
Oscar Nierstrasz

9. Bytecode and Virtual Machines

Original material prepared by Adrian Lienhard and Marcus Denker

Roadmap

> Introduction
> Bytecode
> The heap
> Interpreter
> Automatic memory management
> Threading System
> Optimizations

2

Birds-eye view

A virtual machine is an abstract computing
architecture supporting a programming language
in a hardware-independent fashion

Z1, 1938
3

Roadmap

> Introduction
> Bytecode
> The heap
> Interpreter
> Automatic memory management
> Threading System
> Optimizations

4

Implementing a Programming Language

Pre-processor

Program

Parser Code
Generator Assembler

Parse tree / IR Machine codeAssembly code

InterpreterTranslator Bytecode
Generator

Program ... Bytecode

Bytecode
Interpreter

JIT Compiler

How are VMs implemented?

Typically using an efficient and portable language
such as C, C++, or assembly code

Pharo VM platform-independent part written in Slang:  
– subset of Smalltalk, translated to C  
– core: 600 methods or 8k LOC in Slang  
– Slang allows one to simulate VM in Smalltalk

Main Components of a VM

The heap
The interpreter
Automatic memory management
The threading System

Pros and Cons of the VM Approach

Pros
> Platform independence of application code  

“Write once, run anywhere”
> Simpler programming model
> Security
> Optimizations for different hardware architectures

Cons
> Execution overhead
> Not suitable for system programming

Roadmap

> Introduction
> Bytecode
> The heap
> Interpreter
> Automatic memory management
> Threading System
> Optimizations

9

Reasons for working with Bytecode

> Generating Bytecode
—Implementing compilers for other languages
—Experimentation with new language features

> Parsing and Interpretation:
—Analysis (e.g., self and super sends)
—Decompilation (for systems without source)
—Printing of bytecode
—Interpretation: Debugger, Profiler

10

The Pharo Virtual Machine

> Virtual machine provides a virtual processor
—Bytecode: The “machine-code” of the virtual machine

> Smalltalk (like Java): Stack machine
—easy to implement interpreters for different processors
—most hardware processors are register machines

> Pharo VM: Implemented in Slang
—Slang: Subset of Smalltalk. (“C with Smalltalk Syntax”)
—Translated to C

11

Bytecode in the CompiledMethod

> CompiledMethod format:

Number of
temps, literals...

Array of all
Literal Objects

Pointer to
Source

Header

Literals

Bytecode

Trailer

(Number methodDict at: #asInteger) inspect

(Number>>#asInteger) inspect

12

Bytecodes: Single or multibyte

> Different forms of bytecodes:
—Single bytecodes:

– Example: 112: push self

—Groups of similar bytecodes
– 16: push temp 1
– 17: push temp 2
– up to 31

—Multibyte bytecodes
– Problem: 4 bit offset may be too small
– Solution: Use the following byte as offset
– Example: Jumps need to encode large jump offsets

Type Offset
4 bits 4 bits

13

> Smalltalk code:

> Symbolic Bytecode

Example: Number>>asInteger

Number>>asInteger
"Answer an Integer nearest
the receiver toward zero."

^self truncated

17 <70> self
18 <D0> send: truncated
19 <7C> returnTop

14

Example: Step by Step

> 17 <70> self
—The receiver (self) is pushed on the stack

> 18 <D0> send: truncated
—Bytecode 208: send literal selector 1
—Get the selector from the first literal
—start message lookup in the class of the object that is on top of the

stack
—result is pushed on the stack

> 19 <7C> returnTop
—return the object on top of the stack to the calling method

15

Pharo Bytecode

> 256 Bytecodes, four groups:

—Stack Bytecodes
– Stack manipulation: push / pop / dup

—Send Bytecodes
– Invoke Methods

—Return Bytecodes
– Return to caller

—Jump Bytecodes
– Control flow inside a method

16

Stack Bytecodes

> Push values on the stack
—e.g., temps, instVars, literals
—e.g: 16 - 31: push instance variable

> Push Constants
—False/True/Nil/1/0/2/-1

> Push self, thisContext
> Duplicate top of stack
> Pop

17

Sends and Returns

> Sends: receiver is on top of stack
—Normal send
—Super Sends
—Hard-coded sends for efficiency, e.g. +, -

> Returns
—Return top of stack to the sender
—Return from a block
—Special bytecodes for return self, nil, true, false (for

efficiency)

18

> Control Flow inside one method
—Used to implement control-flow efficiently
—Example:

Jump Bytecodes

17 <76> pushConstant: 1
18 <77> pushConstant: 2
19 <B2> send: <
20 <99> jumpFalse: 23
21 <20> pushConstant: 'true'
22 <90> jumpTo: 24
23 <73> pushConstant: nil
24 <7C> returnTop

^ 1<2 ifTrue: ['true']

19

Roadmap

> Introduction
> Bytecode
> The heap
> Interpreter
> Automatic memory management
> Threading System
> Optimizations

20

Object Memory Layout

32-bit direct-pointer scheme

Reality is more complex: 
– 1-word header for instances of
compact classes 
– 2-word header for normal objects 
– 3-word header for large objects

21

Different Object Formats

> fixed pointer fields
> indexable types: 

– indexable pointer fields (e.g., Array) 
– indexable weak pointer fields (e.g., WeakArray)  
– indexable word fields (e.g., Bitmap)  
– indexable byte fields (e.g., ByteString)

Object format (4bit) 
0 no fields 
1 fixed fields only 
2 indexable pointer fields only 
3 both fixed and indexable pointer fields 
4 both fixed and indexable weak fields 
6 indexable word fields only 
8-11 indexable byte fields only 
12-15 ...

22

“Answer the first object on the heap”
anObject someObject

“Answer the next object on the heap”
anObject nextObject

Excludes small
integers!

Iterating Over All Objects in Memory

|count|
count := 0.
SystemNavigation default allObjectsDo:

[:anObject | count := count + 1].
count 529468

SystemNavigation>>allObjectsDo: aBlock
| object endMarker |
object := self someObject.
endMarker := Object new.
[endMarker == object]

whileFalse: [aBlock value: object.
object := object nextObject]

23

Roadmap

> Introduction
> Bytecode
> The heap
> Interpreter
> Automatic memory management
> Threading System
> Optimizations

24

Stack vs. Register VMs

Stack machines
• Smalltalk, Java and most other VMs
• Simple to implement for different hardware architectures
• Very compact code

Register machines
• Potentially faster than stack machines
• Only few register VMs, e.g., Parrot VM (Perl6)

VM provides a virtual processor that
interprets bytecode instructions

25

Interpreter State and Loop

Interpreter state  
– instruction pointer (ip): points to current bytecode  
– stack pointer (sp): topmost item in the operand stack 
– current active method or block context 
– current active receiver and method

Interpreter loop 
1. branch to appropriate bytecode routine  
2. fetch next bytecode  
3. increment instruction pointer  
4. execute the bytecode routine  
5. return to 1.

26

Method Contexts

method header:
– primitive index
– number of args
– number of temps
– large context flag
– number of literals

27

Stack Manipulating Bytecode Routine

Example: bytecode <70> self

Interpreter>>pushReceiverBytecode
 self fetchNextBytecode.
 self push: receiver

Interpreter>>push: anObject
 sp := sp + BytesPerWord.
 self longAt: sp put: anObject

28

Stack Manipulating Bytecode Routine

Example: bytecode <01> pushRcvr: 1

Interpreter>>pushReceiverVariableBytecode
 self fetchNextBytecode.
 self pushReceiverVariable: (currentBytecode bitAnd: 16rF)

Interpreter>>pushReceiverVariable: fieldIndex
 self push: ( 
 self fetchPointer: fieldIndex ofObject: receiver)

Interpreter>>fetchPointer: fieldIndex ofObject: oop
 ^ self longAt: oop + BaseHeaderSize + (fieldIndex * BytesPerWord)

29

Message Sending Bytecode Routine

1. find selector, receiver and its class
2. lookup message in the method dictionary of the class
3. if method not found, repeat this lookup in successive

superclasses; if superclass is nil, instead send
#doesNotUnderstand:

4. create a new method context and set it up
5. activate the context and start executing the instructions in

the new method

30

Example: bytecode <E0> send: hello

Message Sending Bytecode Routine

Interpreter>>sendLiteralSelectorBytecode
 selector := self literal: (currentBytcode bitAnd: 16rF).
 argumentCount := ((currentBytecode >> 4) bitAnd: 3) - 1.
 rcvr := self stackValue: argumentCount.
 class := self fetchClassOf: rcvr.
 self findNewMethod.
 self executeNewMethod.
 self fetchNewBytecode

Example: bytecode <E0> send: hello

This routine (bytecodes
208-255) can use any of the
first 16 literals and pass up to 2
arguments

 E0(hex) = 224(dec)
= 1110 0000(bin)

 E0 AND F = 0
=> literal frame at 0

 ((E0 >> 4) AND 3) - 1 = 1
=> 1 argument 31

Primitives

Primitive methods trigger a VM routine
and are executed without a new
method context unless they fail

> Improve performance (arithmetics, at:, at:put:, ...)
> Do work that can only be done in VM (new object creation, 

process manipulation, become, ...)
> Interface with outside world (keyboard input, networking, ...)
> Interact with VM plugins (named primitives)

ProtoObject>>nextObject
 <primitive: 139>
 self primitiveFailed

32

Roadmap

> Introduction
> Bytecode
> The heap
> Interpreter
> Automatic memory management
> Threading System
> Optimizations

33

Automatic Memory Management

Challenges
– Fast allocation
– Fast program execution

Tell when an object is no longer used
and then recycle the memory

– Small predictable pauses
– Scalable to large heaps
– Minimal space usage

34

Main Approaches

> 1. Reference Counting

> 2. Mark and Sweep

35

Reference Counting GC

Idea
> For each store operation increment count field in header

of newly stored object
> Decrement if object is overwritten
> If count is 0, collect object and decrement the counter of

each object it pointed to

Problems
> Run-time overhead of counting (particularly on stack)
> Inability to detect cycles (need additional GC technique)

36

Reference Counting GC

37

Mark and Sweep GC

Idea
> Suspend current process
> Mark phase: trace each accessible object leaving a mark

in the object header (start at known root objects)
> Sweep phase: all objects with no mark are collected
> Remove all marks and resume current process

Problems
> Need to “stop the world”
> Slow for large heaps ègenerational collectors
> Fragmentation ècompacting collectors

38

Mark and Sweep GC

39

Generational Collectors

Idea
> Partition objects into generations
> Create objects in young generation
> Tenuring: move live objects from young to old generation
> Incremental GC: frequently collect young generation (very

fast)
> Full GC: infrequently collect young+old generation (slow)

Difficulty
> Need to track pointers from old to new space

Most new objects live very short lives;
most older objects live forever [Ungar 87]

40

Generational Collectors: Remembered Set

Write barrier: remember objects with old-young pointers:
> On each store check whether 

stored object (object2) is young and  
storer (object1) is old

> If true, add storer to remembered set
> When marking young generation, use objects in remembered set

as additional roots

object1.f := object2

41

Compacting Collectors

Idea
> During the sweep phase all live objects are packed to the

beginning of the heap
> Simplifies allocation since free space is in one contiguous

block

Challenge
> Adjust all pointers of moved objects

– object references on the heap
– pointer variables of the interpreter!

42

The Pharo GC

Pharo: mark and sweep compacting collector with two
generations

> Cooperative, i.e., not concurrent
> Single threaded

43

When Does the GC Run?

– Incremental GC on allocation count or memory needs
– Full GC on memory needs
– Tenure objects if survivor threshold exceeded

 “Tenure when more than this many objects survive”
 Smalltalk vm tenuringThreshold 2000

44

VM Memory Statistics

Smalltalk vm statisticsReport

'uptime 0h8m6s
memory 53,102,204 bytes

old 48,996,624 bytes (92.30000000000001%)
young -2,105,420 bytes (-4.0%)
used 46,891,204 bytes (88.30000000000001%)
free 6,211,000 bytes (11.700000000000001%)

GCs 580 (839ms between GCs)
full 7 totalling 316ms (0.1% uptime), avg 45.1ms
incr 573 totalling 338ms (0.1% uptime), avg 0.6000000000000001ms
tenures 137 (avg 4 GCs/tenure)

Since last view 25 (654ms between GCs)
uptime 16.3s
full 0 totalling 0ms (0.0% uptime)
incr 25 totalling 13ms (0.1% uptime), avg 0.5ms
tenures 1 (avg 25 GCs/tenure)

'

45

Memory System API

 “Force GC”
 Smalltalk garbageCollectMost.
 Smalltalk garbageCollect.

 “Is object young?”
 Smalltalk isYoung: anObject.

 “Various settings and statistics”
 Smalltalk vm getParameters.

 ”Do an incremental GC after this many allocations”
 Smalltalk vm allocationsBetweenGC: 4000.

 ”Tenure when more than this many objects survive the GC”
 Smalltalk vm tenuringThreshold: 2000.

 ”Grow/shrink headroom”
 Smalltalk vm parameterAt: 25 put: 4*1024*1024.
 Smalltalk vm parameterAt: 24 put: 8*1024*1024.

46

Finding Memory Leaks

– maybe object is just not GCed yet (force a full GC!)
– find the objects and then explore who references them

 EyePointerExplorer openOn: #foo

The pointer finder finds a path
from a root to some object

I have objects that do not get collected. What’s wrong?

47

Roadmap

> Introduction
> Bytecode
> The heap
> Interpreter
> Automatic memory management
> Threading System
> Optimizations

48

Threading System

Multithreading is the ability to create concurrently
running “processes”

Non-native threads (green threads)
– Only one native thread used by the VM
– Simpler to implement and easier to port

Native threads
– Using the native thread system provided by the OS
– Potentially higher performance

49

Pharo: Green Threads

Each process has its own execution stack, ip, sp, ...

There is always one (and only one) running process

Each process behaves as if it owns the entire VM

Each process can be interrupted (ècontext switching)

50

Representing Processes and Run Queues

51

Context Switching

1. store the current ip and sp registers to the current context
2. store the current context in the old process’ suspendedContext
3. change Processor to point to newProcess
4. load ip and sp registers from new process’ suspendedContext

Interpreter>>transferTo: newProcess

When you perform a context switch,
which process should run next?

52

Process Scheduler

> Cooperative between processes of the same priority
> Preemptive between processes of different priorities

Context is switched to the first process with highest priority when: 
– current process waits on a semaphore 
– current process is suspended or terminated  
– Processor yield is sent

Context is switched if the following process has a higher priority: 
– process is resumed or created by another process 
– process is resumed from a signaled semaphore

When a process is interrupted, it moves to the back of its run
queue

53

Example: Semaphores and Scheduling

 here := false.
 lock := Semaphore forMutualExclusion.
 [lock critical: [here := true]] fork.
 lock critical: [

self assert: here not.
Processor yield.
self assert: here not].

 Processor yield.
 self assert: here When is the forked

process activated?

54

Roadmap

> Introduction
> Bytecode
> The heap
> Interpreter
> Automatic memory management
> Threading System
> Optimizations

55

Many Optimizations...

> Method cache for faster lookup: receiver's class + method selector
> Method context cache (as much as 80% of objects created are

context objects!)

> Interpreter loop: 256 way case statement to dispatch bytecodes

> Quick returns: methods that simply return a variable or known
constant are compiled as a primitive method

> Small integers are tagged pointers: value is directly encoded in
field references. Pointer is tagged with low-order bit equal to 1.
The remaining 31 bit encode the signed integer value.

> ...
56

Optimization: JIT (not in Pharo)

Idea: Just In Time Compilation
> Translate unit (method, loop, ...) into native machine code at

runtime
> Store native code in a buffer on the heap

Challenges
> Run-time overhead of compilation
> Machine code takes a lot of space (4-8x compared to bytecode)
> Deoptimization (for debugging) is very tricky

Adaptive compilation: gather statistics to compile only units that
are heavily used (hot spots)

57

References

> Virtual Machines, Iain D. Craig, Springer, 2006
> Back to the Future – The Story of Squeak, A Practical Smalltalk

Written in Itself, Ingalls et al, OOPSLA ’97
> Smalltalk-80, the Language and Its Implementation (AKA “the

Blue Book”), Goldberg, Robson, Addison-Wesley, ’83
— http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf

> The Java Virtual Machine Specification, Second Edition
— http://java.sun.com/docs/books/jvms/

> Stacking them up: a Comparison of Virtual Machines, Gough,
IEEE’01

> Virtual Machine Showdown: Stack Versus Registers, Shi, Gregg,
Beatty, Ertl, VEE’05

58

http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://java.sun.com/docs/books/jvms/

What you should know!

✎What is the difference between the operand stack and the
execution stack?

✎How do bytecode routines and primitives differ?
✎Why is the object format encoded in a complicated 4bit

pattern instead of using regular boolean values?
✎Why is the object address not suitable as a hash value?
✎What happens if an object is only weakly referenced?
✎Why is it hard to build a concurrent mark sweep GC?
✎What does cooperative multithreading mean?
✎How do you protect code from concurrent execution?

59

Can you answer these questions?

✎There is a lot of similarity between VM and OS design.
What are the common components?

✎Why is accessing the 16th instance variable of an object
more efficient than the 17th?

✎Which disastrous situation could occur if a local C pointer
variable exists when a new object is allocated?

✎Why does #allObjectsDo: not include small integers?
✎What is the largest possible small integer?

60

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

