UNIVERSITAT
BERN

Adapted from slides by Oscar Nierstrasz and Mircea Lungu

Roadmap

> |ntroduction to SAR

> The Architecture of Architecture Recovery
> Top-down SAF
> Bottom-up SAR
> Tool Demo

44

pi b

Roadmap

> Introduction to SAR 7

— Architecture
— Viewpoints, Styles, ADL’s
— Architecture Recovery

> The Architecture of Architecture Recovery
> Top-down SAR
> Bottom-up SAF
> Tool Demo

b

Structure: Elements and Form

“[...] the fundamental organization of a system embodied in its

components, their relationships to each other [..]”
[IEEE 1421, 2000]

Structure: Elements and Form

Internet Desktop Internet Desktop
cllam A cllom A client B cliam B

Real time
inteLrtgces

APl-based
middleware

Batch (FTP) interfaces

e I System A |
commercial
gﬂ-tho-sholi) ""'“LI
' T
I basoA I
\-_

Batch (FI'P) interlaces

Data Wﬂlﬂhﬂlﬁﬁ'

Rationale: Design Decisions

“The structure of components, their interrelationships, and
principles and guidelines governing their design and

evolution over time.”
[Garlan and Perry, 1995]

EEPANGLE
ggO(IE.S SNow LOAD

Rationale: Design Decisions

D01-Extend System B
to implement interactive
approval processing

,/R

D04-Rollout only new D02-Use message-based D03-Continue to use System A
marketing campaigns middleware platform database to store
on new platform for real-time interfaces product-specific data

—— | '.

D06-Use XML DO7-All batch interfaces D08-Use APl-based D05-Continue to populate
as message format will be replaced middleware data warehouse
| I for current clients from System A database
f é

D09-Create interfaces
between message-based

and API-based middleware

!
—_—

Rationale: Design Decisions

- architectural decisions are ones that permit a system
to meet its quality attribute and behavioral
requirements.

- architecture is design, but not all design is architecture
- design decisions resulting in element properties that

are not visible - that is, make no difference outside the
element - are non-architectural.

[Clements et al., Software Architectures and Documentation]
http://msdn.microsoft.com/en-us/library/ee658098.aspx

Roadmap

> Introduction to SAR 7

— Architecture
— Viewpoints, Styles, ADL’s
— Architecture Recovery

> The Architecture of Architecture Recovery
> Top-down SAR
> Bottom-up SAF
> Tool Demo

b

Architectural View

[Architecture]

represented
through

. View |

Variable range of complexity
(structure -> rationale)

template

design pattern
——> Syl

notation

10

Architectural View

A view is a representation of a whole system from the perspective of a
related set of concerns.

A concern is an interest which pertains to the system’s development, its
operation or any other aspects that are important to one or more
stakeholders.

— e.g.: performance, security, distribution, maintenance

A stakeholder is an individual, team, or organization with interests in, or
concerns relative to, a system.

— e.g.: development team, operational staff, project manager

11

Architectural Viewpoint

> A viewpoint is
—a specification of the conventions for constructing and using
views

—a template from which to develop individual views by
establishing the purposes and audience for a view and the
technigues for its creation and analysis.

> Consensus in software engineering community

> Viewpoints catalogues
— Kruchten '95
— Hofmeister 99

12

Kruchten 4+1

Logical Development

: —_—) .
view view
A A
Scenarios
A\ 4 \ 4
' System V
' & environment :
Process Physical
_—

view view

Logical view: Logical representation of the system’s functional structure

- stakeholders: end-user
- formalization: UML Class diagram

Development view: design time software structure, modules, sub-systems and layers

- stakeholders: developer
- formalization: UML Component diagram

Process view: system processes and how they communicate. Focuses on the runtime behavior

- stakeholders: developer, system engineer
- formalization: UML Activity diagram

Physical view: topology, physical connections, mapping of architectural elements to nodes

- stakeholders: system engineer
- formalization: UML deployment diagram

13

Classical Architectural Viewpoints

Run-time How are responsibilities distributed amongst run-time entities?

Process How do processes communicate and synchronize?

Dataflow How do data and tasks flow through the system?

Deployment How are components physically distributed?

Module How is the software partitioned into modules?

Build What dependencies exist between modules?

14

Architectural Style

An architectural style defines a family of systems in terms of
a pattern of structural organization.

More specifically, an architectural style defines a vocabulary of
components and connector types, and a set of constraints
on how they can be combined.

[Shaw and Garlan]

15

Classical Architectural Styles

Elements in a given layer can only see the layer below.
Callbacks used to communicate upwards

Layered

o _ Separate application logic from interaction logic. Clients may
Cllent Server be “fatﬂ Or “thin”

Dataflow Data or tasks strictly flow “downstream”.

Blackboard Tools or applications coordinate through shared repository.

16

Architectural Style “Catalogues”™

SOFTWARE J
ARCHITECTURE #
I’m::l::r ms :\?\..\w f\\rm;n\\‘ Emc.ll}l\l "—j_} PATT E R N . O R ' E N T E D
ot ~ SOFTWARE
- ARCHITECTURE

A System ol Patterns

Frank Buschmarn
Regine Meunier

Hans Rohrert

- Beduvgan v
Documenting

g Software

Architectures

PATTERNS OF VL

ENTERPRISE
APPLICATION
ARCHITECTURE

TwWane

Views
and
Beyond

-
Q
0
Zz
0
o
: k
v
n
v
n

SECOND EDITION

Pasd Clements » Felix Bachmana « Len Bass
David Garlan « James Ivers » Reed Lictle

Paulo Mcersom » Robert Noed « Jodith Stafford

Architectural Description Languages (ADLS)

Formal languages for representing and reasoning about
software architecture.

Provide a conceptual framework and a concrete syntax
for characterizing architectures.

Some are executable, or implemented in a general-
purpose programming language.

18

Common ADL Concepts

connector

component component

Component: unit of computation
or data store. Typically contains
interface (ports) and formal
behavioral description.

Connector: architectural building
block used to model interactions
among components. Typically
contains interface (roles) and
formal behavioral description.

Configuration: connected graph
of components and connectors that
describe architectural structure.

19

ADL example

process implementation processl.basic

subcomponents
A: thread tl.basic; B: thread t2.basic; C: thread t2.basic;
connections
cnl: data port signal -> A.pl;
cn2: data port A.p2 -> B.pl;
cn3: data port B.p2 -> resultl;
cnd4: data port A.p2 -> C.pl;
cnS5: data port C.p2 -> result2;
cn6: data port A.p3 -> status;
cn7: event port init -> C.reset;
flows
fl: flow path signal->cnl->A.fsl->cn2->B.fsl->cn3->resultl;
f2: flow path signal->cnl->A.fsl->cnd4->C.fsl->cnS->result2;
f3: flow sink init->cn7->C.fs2;
f4: flow source A.fs2->cné6->status;

end processl.basic;

system implementation Software.Basic
subcomponents
Sampler A : process Collect Samples {
Source Text => ("collect samples.ads", "collect samples.adb")
Period => 50 ms ;

|

end Software.Basic ;

-
’

20

Some ADLs

> Wright: underlying model is CSP, focuses on connectivity of concurrent
components.

> Darwin: focuses on supporting distributed applications. Components are single-
threaded active objects.

> Rapide: focuses on developing a new technology for building large-scale,
distributed multi-language systems.

21

Roadmap

> Introduction to SAR 7

— Architecture
— Viewpoints, Styles, ADL’s
— Architecture Recovery

> The Architecture of Architecture Recovery
> Top-down SAR
> Bottom-up SAF
> Tool Demo

b

Architecture Recovery

[...] are the techniques and [...] IS an archaeological
processes used to uncover activity where the analysts

a system’s architecture from must unveil all the historical
available information. design decisions by looking

[Jazayeri] at the existing implementation
and documentation of the

system.
[Riva]

Architecture

l Design J

Code J

23

Roadmap

> |Introduction to SAR

> The Architecture of Architecture Recovery
> Top-down SAR

— Reflexion Models
> Bottom-up SAR
> Tool Demo

Top-Down SAR: Overview

Verifies whether the system
conforms to the model the
stakeholders have in mind

@ A C

Hypothesized architectur

O
o
% &
®

(1) an hypothesized architecture is defined,

Source code checking

©

(2) the architecture is checked against the src,

(3) the architecture is refined.

25

Roadmap

> |Introduction to SAR

> The Architecture of Architecture Recovery
> Top-down SAR

— Reflexion Models
> Bottom-up SAR
> Tool Demo

Software Reflexion Models

> A reflexion model indicates where the source model and
high-level model differ
— Convergences
— Divergences
— Absences

> Has to be interpreted by developer

27

Reflexion modeling is iterative

Repeat
* Define/Update high-level model of interest
* Extract a source model

* Define/Update declarative mapping between high-
level model and source model

* System computes a software reflexion model
* Interpret the software reflexion model.

Until “happy”

28

Case Study

“WIPES WINDOWS
IN SECONDS!”

The VMS of NetBSD

29

The High-level Model

“WIPES WINDOWS
IN SECONDS!”

Memory

!

HardwareTrans
oyl
KemelFaultHdler

FileSystem

VirtAddressMaint

VMPolicy

30

The High-level Model

“WIPES WINDOWS
IN SECONDS!”

l Memory ‘
HardwareTrans
an
l‘/ // .
['1‘ KemelFaultHdler I
| T Th :
-~ e Mappin
| > pPpPIng
I file= .*pager.* mapTo=Pager
\ FileSystem \\ file= vm map.* mapTo=VirtAddressMaint
‘ j file=vm fault\.c mapTo=KernelFaultHandler
\\ | | VirtAddressMaint ‘f dir=[un]fs mapTo=FileSystem
x R‘ A ' dir=sparc/mem. *] mapTo=Memory
\ \\ | f file=pmap. * mapTo=HardwareTrans
User / . _ _ .
< / file=vm pageout\.c mapTo=VMPolicy
~ y
T~ VMPolicy fo"
J

31

Source Model

“WIPES WINDOWS
IN SECONDSY”

> Particular information extracted from source code

> Calculated with lightweight source extraction
— Flexible: few constraints on source
— Tolerant: source code can be incomplete, not compilable, ...

> Lexical Approach

32

A Reflexion Model

Memory

v

HardwareTrans

fal

KemelFaultHdler

FileSystem

VirtAddressMaint

User

R

VMPolicy

p— R W W W W W W W W W W W W e wee e e e e e

Memory

‘0 .0

-
HardwareTrans |4 51

‘ -

- -

KernelFaultHdler |) 2

AR /
Ny

7~

VirtAddressMaint

4 .
0 .0
oy

User

!
)61‘

[
116

“WIPES WINDOWS

P

33

Roadmap

> |Introduction to SAF 7

> The Architecture of Architecture Recovery
> Top-down SAR
> Bottom-up SAR

— Data Extraction
— Knowledge Organization
— Analysis & Exploration

> Tool Demo

i e

Bottom-Up SAR: Overview

Starts without any
assumptions about the
code and tries to recover
the architecture as-is

A C OReﬁnement

®

Extracted architecture

@ B extends A A
--> A
+ B
(a)ls ->
Source code Extraction Techniques

(1) views are extracted from src
(2) view are refined

35

The Architecture of Architecture Recovery

2.Knowledge
]]
Organization
N
Individual Developer || Source Configuration N
Expertise Code Files

Individual Project

3.Analysis&
Exploration

=

Archives || Information System

-

1.Data
Extraction

Documen tation Version Control System Fact Repository & k
Mailinglist || Dynamic Bug Tracking

“extract-abstract-present” [Tilley]

36

Roadmap

> |Introduction to SAF 7

> The Architecture of Architecture Recovery
> Top-down SAR
> Bottom-up SAR

— Data Extraction
— Knowledge Organization
— Analysis & Exploration

> Tool Demo

i e

Architecture Reconstruction

C

Domain
Knowledge

/Sources of information
- Documentation
- Experts
- Source Code

_

)

/

Develop

Architecturally | ~

1. Model Refinement
2. Composition rules
3. View Selection

3. Abstraction

Low level
model

Signifcant ~ f----——-——"""""""""" @

Concepts

<Source Code

1. Definition of Architectural Concepts

2. Data gathering

UML logical diagrams

Architectural _ _
) C Model >\ Hierarchical graphs

Message sequence charts

HTML reports

4. Visualisation

Analyze & record
rationales

Rationales for
design decisions

5. Re-document

© Harald Gall, UniZH

38

1. Data Extraction - Tools

Alborz [110]

ArchView [99]

ArchVis [45]

ARES [26]

ARM [40]

ARMIN [58]

ART [32]

Bauhaus [13, 25, 62]
Bunch [79, 90]
Cacophony [28]

Dali [56, 57]

DiscoTect [146]

Focus [18, 84]

Gupro [24]

Intensive [87, 145]
ManSART [4, 43]

MAP [117]

PBS/SBS [8, 31, 49, 113]
PuLSE/SAVE [61, 103]
QADSAR [118, 119]
Revealer [100, 101]
RMTool [92, 93]
SARTool [30, 64]
SAVE [89, 94]
Softwarenaut [77]
Symphony,Nimeta [106, 135]
URCA

W4 [44]

X-Ray [86]

Src text

X X X X X X X X X

X X X X X X X X X X X X X X X

dyn

X

X

X

hist

X

stk

X X

style

Src - source code

text - textual information
dyn - dynamic analysis
phys - physical
organiation

stk - human expertise /
stakeholder

style - architectural style

39

Roadmap

i e

> Introduction to SAR
> The Architecture of Architecture Recovery Tools
> Top-down SAR

> Bottom-up SAR

— Data Extraction
— Knowledge Organization
— Analysis & Exploration

> Tool Demo

40

Knowledge Organization

> Different technigues
a) Aggregation
b) Clustering
c) Concept Analysis

41

a. Aggregation

Package
Dependencies

)

i,
eurewatiin ath Ui

Hierarchical Graph Data Structure

Highest-Level

Dependency View

com

org

42

b. Clustering

> Concepts
— Entities
— Similarity Metric
— Algorithms

> Solutions: Hapax, Bunch

.....

43

Similarity Metric

> Based on relationships between the elements
or common properties
— relationships (e.g. invocations)
— natural language similarity
— @

———————

- ——

44

Similarity Metric: (natural) language

term
semantic
document
sub

latent

pundie

hierarchy
implement

General Irvoked Methods
Statistcs -~

279 total
0% getters
8% diversity

Methods

assert -> 51% (141)
equalsTo: -> 7% (19)
sliceFromto: -> 6% (17)
affect ->4% (11)
timSeparators -> 4% (11)
sliceFrom: -> 3% (9)
IncludesAll: -> 3% (8)
endgswith: <> 3% (7)
startsWith: -> 3% (7)
tnmCharactersRight: -> 2% (6)
timCharacters: -> 2% (6)
timCharactersLeft -> 2% (6)
splitUpTo do.ifAbsent -> 1% 4)
any -> 1% (4)

fromisoSting: -> 1% (4)
splitUpTo.do: -> 1% (4)
explodeWhere: -> 1% (4)
leader. -> 1% (J)
leaderReverse -> 1% (J)
affectWithindex -> 1% (2)
sliceTo -> 0% (1) D

®* 20
P
eee b o
o
o

o A

[Lungu et al’05]

45

Similarity Metric: (natural) language

term
semantic
document
sub

ava
atent :oken

parser

pundle
hierarchy
implement

[Lungu et al’05] 46

Similarity Metric: Arch

> Arch [Schwanke]

— similarity between procedures:
— number of common features (non-local symbols used in procedures)
— feature weight
— Interactions

Sim(A,B) =
W(anb) + kxLinked(S,B)

n+W(lanb)+dx(W(a-b)+W(b—-a))

47

Algorithms

Flat

place each entity in a group by itself
repeat
identity the two most similar groups
combine them
until the existing groups are satisfactory

Hierarchical

place each entity in a group by itself
repeat
identify the most similar groups Si and Sj
combine Si and Sj
add a subtree with children Si and Sj to the
clustering tree
until the existing groups are satisfactory or only
one group i1s left

48

Result of Hierarchical Clustering

A Dendrogram: How do you select the
cutoff factor?

49

Example: Clustering dot with Bunch

— /_"_’;—7_/1‘";..—- h\ AN

=~ fclass2.c) | dotc) | |
posutlon ¢’ |lcmincross.c | /A rank.c'_ \

- —,_,n : 1 q&‘ » "," ,.",.‘
| _éluster.,é_/ W/

—_

globa_ls c_: Yy ps h

pipeline

splines.c -

-~

routespl.c ¢ position.c

cluster.c flat.c
y \\ g)
\\)

. S A4S
MINCross.c

)

class2.c ' rank.c
,//
decomp.c ~ acyclic.c /' ns.c

fastg re

Clustering dot with Bunch

output

o~ .input(c\

1drivers

top

“dot.c -

i \\47‘ -
] \

postproc.c

output.c

emit.c .

utils

_timing.c < globals.c - procs.h s"h'apes.c

class1.c hpglgen.c “sameport.c

‘cdt.h < mifgen.c /_psgen.c gifgen.c conc.c

.
o

ps.h

-

B B

Omnipresent Suppliers

color
colxlate.c | gdttf.h

colortbl.h | gd.h

types.h

macros.h - dot.h

utils.c graph.h - globals.h

const.h

51

c. Formal Concept Analysis

> |dentify meaningful
groupings of elements that
have common properties

> Concept: (objs, props)
— props(obj) includes props
— obj_with(props) == objs

cS

52

— props(obj) includes props

- — obj_with(props) == objs
A Concept Analysis Example |_with(props) == obj
attributes
four-legged | hair-covered | intelligent | marine | thumbed

cats Vv v > °
objects | dogs v v

dolphins v v

gibbons Vv v v

humans v v

whales Vv Vv
top ({cats, gibbons, dogs, dolphins, humans, whales}, ()
Cs ({gibbons, dolphins, humans, whales}, {intelligent})
Cy ({cats, gibbons, dogs}, { hair-covered})
3 ({gibbons, humans}, {intelligent, thumbed})
Co ({dolphins, whales}, {intelligent, marine}) The
¢ ({gibbons}, {hair-covered, intelligent, thumbed })
Co ({cats, dogs}, { hair-covered, four-legged }) Conce Pt
bot | (0, {four-legged, hair-covered, intelligent, marine, thumbed }) Lattice

53

A Concept Analysis Problem

#define QUEUESIZE 10
struct stack { int *base, *sp, size; };
struct queue { struct stack *front, *back; };

struct stack* initStack(int sz) {
struct stack* s =

(struct stack*) malloc(sizeof (struct stack));

s->sp = (int*)malloc(sz * (sizeof(int)));
s->base = s->sp;

s->size = sz;

return s; }

struct queuex* initQ() {
struct queuex q =

(struct queue*) malloc(sizeof (struct queue));

q->front = initStack(QUEUESIZE);
q->back = initStack(QUEUESIZE);
return q; }

int isEmptyS(struct stack* s) {
return (s->sp == s->base); }

int isEmptyQ(struct queuex q) {
return (isEmptyS(gq->front)
&& isEmptyS(q->back)); }

void push(struct stack* s, int i) {
/* no overflow check */
*(s=->sp) = i; s->sp++; }

void enq(struct queuex q, int i) {
push(q->front, i); }

int pop(struct stack* s) {
if (isEmptyS(s)) return -1;
S=>sp—-;

return (*(s->sp)); }

int deq(struct queuex q) {

if (isEmptyQ(q)) return -1;

if (isEmptyS(q->back))
while(!isEmptyS(q->front))
push(q->back, pop(q->front)) ;

return pop(g->back); }

54

A Concept Analysis Problem

Vv

initStack
init(Q

isEmptyS
1sEmptyQ

push

enq
pop
deq

55

A Concept Analysis Problem

top
top (all objects, B)
s ({initQ, isEmptyQ, enq, deq}, {uses queue fields})
4 ({initStack, isEmptyS, push, pop}. {uses stack fields})
3 ({isEmptyQ, enq, deq}. {has queue argument, uses queue fields})
¢o | ({isEmptyS, push, pop}, {has stack argument, uses stack fields})
1 ({initQ}, {returns queue})
o ({initStack}, {returns stack})
bot (0, all attributes)

56

Roadmap

> |Introduction to SAF 7

> The Architecture of Architecture Recovery
> Top-down SAR
> Bottom-up SAR

— Data Extraction
— Knowledge Organization
— Analysis & Exploration

> Tool Demo

i e

57

3. Analysis & exploration - Rigi

Programmable reverse engineering ®
environment | l\n =
—C parser; relational data import G s\vl-nrmnth
— Visualization of hierarchical typed

graphs | .x/ -'Tbtln"
—Graph manipulation, filtering, layout | Hr !
. ekerent lstisert

— Tcl-programmable
—WWW.rigi.csc.uvic.ca/

| l 14 nodes selected

58

http://www.rigi.csc.uvic.ca/

3. Analysis & exploration - Creole

Nevpie Sewh Mo Dot Vet B Wdoe g
£% RBNR Q- v = v oo we

°
M I Aode Aavgeie Tooh b Ok e u[,,’.‘
o
5

dren A B IladE 7=00 =

&5 bnge

@ brgogere DJ S

[e

D[& Pahage et

> Eclipse Integration
> Semantic Zooming L -
> Simple Aggregation

http://thechiselgroup.org/2003/07/06/creole/

Roadmap

> |ntroduction to SAR

> The Architecture of Architecture Recovery
> Top-down SAF
> Bottom-up SAR
> Tool Demo

44

pi b

Dicto (Top-down)

\
\

A uniform notation

for keeping SA under
control

Syntax:
Core:
Parser

Parser nl Syntax
Core, Syntax cannot Parser

Google: \

Google must
Google must

http://scg.unibe.ch/dicto/

61

http://scg.unibe.ch/dicto/

SoftwareNaut (Bottom-up)

Sofwarenaut mpont Symem 1 Acaiyte Pl a0 Mghight Lagout Mesmaics 'Window View Pupositry Melp

Vo GF MK ES R NE = g

& Chooss & vew
UMW sangle model : Cam Werce
S Manwrad Ve Tond Vet o
wﬂ"! = - L Panmcres
1t
4 reocason Paters
N ! Ve Trwe
oecte [‘.J
- 3
1 P
1 & (77 Caest v
ompene and Adeoare C Nave
1 {14 0} sdempeere weby apes e WA abon
Thas hows P Acemcare - - O} ASeTOWE wedv A0S e W aymert
Ry M e o | P
Compene - - : 4 "" o adenpee wedee
- ' or3 30eTOee wede pare ADWadowPane
3 1 ';4 OFF AORTOee wede acct WACCTH weer
e
::i—: R e L e e——
v 0 N BORWGE WD SN Whe s IR
Ll P Rapaatiry Ses
30 e Lb B T e T
Very Datased View R
CompmandAsenpiee . 1 4 L e }) sdevpare weby apes e WIOMO~p
20 Loww
e Copee r - v e A
- - st
L 1aliid o 23 soemree wene acs b W St
o O3 Adempare DMt Adempuen Tabted sel
— OF ASeTOAe wedu COmponent WLatos
g A0eMOee wede paret NOProouwcP el
-) OFf AORTOAe wede ApEL DA WInOCeGen
1 o
A.{] - hos) BORTGAE WD AGEA TN AT Vb
Chobel Vi e e B8 BN) Mdmaee we aggs T
Cirmpiars 304 Adomgrs o] Jod WnOvien
Pasde Wed U mwoes) &]
Top Lowe imwcen) el L
Very Detains View (mucea oevohton

> Based on FAMIX R s AN
> Hierarchical Graphs
> Collaboration & Sharing

http://scg.unibe.ch/softwarena

C
—

62

http://scg.unibe.ch

What you should know!

> Architecture, Architectural styles, Architectural viewpoints
> What Is architecture recovery

> The two main types of architecture recovery processes

> How clustering software artefacts works

> How concept analysis works

63

Can you answer these questions?

> What is formal concept analysis and how can you use it
In architecture recovery?

> How would you cluster the classes in an object-oriented
software system if you want to discover its architecture?

> What are the limitations of top-down AR? Of bottom-up?
> What are Mavericks in Schwanke’s approach?

> What are the limitations of clustering?

> What are the limitations of concept analysis?

64

Further Reading

An intelligent tool for re-engineering software modularity, Schwanke R.

Software Reflexion Models: Bridging the gap between Source and High-Level
Models, Murphy et al.

Identifying Modules via Concept Analysis, Siff and Reps

Constructive Architecture Compliance Checking -- An Experiment on Support
by Live Feedback, Knodel et al.

Maintaining Hierarchical Graph Views, Bauchsbaum et al.

Evolutionary and Collaborative Software Architecture Recovery With
Softwarenaut, Lungu et al.

Towards A Process-Oriented Software Architecture Reconstruction Taxonomy,
Pollet et al.

65

@creative
commons

COMMO N S D E E D

Attribution-ShareAlike 3.0
You are free:
to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.orqg/licenses/by-sa/3.0/

http://creativecommons.org/licenses/by-sa/2.5/

