flows)

sctSmackoverton)

Architectural design: HOW / WHEN

~ T <10min

~T<1min * MLOC

24

Architectural design: WHERE

* Where actors, sources and sinks are physically
and logically located

- tech. infrastructure
- network topology

Architectural design: WHO / WHERE

Reporting clients Analysis server

T ® TeamCity

Rest

HTTP HTTP
HTML Json/XML

26

Describing Software Architecture

[Architecture]

instance of
represented

through

. View |

conforms to
——————> Style

notation

Variable range of complexity
(structure -> rationale)

27

Architectural Viewpoints

Run-time How are responsibilities distributed amongst run-time entities?

Process How do processes communicate and synchronize?

Dataflow How do data and tasks flow through the system?

Deployment How are components physically distributed?

Module How is the software partitioned into modules?

Build What dependencies exist between modules?

28

How Architecture Is Usually Specified

> “Use a 3-tier client-server architecture: all business logic
must be in the middle tier, presentation and dialogue on
the client, and data services on the server; that way you
can scale the application server processing independently
of persistent store.”

TTOR OO U< (O

¢

Jeff Bezos - 2002 Email

All teams will henceforth expose their data and
functionality through service interfaces

Teams must communicate exclusively through these
interfaces with each other.

It doesn’t matter what technology they use.

There will be no other form of inter-process
communication allowed: no direct linking, no direct
reads of another team’s data store, no shared-memory
model, no back-doors whatsoever.

Anyone who doesn’t do this will be fired.

Thank you; have a nice day!

30

Architectural Description Languages
or how architecture could be specified...

Formal languages for representing
and reasoning about software

architecture. underlying model is CSP,
Wright focuses on connectivity of

concurrent components

Provide a conceptual framework and
a concrete syntax for characterizing

architectures. focuses on supporting

. distributed applications.
Darwin Components are single-

Some are exeCUtabIe, Or Implemented threaded active objects
IN a general-purpose programming
language.

31

ADL example

process implementation processl.basic

subcomponents
A: thread tl.basic; B: thread t2.basic; C: thread t2.basic;
connections
cnl: data port signal -> A.pl;
cn2: data port A.p2 -> B.pl;
cn3: data port B.p2 -> resultl;
cn4: data port A.p2 -> C.pl;
cnS5: data port C.p2 -> result2;
cn6: data port A.p3 -> status;
cn7: event port init -> C.reset;
flows
fl: flow path signal->cnl->A.fsl->cn2->B.fsl=->cn3->resultl;
f2: flow path signal->cnl->A.fsl->cn4->C.fsl->cnS->result2;
f3: f£low sink init->cn7->C.fs2;
f4: flow source A.fs2->cné6->status;

end processl.basic;

system implementation Software.Basic
subcomponents
Sampler A : process Collect Samples {
Source Text => ("collect samples.ads", "collect samples.adb")
Period => 50 ms ;

|

end Software.Basic ;

.
’

32

Roadmap

&

> What is Software Architecture?
> Cohesion and Coupling

> Architectural styles

> UML diagrams for architectures

Sub-systems, Modules and Components

> A sub-system is a system in its own right whose operation
IS iIndependent of the services provided by other sub-
systems.

> A module is a system component that provides services to
other modules but would not normally be considered as a
separate system.

> A component is an independently deliverable unit of
software that encapsulates its design and implementation
and offers interfaces to the out-side, by which it may be
composed with other components to form a larger whole.

Cohesion

Cohesion is a measure of how well the parts of a
component “belong together”.

> Cohesion is weak if elements are bundled simply because
they perform similar or related functions (e.g.,
java.lang.Math).

> Cohesion is strong if all parts are needed for the
functioning of other parts (e.g. java.lang.String).

—Strong cohesion promotes maintainability and adaptability by
limiting the scope of changes to small numbers of components.

There are many definitions and interpretations of cohesion.
Most attempts to formally define it are inadequate!

Coupling

Coupling is a measure of the strength of the
Interconnections between system components.

> Coupling is tight between components if they depend
heavily on one another, (e.qg., there is a lot of
communication between them).

> Coupling is loose if there are few dependencies between
components.

—Loose coupling promotes maintainability and adaptability since
changes in one component are less likely to affect others.

—Loose coupling increases the chances of reusability.

Tight Coupling

Subsystem A

Subsystem C

Subsystem B

Subsystem D

Shared data

drea

Loose Coupling

Subsystem A

A’s data

_

Subsystem B

B’s data

Subsystem D

D’s data

N

Subsyétem C

C’s data

Roadmap

> What is Software Architecture?
> Coupling and Cohesion

> Architectural styles
—Structure
—Shared Data
—Communication
—Distribution

> UML diagrams for architectures

Architectural Styles

An architectural style defines a family of systems in
terms of a pattern of structural organization. More
specifically, an architectural style defines a vocabulary of
components and connector types, and a set of
constraints on how they can be combined.

— Shaw and Garlan

Architectural Style “Catalogues”™

SOFTWARE
ARCHITECTURE
PERSPECTIVES ON AN EMERGING DISCIPLINE

PATTERNS OF

ENTERPRISE
APPLICATION
ARCHITECTURE

PATTERN-ORIENTED

~ SOFTWARE
| ARCHITECTURE

A System ol Patterns

N .
| *

Documenting
Software
Architectures

WWILEY &

A <dracsaseaaur g

:
L
o

yidesd A el

£8 IN SQFrTwWanc

Views
and

Sl sEm)

Beyond

SECOND EDITION

Pasd Clements » Felix Bachmana + Len Bass
Pavid Garlan « James Ivers » Roed Lictle

Paulo Mersom » Robert Noed « Jodith Stafford

41

Roadmap

> What is Software Architecture?
> Coupling and Cohesion

> Architectural styles
—Structure
—Data flow
—Call-return
—Event-driven

> UML diagrams for architectures

"Big Ball of Mud"

DON’T TOUCH

The system is organized as a single
element. No modularity. No constraints.

Example:
Mainframe application

Qualities:
- Poor Extensibility
- Poor Maintainability

43

Component-based

Components have well defined
interfaces and communicate via
connectors linking their interfaces

Example:
Modules, WebServices, ..

Qualities:
+ Separation of concerns
+ Reuse

Layered

The elements in each layer

communicate only with entities that are
in the layers above and below

Example:
OSlI, web-apps (MVC)

Qualities:
+ Exchangeability
+ Limited error propagation
- Performance overhead

Network

Data link

Physical

Roadmap

> What is Software Architecture?
> Coupling and Cohesion

> Architectural styles
—Structure
—Data flow
—Call-return
—Event-driven

> UML diagrams for architectures

ls -1 |

Pipes & Filters grep "\.txt$" |
sort -d

One element reading data at one end
and writing it at the other end. Pipelines
do not have to be linear.

Example:
Image processing, Compilers

Qualities:
+ Flexibility by recombination
- Performance (state/data sharing)
- Error handling

Blackboard

Elements share, post, update data
written on the blackboard in order to

collectively work on a solution to the
problem.

Example:
Sensor network, distributed computing

Qualities:

- Difficult to test / Lack of control
- Semantic coupling

Data Store\

)

Roadmap

> What is Software Architecture?
> Coupling and Cohesion

> Architectural styles
—Structure
—Data flow
—Call-return
—Event-driven

> UML diagrams for architectures

Client-server

One or more clients send

requests to the server, which processes
them before sending them back a
response

Example:
Web browser, email reader, DB-app

Qualities:
- Communication overhead
+ Cheap infrastructure
- Single point of failure

thin/fat

APACHE

y

¥

Server

>

Service oriented

Distributed components
have well defined interfaces and

communicate via specific connectors a)
linking their interfaces.

Example:
REST, SOAP

Qualities:
+ Loose structural coupling
+ Technology independent

Peer to peer

There is no central server as all elements
can both act as client and as server and

send one another requests and response
messages

Example:
Torrent

Qualities:
+ Adaptability, Scalability
- Lack of control

Roadmap

> What is Software Architecture?
> Coupling and Cohesion

> Architectural styles
—Structure
—Data flow
—Call-return
—Event-driven

> UML diagrams for architectures

Publish-subscribe N 'I' ,
i

Event Driven system where elements are
coupled by subscriptions and receive
notifications when some interesting event
happens

Example:
Message broadcasting, GUI

Qualities:
- Semantic coupling
+ Loose structural coupling

Rule-based

attempts to derive execution instructions
from a starting set of data and rules

Example:
Financial system, Natural language

Qualities:
- Difficult to test / Lack of control
+ Convenient for certain domains

..
..
..
4

a 2
Rules
I
I

N

Roadmap

&

> What is Software Architecture?

> Coupling and Cohesion

> Architectural styles

> UML diagrams for architectures

UML support: Package Diagram

«subsystemn»

Planning subsystem
E—— —
Publicity Scheduling
Decompose
system into T — s
packages oroftee |
(containing any — = 1
Oth er UML Records = 7 ~-~J TickertSales ----- =| Ticket Records
element, incl.
packages) R
1] l .| 1]
Purchasing | ----- ~| Accounting |e----- Payroll

Figure 3-10. Puckages

UML support: Deployment Diagram

Physical layout of run-time components on hardware nodes.

CreditCardAgency ot i Manager
T
\ ~
\

N

~N
\ \

o

N o~

component % CreditCardCharges % Managerinterface
=z

=\

-

~
,/ -

. «databases P&
% TicketSeller Eﬁckﬂoa 1

&‘ \ TicketServer q

L]

] [\ 1 \
communication \ multiplicity
dependency 1 association \ of node
* \ 3
.]
Kiosk . “ A SalesTerminal

% Customerinterface % Clerkinterface

A 1

/ node !
/ /
/ ¢

% Customer

node instance
Main St kiosk: Kiosk

o nodename node type
communication link
/ /
S Vs

--

i »
headquarters: TicketServer

/ ~

River St. box office: SalesTerminal telesales office: SalesTerminal

Figure 3-8. Deployment diagram (descriptor level)

Valley Mall kiosk: Kiosk

Figure 3-9. Deployment diagram (instance level)

Sources

> Software Engineering, |. Sommerville, 7th Edn., 2004.

> Objects, Components and Frameworks with UML, D. D'Souza, A.
Wills, Addison-Wesley, 1999

> Pattern-Oriented Software Architecture — A System of Patterns, F.
Buschmann, et al., John Wiley, 1996

> Software Architecture: Perspectives on an Emerging Discipline, M.
Shaw, D. Garlan, Prentice-Hall, 1996

What you should know!

> What Is software architecture

> What is the difference between non-architectural and
architectural design

> What are architectural viewpoints and architectural styles
> What are ADLs, components and connectors

> Advantages and disadvantages of classical architectural
styles

Can you answer the following questions?

> What kind of architectural styles are in your project?
> What are the characteristics of a multi tier architecture?
> How can you reduce coupling between software layers?

> How would you implement a dataflow architecture in
Java?

Exercise

> Customers can use the ATM from any bank to withdraw cash from
their bank account.

> Each bank has its own system to deal with accounts (checking access
rights, balance, etc...)

> Each ATM keeps a list of the transactions performed, so that banks
can keep track of the amount of money they owe each other

> At the end of each day, each ATM sends a report to the banks involved
In each transaction.

> Bank A customer goes to an ATM of a bank different from his/her own
bank to withdraw cash. The ATM machine (locally) verifies the
correspondence between customer’s card and PIN. The customer
asks for cash, the ATM connect the bank system, check the availability
on customer’s account, log the operation and give cash.

@creative
commons

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

@ ShareAlike — If you remix, transform, or build upon the material, you must distribute your

contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.orqg/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

