Thanks to Jens Palsberg and Tony Hosking for their kind permission to
reuse and adapt the CS132 and CS502 lecture notes.
http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

Roadmap 1 = F =

> Bottom-up parsing

> LR(k) grammars

> JavaCC, Java Tree Builder and the Visitor pattern
> Example: a straightline interpreter

See, Modern compiler implementation in
Java (Second edition), chapters 3-4.

Roadmap (4,
e LI)

> Bottom-up parsing

> LR(k) grammars

> JavaCC, Java Tree Builder and the Visitor pattern
> Example: a straightline interpreter

Some definitions

Recall:

> For a grammar G, with start symbol S, any string a such
that S =" a is called a sentential form
—If a € V¥, then a is called a sentence in L(G)
—Otherwise it is just a sentential form (not a sentence in L(G))

> A left-sentential form is a sentential form that occurs in
the leftmost derivation of some sentence.

> A right-sentential form is a sentential form that occurs in
the rightmost derivation of some sentence.

Why rightmost?

Bottom-up parsing

Goal:

—Given an input string w and a grammar G, construct a parse tree by
starting at the leaves and working to the root.

> The parser repeatedly matches a right-sentential form
from the language against the tree’s upper frontier.

> At each maitch, it applies a reduction to build on the

frontier:

—each reduction matches an upper frontier of the partially built tree
to the RHS of some production

—each reduction adds a node on top of the frontier
> The final result is a rightmost derivation, in reverse.

Example

Consider the grammar:

and the input string: abbcde

1. S — aABe
2. A — Abc
3. | b
4. B — d

a A B

Sentential Form Action
abbcde shift a
abbcde no match; shift b
abbcde match; reduce (3)
aAbcde no match; shift b
aAbcde lookahead = shift ¢
aAbcde match; reduce (2)

aAde shift d
aABe match; reduce (4)
aABe shift e

S match; reduce (1)

Parse bottom up, replacing terms by non-terminals.

Reading in reverse, we have a rightmost derivation, first replacing S, then B, A and A again.
Note that you have more context than with top-down since you may have a whole AST on the stack (A)

Handles

> A handle of a right-sentential form vy is a production A — 3

and a position in y where 8 may be found and replaced
by A to produce the previous right-sentential form in a
rightmost derivation of y

—Suppose: S =* adAw = afw
—Then A — 3 in the position following a is a handle of afw

NB: Because vy is a right-sentential form, the substring to the
right of a handle contains only terminal symbols.

Non-terminals are only to the left (the stack) since you are parsing left-to-right.

Handles

The handle A— B in
the parse tree for afw

a X

r

w

The handles in our previous example correspond to the points where we prune (reduce).

Handles

> Theorem:

—If G is unambiguous then every right-sentential form has a
unique handle.

> Proof: (by definition)
1. G is unambiguous = rightmost derivation is unique
2.=> a unique production A — 3 applied to take y;_ to y;
3. = a unique position k at which A — 3 is applied
4.= a unique handle A — 3

Example — rightmost derivation

The left-recursive expression grammar (original form)

Prod’'n. ‘ Sentential Form

(goal)

1. <goal> := <expr> -
2. <expr> = <expr>+ <term> 1 (expr)
3. | <expr> - <term> 3 | (expr) — (term)
4. I <term> o (expr) — (term) # (factor)
5. <term> 1= <term> * <factor> 9 (expr) — (term) = id
6. | <term> / <factor> 7 (expr) — (factor) = id
7. | <factor> 8 (expr) — num * id
8. <factor>:= num 4 (term) — num * id
9. | id 7 (factor) — num * id
9

id — num * id

How do we parse (bottom-up)
to arrive at this derivation?

X — 2 *y

Once again, lookahead tells us to reduce <term>*<factor> and not <expr>—<term>
The question is, how do we arrive at this derivation?

Handle-pruning

The process to construct a bottom-up parse is called
handle-pruning

To construct a rightmost derivation
S=Yo=Y1=Y2= ... & Yp_1 =Y, =W
we set i to n and apply the following simple algorithm:
Fori=ndown to 1
1. Find the handle A, — [3;in y;
2. Replace B; with A, to generate v;_

This takes 2n steps, where n is the length of the derivation

Stack implementation

> One scheme to implement a handle-pruning, bottom-up
parser is called a shift-reduce parser.

> Shift-reduce parsers use a stack and an input buffer

1. initialize stack with $
2. Repeat until the top of the stack is the goal symbol and the input
token is $
a) Find the handle.
If we don’t have a handle on top of the stack, shift (push) an
input symbol onto the stack

b) Prune the handle.
If we have a handle A — [on the stack, reduce
I. Pop IBI symbols off the stack

. Push A onto the stack NB: In practice we also lookahead to
determine whether to shift or reduce!

Actually, this is an LR(0) parser algorithm, since no lookahead is used.

Example: back to x—2*y
Stack Input |Action
. |> = <expr> $ id num + id shift
1. <goa exp $id — num = id reduce 9
2. <expr> = <expr>+ <term> ${factor) num + id reduce 7
3. | <expr> - <term> $(term’ — num + id reduce 4
${expr) num + id shift
4. | <term> $(expr) - num + id shift
5. <term> := <term> * <factor> | $lexpr) ~ num + idreduce 8
| ¢ $(expr) — (factor) « id|reduce 7
6. <term> / <factor> | g/.cor) - fierm) « id/shift
7. | <factor> ${expr) — (term) » id shift
f o $(expr) — (term) + id reduce 9
8. <factor> := num $S{expr) — (term) + (factor) reduce 5
9. | id $(expr) — (term) reduce 3
$(expr) reduce 1
. . . $(goal) accept
1. Shift until top of stack is the o ?
right end of a handle
and reduce

Why does <expr>—<term> produce a shift rather than a reduce?
Actually we need to lookahead at least one character (LR(1)) to decide whether to shift or reduce.

Shift-reduce parsing

A shift-reduce parser has just four canonical actions:

i next input symbol is shifted (pushed) onto the
shift
top of the stack
right end of handle is on top of stack;
locate left end of handle within the stack;
reduce :
pop handle off stack and push appropriate non-
terminal LHS
accept |terminate parsing and signal success
error call an error recovery routine

The key problem: to recognize handles (not covered in this course).

Ugh! Where is this covered?

Roadmap (4,
e LI)

> Bottom-up parsing

> LR(k) grammars

> JavaCC, Java Tree Builder and the Visitor pattern
> Example: a straightline interpreter

15

LR(k) grammars

A grammar G is LR(k) iff:
1.S =, dAw =, afw
2.5 =" YyBx =, aBy
3. FIRST,(w) = FIRST,(y) = aAy = yBx

l.e., ifaBw and afy have the same k-symbol
lookahead, then there is a unique handle to
reduce in the rightmost derivation.

Assume sentential forms apw and afy, with common prefix af and common k-symbol lookahead FIRST, (w) = FIRST (y), such that apw reduces to aAw and
aBy reduces to yBx.

But, the common prefix means aBy also reduces to aAy, for the same result.
Thus aAy = yBx

Why study LR grammars?

LR(1) grammars are used to construct LR(1) parsers.
—everyone’s favorite parser

—virtually all context-free programming language constructs can be
expressed in an LR(1) form

— LR grammars are the most general grammars parsable by a deterministic,
bottom-up parser

— efficient parsers can be implemented for LR(1) grammars

— LR parsers detect an error as soon as possible in a left-to-right scan of the
input

— LR grammars describe a proper superset of the languages recognized by
predictive (i.e., LL) parsers

LL(k): recognize use of a production A — 3 seeing first k symbols of 3

LR(k): recognize occurrence of 3 (the handle) having seen all of what
is derived from 3 plus k symbols of look-ahead

Recall: LL(k) is top-down, LR(k) is bottom-up.

Left versus right recursion

> Right Recursion:
—needed for termination in predictive parsers
—Trequires more stack space
—right associative operators
> Left Recursion:
—works fine in bottom-up parsers
—Ilimits required stack space
—Ileft associative operators

> Rule of thumb:
—right recursion for top-down parsers
—left recursion for bottom-up parsers

Parsing review

> Recursive descent

— A hand coded recursive descent parser directly encodes a grammar
(typically an LL(1) grammar) into a series of mutually recursive
procedures. It has most of the linguistic limitations of LL(1).

> LL(k):

—must be able to recognize the use of a production after seeing only the
first k symbols of its right hand side.

> LR(k):
—must be able to recognize the occurrence of the right hand side of a

production after having seen all that is derived from that right hand side
with k symbols of look-ahead.

> The dilemmas:
—LL dilemma: pick A—-borA—c?
—LR dilemma: pick A—borB—=b?

Roadmap (,
e ! _// ;

> Bottom-up parsing

> LR(k) grammars

> JavaCC, Java Tree Builder and the Visitor pattern
> Example: a straightline interpreter

20

The Java Compiler Compiler

> “Lex and Yacc for Java.”

> Based on LL(k) rather than LR(1) or LALR(1).

> Grammars are written in EBNF.

> Transforms an EBNF grammar into an LL(k) parser.

> Supports embedded action code written in Java (just like
Yacc supports embedded C action code)

> The look-ahead can be changed by writing
LOOKAHEAD(...)

> The whole input is given in just one file (not two).

LALR parsers start with an LR(0) state machine and then compute lookahead *sets* for all rules in the grammar, checking for ambiguity.

The JavaCC input format

> Single file:
—header
—token specifications for lexical analysis
—grammar

Examples

Token specification:

TOKEN : /* LITERALS */
{

< INTEGER_LITERAL: (["1"-"9"] ([“0"="9"1)* | "0") >
}
Production:
id StmList() :
Declarations ‘{’c}u 18t0)
{
Productions Stm() (";" stm()) *
and actions }

NB: with Java Tree Builder, the actual declarations and actions are inferred and generated.

Generating a parser with JavaCC

javacc fortran.jj // generates a parser
javac Main.java // Main.java calls the parser
java Main < prog.f // parses the program prog.f

NB: JavaCC is just one of many tools available ...

See: http://catalog.compilertools.net/java.html

The Visitor Pattern

> [ntent:

—Represent an operation to be performed on the elements
of an object structure. Visitor lets you define a new
operation without changing the classes of the elements on
which it operates.

Sneak Preview

> When using the Visitor pattern,
—the set of classes must be fixed in advance, and
—each class must have an accept method.

First Approach: instanceof and downcasts

The running Java example: summing an integer list.

public interface List {}
public class Nil implements List {}
public class Cons implements List {
int head;
List tail;
Cons (int head, List tail) {
this.head = head;
this.tail = tail;
}
}

Advantage: The code does not
touch the classes Nil and Cons.
Drawback: The code must use
downcasts and instanceof to
check what kind of List object it has.

public class SumList {
public static void main(String[] args) {
List 1 = new Cons(5, new Cons(4,
new Cons (3, new Nil())));
int sum = 0;
boolean proceed = true;
while (proceed) {
if (1 instanceof Nil) {
proceed = false;
} else if (1 instanceof Cons) {
sum = sum + ((Cons) 1l).head;
1 = ((Cons) 1).tail;
}
}
System.out.println("Sum =
}
}

+ sum);

Second Approach: Dedicated Methods

public interface List {
public int sum();

}

public int sum() {
return O;

The classical OO approach is to offer dedicated
methods through a common interface.

public class Nil implements List { ‘

public class SumList {
public static void main(String[] args) {

} List 1 = new Cons(5, new Cons(4,
} new Cons (3, new Nil())));
public class Cons implements List { System.out.println("Sum = “

int head; + l.sum());

List tail; }

Cons(int head, List tail)
this.head head;
this.tail tail;

}

public int sum() {

return head + tail.sum();
}

}

{

}

Advantage: Downcasts and instanceof
calls are gone, and the code can be written in a
systematic way.

Disadvantage: For each new operation on
List-objects, new dedicated methods have to
be written, and all classes must be recompiled.

Third Approach: The Visitor Pattern

> The ldea:

—Divide the code into an object structure and a Visitor

—Insert an accept method in each class. Each accept method
takes a Visitor as argument.

—A Visitor contains a visit method for each class (overloading!).
A method for a class C takes an argument of type C.

NB: In a dynamically typed language you would introduce a visitC method for each class C.

Third Approach: The Visitor Pattern

public interface List { public class SumVisitor implements Visitor

public void accept(Visitor v); {

} int sum = 0;

public class Nil implements List { public void visit(Nil 1) { }

public void accept(Visitor v) {
v.visit(this); public void visit(Cons 1) {

} sum = sum + l.head;

} l.tail.accept(this);

public class Cons implements List { }

int head;

List tail; public static void main(String[] args) {
Cons(int head, List tail) {.. } List 1 = new Cons(5, new Cons(4,
public void accept(Visitor v) { new Cons (3, new Nil())));
v.visit(this); SumVisitor sv = new SumVisitor();

} l.accept(sv);

} System.out.println("Sum = " + sv.sum);

public interface Visitor { }

void visit(Nil 1); }

void visit(Cons 1);

}

NB: The visit methods capture both (1) actions,
and (2) access of subobjects.

Note how in Java the type system is used to disambiguate the different visit() methods. In a dynamic language, there would
be visitNil() and visitCons() methods.

Comparison

The Visitor pattern combines the advantages of the two other approaches.

Frequent Frequent
downcasts? recompilation?
instanceof + downcasting Yes No
dedicated methods No Yes
Visitor pattern No No

JJTree (Sun) and Java Tree Builder (Purdue/UCLA)
are front-ends for JavaCC that are based on Visitors

Visitors: Summary

> A visitor gathers related operations.
— It also separates unrelated ones.
—Visitors can accumulate state.

> Visitor makes adding new operations easy.
— Simply write a new visitor.

> Adding new classes to the object structure is hard.

— Key consideration: are you most likely to change the algorithm applied over an
object structure, or are you most like to change the classes of objects that
make up the structure?

> Visitor can break encapsulation.

— Visitor’s approach assumes that the interface of the data structure classes is
powerful enough to let visitors do their job. As a result, the pattern often forces
you to provide public operations that access internal state, which may
compromise its encapsulation.

The Java Tree Builder (JTB)

> front-end for The Java Compiler Compiler.

> supports the building of syntax trees which can be
traversed using visitors.

> transforms a bare JavaCC grammar into three
components:

—a JavaCC grammar with embedded Java code for building a syntax
tree;

—one class for every form of syntax tree node; and

—a default visitor which can do a depth-first traversal of a syntax
tree.

http://compilers.cs.ucla.edu/jtb/

The Java Tree Builder

The produced JavaCC grammar can then be processed by the Java
Compiler Compiler to give a parser which produces syntax trees.

The produced syntax trees can now be traversed by a Java program by
writing subclasses of the default visitor.

Program
JavaCC - JTB * JavaCC grammar—= Java Compiler —= Parser
grammar with embedded Compiler
Java code
* Syntax-tree-node Syntax tree
classes with accept methods

Default visitor

Using JTB

jtb fortran.jj // generates jtb.out.jj
javacc jtb.out.jj // generates a parser
javac Main.java // Main.java calls the parser and visitors

java Main < prog.f // builds a syntax tree and executes visitors

Roadmap (4,
e LI)

> Bottom-up parsing

> LR(k) grammars

> JavaCC, Java Tree Builder and the Visitor pattern
> Example: a straightline interpreter

36

Recall our straight-line grammar

Stm
Stm
Stm
Exp
Exp
Exp
Exp
ExpList
ExpList
Binop
Binop
Binop
Binop

2 A 2 2 2 TR T 2 2 A

Stm ; Stm

id :=Exp
print (ExpList)
id

num

Exp Binop Exp

(Stm, Exp)
Exp , ExpList
Exp

CompoundStm
AssignStm
PrintStm
IdExp
NumExp
OpExp
EseqExp
PairExpList
LastExpList
Plus

Minus
Times

Diy

Straightline Interpreter Files

Source files

Generated files

——dJavaCC—>>

«Parser source»

StraightLineParser ...

produces
1

Visits—

G «Grammar spec
«Grammar spec» P)
with actions»
slpl.jj e 57 . "
Pl \JT jtb.out.jj
«Default visitors
and interfaces»
/ Visttor -
«Interpreter source»

«Syntax Tree Nodes»

Goal ...

InterpreterVisitor ...
uses
1 /—\

«Abstract Machine for
Interpreter»

Machine

«Bytecode»

StraightLineParser ...

Key

generates
—>

38

Tokens

slpl.jj starts with the
scanner declarations

options {
JAVA UNICODE_ESCAPE = true;
}

PARSER_BEGIN(StraightLineParser)
package parser;
public class StraightLineParser {}
PARSER END(StraightLineParser)

SKIP : /* WHITE SPACE */

{ n " | n\tn | n\nn | n\ru | "\f" }

TOKEN :

{ < SEMICOLON: ";" >

| < AssiGN: ":=" >

i o more tokens here!

TOKEN : /* LITERALS */

{ < INTEGER LITERAL: (["1"-=-"9"] (["0"-=-"9"])*
| " 0 ") >

}

TOKEN : /* IDENTIFIERS */

{ < IDENTIFIER: <LETTER> (<LETTER>|<DIGIT>)* >
| < #LETTER: ["a"-"z", "A"-"2"] >

| < #DIGIT: ["0"-"9"] >
}

Rewriting our grammar

Goal
StmList
Stm

Exp

MulExp
PrimExp

ExpList

StmList
Stm(; Stm)*
id :=Exp

Vol

| print “(” ExpList %)’

MulExp ((+ | -) MulExp) *
— PrimExp ((* | /) PrimExp) *
— id

| num

| “(’ StmList, Exp “)’

— Exp(,Exp)”

l

We introduce a start rule, eliminate all left-
recursion, and establish precedence.

Grammar rules

The grammar
rules directly
reflect our BNF!

NB: We add some
non-terminals to
help our visitors.

void Goal() : {}
void StmList() : {}{ Stm() (

{ stmList() <EOF> }
"' Stm()

4

) *}

void Stm() : {} { Assignment() | PrintStm() }
/* distinguish reading and writing Id */

void Assignment() : {} { WriteId() ":=" Exp() }
void WriteId() : {} { <IDENTIFIER> }

void PrintStm() : {} { "print" " (" ExpList() ")" }
void ExpList() : {} { Exp() (AppendExp()) * }

void AppendExp() : {} { "," Exp() }

void Exp() : {} { MulExp() (PlusOp() | MinOp()) * }
void PlusOp() : {} { "+" MulExp() }

void MinOp() : {} { "-" MulExp() }

void MulExp() : {} { PrimExp() (MulOp() | DivOp()) * }
void MulOop() : {} { "*" PrimExp() }

void DivOp() : {} { "/" PrimExp() }

void PrimExp() : {}{ ReadId() | Num() | StmExp() }
void ReadId() : {}{ <IDENTIFIER> }

void Num() : {} { <INTEGER LITERAL> }

void StmExp() : {}{ "(" StmList() "," Exp() ")" }

Java Tree Builder

JTB automatically

generates actions to
build the syntax tree,
and visitors to visit it.

original source LOC 441

generated source LOC 4912

// Generated by JTB 1.3.2
options {
JAVA UNICODE_ ESCAPE = true;
}
PARSER BEGIN(StraightLineParser)
package parser;
import syntaxtree.*;
import java.util.Vector;

public class StraightLineParser

{

}

Goal Goal() :

{
StmList nO;
NodeToken nl;
Token n2;

}

{

n0=StmList ()
n2=<EOF> {
n2.beginColumn++; n2.endColumn++;
nl = JTBToolkit.makeNodeToken(n2);
}

{ return new Goal(nO,nl); }

Straightline Interpreter Runtime

«Syntax Tree»

Goal ...

«Straightline
source code> StraightLineParser—>>
Examples
visits
InterpreterVisitor ...
instructs
Machine
output
Key
generates
E—

43

The interpreter

package interpreter;

import ...;

public class StraightLineInterpreter {
Goal parse;
StraightLineParser parser;

public static void main(String [] args) {
System.out.println(new StraightLineInterpreter(System.in).interpret());

}

public StraightLineInterpreter(InputStream in) {
parser = new StraightLineParser(in);
this.initParse();

}

private void initParse() {
try { parse = parser.Goal(); }
catch (ParseException e) { ... }

}

The interpreter simply
public String interpret() { runs the parser and

assert(parse != null);

Visitor visitor = new Visitor(); VISItS the parse tree.
visitor.visit(parse);

return visitor.result();

An abstract machine for straight line code

package interpreter;
import java.util.*;
public class Machine {
private Hashtable<String,Integer> store; // current values of variables

private StringBuffer output; // print stream so far
private int value; // result of current expression
private Vector<Integer> vlist; // list of expressions computed

public Machine() {
store = new Hashtable<String, Integer>();
output = new StringBuffer();

setValue(0); The VISItOr

vlist = new Vector<Integer>(); . .
} interacts with

void assignValue(String id) { store.put(id, getValue()); }

void appendExp() { vlist.add(getValue()); } thIS maChIne aS
void printvalues() {...} c oo

void setvValue(int value) (...} it visits nodes of
int getvalue() { return value; }

void readValueFromId(String id) { ti?é; [)ft)£7f23177.

assert isDefined(id); // precondition

this.setValue(store.get(id));
}
private boolean isDefined(String id) { return store.containsKey(id); }
String result() { return this.output.toString(); }

}

The visitor

package interpreter;
import visitor.DepthFirstVisitor;
import syntaxtree.*;

public class Visitor extends DepthFirstVisitor {

Machine machine;

public Visitor() { machine = new Machine(); }

public String result() { return machine.result();

public void visit(Assignment n) {
n.f0.accept (this);
n.fl.accept(this);
n.f2.accept(this);
String id = n.f0.f0.tokenImage;
machine.assignValue(id);
}
public void visit(PrintStm n) {
public void visit(AppendExp n) {
public void visit(PlusOp n) {
public void visit(MinOp n) {
public void visit(MulOp n) {
public void visit(DivOp n) {
public void visit(ReadId n) {
public void visit(Num n) { ... }

}

fO — Writeld()

f1 —> M=

f2 — Exp()

The Visitor interprets
interesting nodes by
directly interacting with
the abstract machine.

What you should know!

~ Why do bottom-up parsers yield rightmost derivations?
~ What is a “handle”? How is it used?

~ What is *handle-pruning”?How does a shift-reduce parser
work?

~ When is a grammar LR(k)?
~ Which is better for hand-coded parsers, LL(1) or LR(1)?
~ What kind of parsers does JavaCC generate?

~ How does the Visitor pattern help you to implement
parsers?

Can you answer these questions?

~ What are “shift-reduce” errors?
~ How do you eliminate them?
~ Which is more expressive? LL(k) or LR(k)?

~ How would you implement the Visitor pattern in a
dynamic language (without overloading)?

~ How can you manipulate your grammar to simplify your
JTB-based visitors?

@creative
commons

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:

changes were made. You may do so in any reasonable manner, but not in any way that

® Attribution — You must give appropriate credit, provide a link to the license, and indicate if
suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

