
Oscar Nierstrasz

2. Lexical Analysis

Thanks to Jens Palsberg and Tony Hosking for their kind permission to
reuse and adapt the CS132 and CS502 lecture notes.
http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

Roadmap

> Introduction
> Regular languages
> Finite automata recognizers
> From RE to DFAs and back again
> Limits of regular languages

2

See, Modern compiler implementation in
Java (Second edition), chapter 2.

Roadmap

> Introduction
> Regular languages
> Finite automata recognizers
> From RE to DFAs and back again
> Limits of regular languages

3

Lexical Analysis

1. Maps sequences of characters to tokens
2. Eliminates white space (tabs, blanks, comments etc.)

4
The string value of a token is a lexeme.

Scanner ParserSource
Code

Tokens IR

errors

x = x + y <ID,x> <EQ> <ID,x> <PLUS> <ID,y>

How to specify rules for token classification?

A scanner must recognize various parts of the language’s syntax

White space
<ws> ::= <ws> ’ ’

| <ws> ’\t’
| ’ ’
| ’\t’

Keywords and operators
specified as literal patterns: do, end

Comments
opening and closing delimiters: /* … */

Some parts are easy:

5

Specifying patterns

Other parts are harder:
Identifiers

alphabetic followed by k alphanumerics (_, $, &, …))

Numbers
integers: 0 or digit from 1-9 followed by digits from 0-9
decimals: integer ’.’ digits from 0-9
reals: (integer or decimal) ’E’ (+ or —) digits from 0-9
complex: ’(’ real ’,’ real ’)’

We need an expressive notation to specify these patterns!

6A key issue is ...

why don’t we write it by hand?

Roadmap

> Introduction
> Regular languages
> Finite automata recognizers
> From RE to DFAs and back again
> Limits of regular languages

7

Languages and Operations

Operation Definition

Union L ∪ M = { s ⏐ s ∈ L or s ∈ M }

Concatenation LM = { st ⏐ s ∈ L and t ∈ M }

Kleene closure L* = ∪I=0,∞ Li

Positive closure L+ = ∪I=1,∞ Li

A language is a set of strings

8

How do you define a language?
Recognizer.
Production grammar.

Production Grammars

> Powerful formalism for
language description
—Non-terminals (A, B)
—Terminals (a,b)
—Production rules (A->abA)
—Start symbol (S0)

> Rewriting

9

Context sensitive

Recursively
enumerable

Regular

Context free

Detail: The Chomsky Hierarchy

> Type 0: α → β
—Unrestricted grammars generate recursively enumerable

languages. Minimal requirement for recognizer: Turing machine.
> Type 1: αAβ → αγβ

—Context-sensitive grammars generate context-sensitive languages,
recognizable by linear bounded automata

> Type 2: A → γ
—Context-free grammars generate context-free languages,

recognizable by non-deterministic push-down automata
> Type 3: A → a and A → aB

—Regular grammars generate regular languages, recognizable by
finite state automata

NB: A is a non-terminal; α, β, γ are strings of terminals and non-terminals
10

Individual identifiers in a classical programming language form a regular language.
The language is on the other hand context free most of the time.

Grammars for regular languages

Regular grammars generate regular languages

Definition:
In a regular grammar, all productions have one of two forms:

1. A → aA
2. A → a
where A is any non-terminal and a is any terminal symbol

These are also called type 3 grammars (Chomsky)

11

Regular languages can be described by Regular
Expressions

Regular expressions (RE) over an alphabet Σ:
1. ε is a RE denoting the set {ε}
2. If a ∈ Σ, then a is a RE denoting {a}
3. If r and s are REs denoting L(r) and L(s), then:

> (r)⏐(s) is a RE denoting L(r) ∪L(s)
> (r)(s) is a RE denoting L(r)L(s)
> (r)* is a RE denoting L(r)*

12

We adopt a precedence for operators: Kleene closure, then
concatenation, then alternation as the order of precedence.
For any RE r, there exists a grammar g such that L(r) = L(g)

Epsilon (the set with the “empty” string)
As you can see, we don’t define a+ or [a]
Patterns are often specified as regular languages.
Notations used to describe a regular language (or a regular set) include both regular expressions and regular grammars

Examples

Let Σ = {a,b}

> a⏐b denotes {a,b}

> (a⏐b) (a⏐b) denotes {aa,ab,ba,bb}

> a* denotes {ε,a,aa,aaa,…}

> (a⏐b)* denotes the set of all strings of a’s and b’s
(including ε)

> Universit(ä⏐ae)t Bern(e⏐) ...
13

Σ = Alphabet

Algebraic properties of REs

r⏐s = s⏐r ⏐ is commutative

r⏐(s⏐t) = (r⏐s)⏐t ⏐ is associative

r (st) = (rs)t concatenation is associative

r(s⏐t) = rs⏐rt
(s⏐t)r = sr⏐tr

concatenation distributes over ⏐

εr = r
rε = r

ε is the identity for concatenation

r * = (r⏐ε)* ε is contained in *

r ** = r* * is idempotent

14

Examples of using REs to specify lexical patterns

identifiers
letter → (a ⏐b ⏐ c ⏐… ⏐z ⏐ A ⏐ B ⏐ C ⏐ … ⏐ Z)
digit → (0⏐1⏐2⏐3⏐4⏐5⏐6⏐7⏐8⏐9)
id → letter (letter ⏐ digit)*

numbers
integer → (+⏐—⏐ ε) (0⏐(1⏐2⏐3⏐… ⏐9) digit *)
decimal → integer . (digit)*
real → (integer ⏐ decimal) E (+ ⏐—) digit *
complex → ’(‘ real ’,’ real ’)’

15

Numbers can get much more complicated.
Most programming language tokens can be described with REs.

Roadmap

> Introduction
> Regular languages
> Finite automata recognizers
> From RE to DFAs and back again
> Limits of regular languages

16

REs are cool for specifying.
FAs are good for implementing REs.

Recognizers

From a regular expression we
can construct a deterministic
finite automaton (DFA)

letter → (a ⏐b ⏐ c ⏐… ⏐z ⏐ A ⏐ B ⏐ C ⏐ … ⏐ Z)
digit → (0⏐1⏐2⏐3⏐4⏐5⏐6⏐7⏐8⏐9)
id → letter (letter ⏐ digit)*

17

DFA for recognizing an identifier.
why D? why F? why A?

Code for the recognizer

18

I.e., encode the transitions in the next_state matrix

Tables for the recognizer

Two tables control the recognizer

char_class
char a-z A-Z 0-9 other

value letter letter digit other

next_state
0 1 2 3

letter 1 1 — —
digit 3 1 — —
other 3 2 — —

To change languages, we can just change tables
19

Automatic construction

> Scanner generators automatically construct code from
regular expression-like descriptions
—construct a DFA
—use state minimization techniques
—emit code for the scanner (table driven or direct code)

> A key issue in automation is an interface to the parser

> lex is a scanner generator supplied with UNIX
—emits C code for scanner
—provides macro definitions for each token (used in the parser)
—nowadays JavaCC is more popular

20

NFA example

What about the RE (a⏐b)*abb ?

State s0 has multiple transitions on a!

This is a non-deterministic finite automaton
21

Review: Finite Automata

A non-deterministic finite automaton (NFA) consists of:
1. a set of states S = { s0 , … , sn }
2. a set of input symbols Σ (the alphabet)
3. a transition function move (δ) mapping state-symbol pairs to sets of states
4. a distinguished start state s0

5. a set of distinguished accepting (final) states F

A Deterministic Finite Automaton (DFA) is a special case of an NFA:
1. no state has a ε-transition, and
2. for each state s and input symbol a, there is at most one edge labeled a

leaving s.

A DFA accepts x iff there exists a unique path through the transition graph from
the s0 to an accepting state such that the labels along the edges spell x.

22

DFA example

Example: the set of strings containing an even number of
zeros and an even number of ones

The RE is (00⏐11)*((01⏐10)(00⏐11)*(01⏐10)(00⏐11)*)*

23Note how the RE walks through the DFA.

NB: The states capture whether there are an even number of 0s or 1s => 4 possible states.

DFAs and NFAs are equivalent

1. DFAs are a subset of NFAs

2. Any NFA can be converted into a DFA, by simulating sets
of simultaneous states:
—each DFA state corresponds to a set of NFA states
—NB: possible exponential blowup

24

NFA to DFA using the subset construction

25

Roadmap

> Introduction
> Regular languages
> Finite automata recognizers
> From RE to DFAs and back again
> Limits of regular languages

26

Constructing a DFA from a RE

> RE → NFA
—Build NFA for each term; connect with ε moves

> NFA → DFA
—Simulate the NFA using the subset construction

> DFA → minimized DFA
—Merge equivalent states

> DFA → RE
—Construct Rkij = Rk-1ik (Rk-1kk)* Rk-1kj ∪ Rk-1ij

—Or convert via Generalized NFA (GNFA)

27

RE to NFA

28

Start State

RE to NFA example: (a⏐b)*abb

abb

(a⏐b)*(a⏐b)

29(a⏐b)*abb

NFA to DFA: the subset construction

Input: NFA N
Output: DFA D with states SD

and transitions TD such that
L(D) = L(N)

Method: Let s be a state in N and
P be a set of states. Use the
following operations:

> ε-closure(s) — set of states of N
reachable from s by ε transitions
alone

> ε-closure(P) — set of states of N
reachable from some s in P by ε
transitions alone

> move(T,a) — set of states of N to
which there is a transition on input a
from some s in P

add state P = ε-closure(s0)
unmarked to SD
while ∃ unmarked state P in SD

mark P
for each input symbol a

U = ε-closure(move(P,a))
if U ∉ SD
then add U unmarked to SD
TD[P,a] = U

end for
end while
ε-closure(s0) is the start state of D
A state of D is accepting if it
contains an accepting state of N

30

Renamed some terms from Palsberg/Hosking slide

NFA to DFA using subset construction: example

A = {0,1,2,4,7}
B = {1,2,3,4,6,7,8}
C = {1,2,4,5,6,7}
D = {1,2,4,5,6,7,9}
E = {1,2,4,5,6,7,10}

31

A B

C

D

E

a

b

a

b

b

b

a

a

a

b

Are NFAs more powerful than DFAs?
Fewer states and easier to construct!
But the transformation is not minimal.

A B

C

D

E

a

b

a

b

b

b

a

a

a

b

DFA Minimization

32http://en.wikipedia.org/wiki/DFA_minimization

Theorem: For each regular language that can be
accepted by a DFA, there exists a DFA with a
minimum number of states.

Minimization approach:
merge equivalent states.

States A and C are
indistinguishable, so they
can be merged!

After b*a we always end up in state B.

http://en.wikipedia.org/wiki/DFA_minimization

DFA Minimization algorithm

> Create lower-triangular table DISTINCT, initially blank
> For every pair of states (p,q):

—If p is final and q is not, or vice versa
– DISTINCT(p,q) = ε

> Loop until no change for an iteration:
—For every pair of states (p,q) and each symbol α

– If DISTINCT(p,q) is blank and  
DISTINCT(δ(p,α), δ(q,α)) is not blank
– DISTINCT(p,q) = α

> Combine all states that are not distinct

33

Distinguish final state from all others. Then take single steps to check what is distinguishable. The intuition:
- if one state is final and the other not, then they are clearly distinct
- otherwise, for every (state, state, symbol) tuple we see whether the ∂ is in DISTINCT

A A A A A
B B B B b B b
C C C C b C b
D D D b b b D b b b D b b b
E E ε ε ε ε E ε ε ε ε E ε ε ε ε E ε ε ε ε

A B C D E A B C D E A B C D E A B C D E A B C D E

Minimization in action

34

C and A are indistinguishable
so can be merged

A B

C

D

E

a

b

a

b

b

b

a

a

a

b

0. initial state. 1. E is final, so different from others.
2. Only a “b” step from D leads to non-blank space.
3. B can make a “b” step to D, so differs from A and C.
4. A and C are indistinguishable. (An “a” takes both to B and “b” takes both to C.)

0 3a

b

1

a

2b b

a

b

a

DFA Minimization example

35

It is easy to see that this is in fact
the minimal DFA for (a⏐b)*abb …

A B

C

D

E

a

b

a

b

b

b

a

a

a

b

Actually it is easy to see that this is the minimal DFA:
Start with the path abb. This gives us 4 states. Now add the missing arrows.
Any a transition brings us to state 1, since we must follow with bb.
Any b not in the path brings us back to state 0, since we must follow with abb.

DFA to RE via GNFA

> A Generalized NFA is an NFA where transitions may have
any RE as labels

> Conversion algorithm:
1. Add a new start state and accept state with ε-transitions to/from

the old start/end states
2. Merge multiple transitions between two states to a single RE

choice transition
3. Add empty ∅−transitions between states where missing
4. Iteratively “rip out” old states and replace “dangling transitions”

with appropriately labeled transitions between remaining states
5. STOP when all old states are gone and only the new start and

accept states remain

36

GNFA conversion algorithm

1. Let k be the number of states of G, k≥2
2. If k=2, then RE is the label found between qs and qa (start

and accept states of G)
3. While k>2, select qrip ≠ qs or qa

— Q´ = Q – {qrip}
— For any qi ∈ Q´ — {qa} let δ´(qi,qj) = R1 R2* R3 ∪ R4 where: 

R1 = δ´(qi,qrip), R2 = δ´(qrip,qrip), R2 = δ´(qrip,qj), R4 = δ´(qi,qj)
— Replace G by G´

37

0 a

b

1

a

2b b

a

b

a

3

The initial DFA

0 a

b

1

a

2b b

a

b

a

s

ε ε

a

3

Add new start and accept states

0 a

b

1

a

2b b

a

b

a

s

ε ε

a

3

∅
∅ ∅

∅

∅

∅

∅
∅

∅

∅

∅
∅

∅

∅

Add missing empty transitions
(we’ll just pretend they’re there)

This means “you can’t get there from here”

a

b

1

a

2b b

a

b

a

s

ε ε

a

3

Delete an arbitrary state

1

a

2b b

a

bb*a|a

s

ε

a

3

b*a

Fix dangling transitions s→1 and 3→1
Don’t forget to merge the existing transitions!

NB: The path from (3) to (1) merges the old path bb*a from (3)->(0)->(1) and the path a from (3)->(1).

a

2b b

a

b*a

s

ε

a

3

b*a

Simplify the RE
Delete another state

NB: bb*a|a = (bb*|ε)a = b*a

2 b

b*aa*b

s

ε

a

3

b*aa*b

aa*b

2 b

b*aa*b

s

ε

a

b*aa*b

aa*b

2

b

s a

b*aa*b

aa*b|bb*aa*b

NB: aa*b|bb*aa*b = (ε|bb*)aa*b = b*aa*b

2

b

s a

b*aa*b

b*aa*b

b

s a

b*aa*b

b*aa*b

s ab*aa*b (b*aa*b)* b

Hm … not what we expected

Note that b*aa*b = b*a*ab
And so b*aa*b (b*aa*b)* b = (b*a*ab)* b*a*abb
It remains to be shown that (b*a*ab)* b*a* = (a|b)* …

b*aa*b (b*aa*b)* b = (a|b)*abb ?

> We can rewrite:
—b*aa*b (b*aa*b)* b
—b*a*ab (b*a*ab)* b
—(b*a*ab)* b*a* abb

> But does this hold?
—(b*a*ab)* b*a* = (a|b)* We can show that the

minimal DFAs for these
REs are isomorphic …

Proof: Split any string in (a|b)* by occurrences of ab. This will match (Xab)*X, where X does not contain ab. X is clearly b*a*. QED

Proof #2 by @grammarware: (b*a*ab)*b*a* = (b*a⁺b)*b*a* = b*(a⁺b⁺)*a* = b*(b*|(a⁺b⁺)*)a* = b*(b*|(a⁺b⁺)*|a*)a* = b*(a|b)*a* = (a|b)*a* = (a|b)*

Roadmap

> Introduction
> Regular languages
> Finite automata recognizers
> From RE to DFAs and back again
> Limits of regular languages

51

Limits of regular languages

Not all languages are regular!

One cannot construct
DFAs to recognize
these languages:

L = { pkqk }
L = { wcwr | w ∈ Σ*, wr is w reversed }

In general, DFAs cannot count!

However, one can construct DFAs for:
• Alternating 0’s and 1’s:

(ε | 1)(01)*(ε | 0)
• Sets of pairs of 0’s and 1’s

(01 | 10)+
52

So, what is hard?

Certain language features can cause problems:
> Reserved words

—PL/I had no reserved words
—if then then then = else; else else = then

> Significant blanks
—FORTRAN and Algol68 ignore blanks
—do 10 i = 1,25
—do 10 i = 1.25

> String constants
—Special characters in strings
—Newline, tab, quote, comment delimiter

> Finite limits
—Some languages limit identifier lengths
—Add state to count length
—FORTRAN 66 — 6 characters(!) 53

How bad can it get?

Compiler needs context
to distinguish variables
from control constructs!

54

What you should know!

✎ What are the key responsibilities of a scanner?
✎ What is a formal language? What are operators over

languages?
✎ What is a regular language?
✎ Why are regular languages interesting for defining

scanners?
✎ What is the difference between a deterministic and a

non-deterministic finite automaton?
✎ How can you generate a DFA recognizer from a regular

expression?
✎ Why aren’t regular languages expressive enough for

parsing?

55

Can you answer these questions?

✎Why do compilers separate scanning from parsing?
✎Why doesn’t NFA → DFA translation normally result in an

exponential increase in the number of states?
✎Why is it necessary to minimize states after translation a

NFA to a DFA?
✎How would you program a scanner for a language like

FORTRAN?

56

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

