
Software understanding
in the large

Tudor Gîrba
www.tudorgirba.com

}

{
}

{

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

}

{

}

{

}

{

}

{

}

{

}

{ }

{

actual development

}

{

Dr. House provides good examples of reasoning about unknown systems (or
patients :)). The system is measured statically, it is monitored permanently, there are
interviews with people involved, facts are always questioned and everything is
correlated.

Reverse engineering is needed to re-synchronize the original idea with the reality of the
implementation.

}

{
}

{

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

}

{

}

{

}

{

}

{

}

{

}

{ }

{

actual development

re
ve

rs
e

en
gi

ne
er

in
g

}

{

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

}

{

}

{

}

{

}

{actual development

re
ve

rs
e

en
gi

ne
er

in
g

}

{
}

{

}

{

}

{ }

{

}

{

Systems are large and complex
}

{
}

{

}

{

}

{ }

{

}

{

Not only the static structure is useful for reverse engineering, but also the history of the
system.

Furthermore, running the system and analyzing its runtime behavior can also reveal
useful information.

… and they simply contain too many details

}

{
}

{

}

{

}

{ }

{

}

{

… and have many facets

Simple tools can get you far

for i in $(ls); do
 echo `wc -l $i` >> temp
done
sort -nr temp | head -10

Software systems are complex and they have many facets. A plethora of tools exist to
show them.

Still, tools need to be fancy to be useful.

A simple script for computing the number of the lines of code.

Spinellis 2003

Hindle etal 2008

Indentation correlates with complexity.

Simple tools can get you far
Queries help reduce the analysis space

Diomidis Spinellis, Code Reading The Open Source Perspective, Addison-Wesley,
2003.
One simple tool is to use an editor (in this case Word) to display an overview of the
source code. One particular issue revealed by this simple approach is the indentation
level.

Jorge Ressia created the following script to put all java files into one file that can be
open with Word:
for eachFile in `find -f $1 | grep -E *java$`
do
 cat $eachFile >> concatFile.java
done

Hindle, A. Godfrey, M.W. Holt, R.C. Reading Beside the Lines: Indentation as a Proxy
for Complexity Metric, IEEE International Conference on Program Comprehension, 2008
(ICPC 2008), 133-142.

A recent study has shown that there exist a significant correlation between the
indentation level and the complexity of a piece of code. As such, we can identify
complex parts without needing to compute the complexity metric.

Queries reduce the analysis space

Mens etal 2006

Intensional Views ensure rules

acceptsClassOfType(?VisitorClass,?VisitedClass) if
methodWithNameInClass(?Method,?Selector,?VisitorClass),
[’accept*’ match:?Selector asString],
argumentOfMethod(?Argument,?Method),
[’*’,(?VisitedClass name asString),
 ’*’ match:?Argument asString]

Visual queries put results in perspective

Queries take an input and produce an output that is typically significantly reduced in
size.

Queries can be expressed using various languages or paradigms. For example, SQL is
an imperative language, while XSLT is a logical language.

Kim Mens, Andy Kellens, Frédéric Pluquet and Roel Wuyts, “Co-evolving Code and
Design with Intensional Views — A Case Study,” Journal of Computer Languages,
Systems and Structures, vol. 32, no. 2, 2006, pp. 140—156.

Intensional Views are logic rules that ensure rules. For example, this rule ensures that
the argument of an accept method is named after the class it should be accepted.

Queries indeed reduce the analysis space, but it is exactly this reduction that makes
interpreting the results difficult to interpret. Visualizing the results superimposed on an
overview of the system provides a context and eases the interpretation.

Simple tools can get you far
Queries help reduce the analysis space
Every system is special

team
 1te

am
 2

}

{
}

{

}

{

}

{ }

{

}

{

}

{
}

{

}

{

}

{ }

{

}

{

=

Every system is special.

Give the same set of use cases to two different teams and you will get different sets of
mess.

Every system is different. Thus, treating them the same is bound to produce too generic
results.

Reporting Live analysis
vs.

Simple tools can get you far
Queries help reduce the analysis space
Every system is special
Every technology is special

Lanza, Marinescu 2006

Data Classes are dumb data holders

WOC < ONE THIRD

Interface of class reveals data

rather than offering services

AND Data Class

Class reveals many attributes and is

not complex

Reporting tools can be made part of a continuous integration process. However, they
are (or at least are perceived as being) rigid, and they tend to treat each system in the
same way, by employing the same reporting rules. On the other side of the spectrum, a
tool that allows live analyses enables the reverse engineer to customize the analysis to
match the system at hand.

A reverse engineer must consciously make the choice for which tool to use based on the
situation. Even if a reporting tool is used, the queries must match the system at hand.

Data classes are signs of poor distribution of responsibilities in object-oriented systems.

java.sun.com

Use a Transfer Object to encapsulate the business data. A
single method call is used to send and retrieve the Transfer
Object.

When the client requests the enterprise bean for the
business data, the enterprise bean can construct the
Transfer Object, populate it with its attribute values, and
pass it by value to the client.

Every technology is special.

In Java

= .java

}

{
}

{

}

{

}

{ }

{

}

{

However, one J2EE pattern promotes creating pure data classes to package the data
that is to be transfered over the network. The detection of data classes needs to filter
these classes out, as they are obviously not design flaws.

Letʼs see what other variation points are there in a technology.

In Java, sources are to be found in the .java files.

In J2EE

= .java

}

{
}

{

}

{

}

{ }

{

}

{

In J2EE

= .java

.jsp

.xml

}

{
}

{

}

{

}

{ }

{

}

{

The Java 2 Enterprise Edition is based on Java. Based on Java, but more than just
Java.

A significant amount of source code can be found in form of Java Server Pages (JSP)
and XML descriptors.

Thus, looking only at the Java code found in the .java files reveals only a part of the
story.

By looking only at .java we

would miss useful information

Simple tools can get you far
Queries help reduce the analysis space
Every system is special
Every technology is special
Software systems are more than code

}

{
}

{

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

}

{

}

{

}

{

}

{

}

{

}

{ }

{

actual development

re
ve

rs
e

en
gi

ne
er

in
g

}

{

This example shows with blue the calls from the JSP code to the Java classes.

Static, dynamic, history … systems written in different technologies ... What else is there
to be taken into account?

}

{
}

{

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

}

{

}

{

}

{

}

{

}

{

}

{ }

{

actual development

re
ve

rs
e

en
gi

ne
er

in
g

}

{

*/
/*
*

Schreck etal 2007

Schreck etal 2007

Comments also represent useful sources of information.

Daniel Schreck, Valentin Dallmeier and Thomas Zimmermann, How documentation
evolves over time. In Proceedings of the International workshop on Principles of
Software Evolution, p. 4 - 10, 2007.

The picture shows a treemap of Eclipse, where the color is given by the coverage of
Javadoc comments over methods. The lighter the color, the better covered by
comments the part is. We can see how the API is much better commented than the
Internal part.

This graph shows how the evolution of the quantity of comments during the Eclipse life
time. For each sudden change in comments coverage a summary label is shown.

}

{
}

{

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

}

{

}

{

}

{

}

{

}

{

}

{ }

{

actual development

re
ve

rs
e

en
gi

ne
er

in
g

}

{

*/
/*
*

}

{
}

{

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

}

{

}

{

}

{

}

{

}

{

}

{ }

{

actual development

re
ve

rs
e

en
gi

ne
er

in
g

}

{ .pdf

*/
/*
*

@

Adams etal 2007

MAKAO shows Makefile dependencies

Comments … what else?

External documentation, mails are also useful sources of information.

Davor Cubranic and Gail Murphy, “Hipikat: Recommending Pertinent Software
Development Artifacts,” Proceedings 25th International Conference on Software
Engineering (ICSE 2003), ACM Press, New York NY, 2003, pp. 408—418

ADAMS, B., DE SCHUTTER, K., TROMP, H. and DE MEUTER, W. (2007). Design
recovery and maintenance of build systems, in Proceedings of the 23rd IEEE
International Conference on Software Maintenance (ICSM 2007), pages 114-123, IEEE
Computer Society, Paris, France, October 2007 http://users.ugent.be/~badams/makao/

Furthermore, a great deal of knowledge is invested into developing and maintaining a
scripts that build system. Investigating the build files can reveal dependencies that are
otherwise difficult, or impossible to detect by looking at the source code alone.

The sources can tell you how the system looks like,
but not why.

Murphy etal 1995
Helpers GUI

Model

For example, by looking at the source code alone, we cannot know which classes are
intended to be part of what logical component.

G. Murphy, D. Notkin and K. Sullivan, Software Reflexion Models: Bridging the gap
between Source and High-Level Models, Proceedings of SIGSOFT '95, Third ACM
SIGSOFT Symposium on the Foundations of Software Engineering, ACM Press, 1995,
pp. 18-28.

Nevertheless, the developers possess this information, and we can use it to check the
assumptions on the actual code. In this example, it would be useful for the tool to know
which classes are part of the Model, the GUI or which are just Helpers.

Helpers

Model

Brühlmann etal 2008

Brühlmann etal 2008

Not only architectural descriptions constitute useful external information. For example, a
detection strategy detects code structures that are suspected of being flawed. However,
like any automatic detection, it requires manual checking of the results. This manual
step is also a means to confront the code with its intention (for example, a generated
class should not count in the detection of god classes).

Andrea Brühlmann, Tudor Gîrba, Orla Greevy and Oscar Nierstrasz, “Enriching Reverse
Engineering with Annotations,” International Conference on Model Driven Engineering
Languages and Systems (Models 2008), Krzysztof Czarnecki et al. (Ed.), LNCS, vol.
5301, Springer-Verlag, 2008, pp. 660-674.

Metanool is a tool that allows the reverse engineer to define during analysis the
annotations as properties attached to the entities. At a later point, these annotations can
then be taken into account.

For example, given an architectural description, we can draw a visualization that shows
with red the calls that appear to violate the architecture.

Simple tools can get you far
Queries help reduce the analysis space
Every system is special
Every technology is special
Software systems are more than code

Put findings in perspective.

It’s not Lupus

There are many things to look

Fight the temptation of going for the first answer. Consider the uncertainty of data, the
uncertainty of now knowing everything about the problem at hand, or the uncertainty
inherent in human communication.

It can be Lupus, but itʼs not necessarily so.

You mainly see what you are looking for.

Tudor Gîrba
www.tudorgirba.com

creativecommons.org/licenses/by/3.0/

This lecture aims to cover a wide spectrum of possible things to look for. The more
things you know are possible, the more paths you will consider when trying to
understand a problem.

