
Oscar Nierstrasz

Compiler Construction
1. Introduction

Compiler Construction

Lecturers Prof. Oscar Nierstrasz, Dr. Mohammad Ghafari

Assistants Manuel Leuenberger, Rathesan Iyadurai
Lectures E8 001, Fridays @ 10h15-12h00
Exercises E8 001, Fridays @ 12h00-13h00
WWW scg.unibe.ch/teaching/cc

�2

This is a note (a hidden slide). You will find some of these
scattered around the PDF versions of the slides.

Roadmap

> Overview
> Front end
> Back end
> Multi-pass compilers
> Example: compiler and interpreter for a toy language

�4

See Modern compiler implementation in
Java (Second edition), chapter 1.

Roadmap

> Overview
> Front end
> Back end
> Multi-pass compilers
> Example: compiler and interpreter for a toy language

�5

Textbook

> Andrew W. Appel, Modern compiler implementation in
Java (Second edition), Cambridge University Press, New
York, NY, USA, 2002, with Jens Palsberg.

Thanks to Jens Palsberg and Tony Hosking for
their kind permission to reuse and adapt the
CS132 and CS502 lecture notes.
http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

�6

http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

The book by Appel is the main source for this lecture series, and
many of the slides have been adapted from similar courses by
Palsberg and Hosking,

Other recommended sources

> Compilers: Principles, Techniques, and
Tools, Aho, Sethi and Ullman
—http://dragonbook.stanford.edu/

> Parsing Techniques, Grune and Jacobs
—http://www.cs.vu.nl/~dick/PT2Ed.html

> Advanced Compiler Design and
Implementation, Muchnik

�7

http://dragonbook.stanford.edu/
http://www.cs.vu.nl/~dick/PT2Ed.html

Schedule

�8

1 22-Feb-19 Introduction
2 01-Mar-19 Lexical Analysis
3 08-Mar-19 Parsing
4 15-Mar-19 Parsing in Practice
5 22-Mar-19 Intermediate Representation
6 29-Mar-19 Optimization
7 05-Apr-19 Code Generation
8 12-Apr-19 Bytecode and Virtual Machines

19-Apr-19 Good Friday
26-Apr-19 Spring break

9 03-May-19 PEGs, Packrats and Parser Combinators
10 10-May-19 Truffle — a language implementation framework
11 17-May-19 Program Transformation
12 24-May-19 Compiling R — a case study
13 31-May-19 Final Exam

What is a compiler?

a program that translates an executable
program in one language into an
executable program in another language

�9

CompilerSource code Target code

errors

A compiler is a translator from (executable) source code to some
new form of executable target code. The target is typically
machine code, or virtual machine bytecode.
We expect the target to be “better” in some way, for example, it
should be execute efficiently, and possibly eliminate anomalies
such as dead code.
Note that a compiler does not execute the program.

What is an interpreter?

a program that reads an executable
program and produces the results
of running that program

�10

InterpreterSource code Output

errors

The job of an interpreter is to execute source code, possibly
consuming input, and producing output. An interpreter typically
will translate the source code to some intermediate representation
along the way, but this intermediate form will not necessarily be
stored as an artifact.
In contrast to a compiler, an interpreter does execute the source
program.

Pre-processor

Program

Parser Code
Generator Assembler

Parse tree / IR Machine codeAssembly code

InterpreterTranslator Bytecode
Generator

Program ... Bytecode

Bytecode
Interpreter

JIT Compiler

Implementing Compilers, Interpreters …

�11

The “program” in the previous slide refers to the program source
code. It can be pre-processed as much as needed. To do anything
“useful” it has to be parsed in to some Intermediate
Representation (IR/Parse Tree). The IR can be taken by a
translator to produce code in a different language, or an
interpreter which can execute it directly, or a bytecode/assembly
generator to generate code for execution on a VM (bytecode
interpreter or JIT) or a real machine (generating machine code
from the assembly code).

Why do we care?

artificial
intelligence

greedy algorithms
learning algorithms

algorithms
graph algorithms
union-find
dynamic programming

theory
DFAs for scanning
parser generators
lattice theory for analysis

systems
allocation and naming
locality
synchronization

architecture
pipeline management
hierarchy management
instruction set use

Compiler construction
is a microcosm of
computer science

Inside a compiler, all these things come together
�12

Isn’t it a solved problem?

> Machines are constantly changing
—Changes in architecture ⇒ changes in compilers
—new features pose new problems
—changing costs lead to different concerns
—old solutions need re-engineering

> Innovations in compilers should prompt changes in
architecture
—New languages and features

�13

For example, computationally expensive but simpler scannerless
parsing techniques are undergoing a renaissance.

What qualities are important in a compiler?

> Correct code
> Output runs fast
> Compiler runs fast
> Compile time proportional to program size
> Support for separate compilation
> Good diagnostics for syntax errors
> Works well with the debugger
> Good diagnostics for flow anomalies
> Cross language calls
> Consistent, predictable optimization

�14

A bit of history

> 1952: First compiler (linker/loader) written by Grace
Hopper for A-0 programming language

> 1957: First complete compiler for FORTRAN by John
Backus and team

> 1960: COBOL compilers for multiple architectures

> 1962: First self-hosting compiler for LISP

�15

A compiler was originally a program
that “compiled” subroutines [a link-
loader]. When in 1954 the combination
“algebraic compiler” came into use, or
rather into misuse, the meaning of the
term had already shifted into the
present one.

— Bauer and Eickel [1975]

�16

Abstract view

•recognize legal (and illegal) programs
•generate correct code
•manage storage of all variables and code
•agree on format for object (or assembly) code

Big step up from assembler — higher level notations
�17

CompilerSource code Target code

errors

Traditional two pass compiler

•front end maps legal code into IR (syntax)
• intermediate representation (IR)
•back end maps IR onto target machine (semantics)
•simplifies retargeting
•allows multiple front ends
•multiple passes ⇒ better code

�18

front endsource
code

machine
code

errors

code
generation

IR

A classical compiler consists of a front end that parses the source
code into an intermediate representation, and a back end that
generates executable code. The front end is therefore more
concerned with language syntax, while the back end deals with its
semantics.

A fallacy!

Front-end, IR and back-end must encode
knowledge needed for all n×m combinations!

�19

Using different front ends for a back end (or the other way
around) is a nice side effect of the front end/back end separation,
but it is not the reason for it.
The reason is a clear separation of concerns: the front end
should deal with all things to do with the language and source
code; the back end should deal with all things to do with the
target architecture.

Roadmap

> Overview
> Front end
> Back end
> Multi-pass compilers
> Example: compiler and interpreter for a toy language

�20

Front end

•recognize legal code
•report errors
•produce IR
•preliminary storage map
•shape code for the back end

Much of front end construction can be automated
�21

The front end of a compiler is classically split into a scanner,
which is responsible for converting the source code into a stream
of tokens of the source language, and a parser, which is
responsible for recognizing structure in the stream of tokens.

The preliminary storage map not only tracks which tokens
represent names of programmer-defined entities such as variables
and procedures (i.e., the symbol table), but also decides what part
of storage different names (entities) should be mapped to (local,
global, automatic etc.).

The front end also shapes code for the back end, i.e., by deciding
how different parts of code are organized in the IR.

Scanner

•map characters to tokens
•character string value for a token is a lexeme
•eliminate white space

x = x + y <id,x> = <id,x> + <id,y>

�22

The scanner converts the source code — i.e., a stream of
characters — into a stream of semantically significant tokens,
such as keywords, identifiers, numbers, strings, etc.
Each token consists of a type (e.g., keyword), and its string value
(e.g., “class”).

Parser

•recognize context-free syntax
•guide context-sensitive analysis
•construct IR(s)
•produce meaningful error messages
•attempt error correction

Parser generators mechanize much of the work
�23

The job of the parser is to recognize structure in the stream of
tokens produced by the scanner. Typically it builds a parse tree
representing this structure, but it may also produce another kind
of IR (intermediate representation) more suitable for the backend.

Context-free grammars

1.<goal> := <expr>
2.<expr> := <expr> <op> <term>
3. | <term>
4.<term> := number
5. | id
6.<op> := +
7. | -

Context-free syntax is
specified with a
grammar, usually in
Backus-Naur form
(BNF)

A grammar G = (S,N,T,P)
•S is the start-symbol
•N is a set of non-terminal symbols
•T is a set of terminal symbols
•P is a set of productions — P: N → (N ∪T)*

�24

Such a grammar is called “context-free” because rules for non-
terminals can be written without regard for the context in which
they appear: a number is always a number, regardless of where it
occurs in the program.
Unfortunately modern programming languages often have
context-sensitive features that make parsing more complicated.
An example is a here document, which is terminated by a special
string specified at the beginning. (It is context-sensitive because
the terminator depends on a string specified earlier in the
program.)

https://en.wikipedia.org/wiki/Here_document

Deriving valid sentences

Production Result
<goal>

1 <expr>
2 <expr> <op> <term>
5 <expr> <op> y
7 <expr> - y
2 <expr> <op> <term> - y
4 <expr> <op> 2 - y
6 <expr> + 2 - y
3 <term> + 2 - y
5 x + 2 - y

Given a grammar, valid
sentences can be
derived by repeated
substitution.

To recognize a valid
sentence in some CFG,
we reverse this process
and build up a parse.

�25

Formal grammars were invented to represent all the possible
sentences of a given language. The grammar is used to derive
(i.e., to generate) all these strings. In compilers we do the
opposite; we want to use the grammar to take an input string (a
sentence of the language) and recognize its structure, that is, to
reconstruct its derivation, or to parse it.
The parse is the sequence of productions needed to parse the
input. The parse tree is a structure representing this derivation.

Parse trees

A parse can be represented by a tree
called a parse tree (or syntax tree).

Obviously, this contains a lot
of unnecessary information

�26

Abstract syntax trees

So, compilers often use an abstract syntax tree (AST).

ASTs are often
used as an IR.

�27

A concrete syntax tree contains a node for every single rule in the
derivation of a program from its grammar. This usual contains far
to much information, as grammars typically contain many rules
that exists solely to resolve ambiguity. For this reason a parser
often constructs instead an abstract syntax tree (AST) that
eliminates uninteresting nodes.

https://en.wikipedia.org/wiki/Abstract_syntax_tree

Roadmap

> Overview
> Front end
> Back end
> Multi-pass compilers
> Example: compiler and interpreter for a toy language

�28

Back end

•translate IR into target machine code
•choose instructions for each IR operation
•decide what to keep in registers at each point
•ensure conformance with system interfaces

Automation has been less successful here
�29

The back end of a compiler is responsible for transforming the
intermediate representation produced by the front end into
executable machine code. This entails efficient generation of
machine instructions as well as allocation of registers.
Typically there are a very limited number of registers available to
machine instructions, so the back end must figure out how to
minimize data transfers between main memory and registers.
A challenge common with the front end is to process as much of
the input as possible and generate useful feedback in case of
errors, rather than simply failing on the first error.

Instruction selection

•produce compact, fast code
•use available addressing modes
•pattern matching problem

—ad hoc techniques
— tree pattern matching
—string pattern matching
—dynamic programming

�30

Register allocation

•have value in a register when used
• limited resources
•changes instruction choices
•can move loads and stores
•optimal allocation is difficult

Modern allocators often use an analogy to graph coloring
�31

Roadmap

> Overview
> Front end
> Back end
> Multi-pass compilers
> Example: compiler and interpreter for a toy language

�32

Traditional three-pass compiler

•analyzes and changes IR
•goal is to reduce runtime (optimization)
•must preserve results

�33

This, again, has to do with separation of concerns: the front end
deals with the language, the back end deals with the target
architecture, so who deals with the IR? Well, the “middle end”.
The middle end is responsible for massaging and optimizing the
IR so that the back end can do a good job producing efficient
machine code.
Choosing the “right” IR is not an easy task: source code is too
high level for performing many analyses, and machine code is
too low level. Sometimes an AST is used (i.e., closer to source
code), and sometimes a special kind of abstract instruction set
(i.e., closer to machine code).

Optimizer (middle end)

Modern optimizers are usually built as a set of passes

• constant expression propagation and folding
• code motion
• reduction of operator strength
• common sub-expression elimination
• redundant store elimination
• dead code elimination

�34

• constant propagation and folding: evaluate and propagate
constant expressions at compile time

• code motion: move code that does not need to be re-evaluated
out of loops

• reduction of operator strength: replace slow operations by
equivalent faster ones

• common sub-expression elimination: evaluate once and store
• redundant store elimination: detect when values are stored

repeatedly and eliminate
• dead code elimination: eliminate code that can never be

executed

The MiniJava compiler

�35

This figure is from the main textbook for this course, “Modern
compiler implementation in Java” (Second edition), 2002, by
Andrew Appel. MiniJava is the example programming language
used as a running example.

Compiler phases
Lex Break source file into individual words, or tokens
Parse Analyse the phrase structure of program
Parsing Actions Build a piece of abstract syntax tree for each phrase
Semantic
Analysis

Determine what each phrase means, relate uses of variables to their
definitions, check types of expressions, request translation of each phrase

Frame Layout Place variables, function parameters, etc., into activation records (stack
frames) in a machine-dependent way

Translate Produce intermediate representation trees (IR trees), a notation that is not
tied to any particular source language or target machine

Canonicalize Hoist side effects out of expressions, and clean up conditional branches, for
convenience of later phases

Instruction
Selection

Group IR-tree nodes into clumps that correspond to actions of target-
machine instructions

Control Flow
Analysis

Analyse sequence of instructions into control flow graph showing all possible
flows of control program might follow when it runs

Data Flow
Analysis

Gather information about flow of data through variables of program; e.g.,
liveness analysis calculates places where each variable holds a still-needed
(live) value

Register
Allocation

Choose registers for variables and temporary values; variables not
simultaneously live can share same register

Code Emission Replace temporary names in each machine instruction with registers �36

Roadmap

> Overview
> Front end
> Back end
> Multi-pass compilers
> Example: compiler and interpreter for a toy language

�37

A straight-line programming language 
(no loops or conditionals):

Stm → Stm ; Stm CompoundStm

Stm → id := Exp AssignStm
Stm → print (ExpList) PrintStm
Exp → id IdExp
Exp → num NumExp
Exp → Exp Binop Exp OpExp
Exp → (Stm , Exp) EseqExp
ExpList → Exp , ExpList PairExpList
ExpList → Exp LastExpList
Binop → + Plus
Binop → – Minus
Binop → × Times
Binop → / Div

a := 5 + 3; b := (print(a,a—1),10×a); print(b) prints 8 7
80

�38

A “straight-line” programming language consists purely of
sequential code without any loops, branches or conditionals. This
toy language allows you to compute simple arithemtic
expressions, assign them to variables labeled “a” to “z”, and print
out intermediate values.

Tree representation

�39

a := 5 + 3;
b := (print(a,a—1),10×a);
print(b)

The parse tree represents the parse of the given source code. Note
that this is not an AST but a concrete syntax tree: it contains a
node for every grammar rule used in the parse.
Exercise: what might an equivalent AST look like?

Straightline Interpreter and Compiler Files

�40

«Grammar spec»

slpl.jj

«Syntax Tree Nodes»

Goal ...

«Grammar spec
with actions»

jtb.out.jj

«Default visitors
and interfaces»

Visitor ...

«Parser source»

StraightLineParser ...
JavaCC

generates

Key

JTB

visits

Source files Generated files

«Bytecode»

StraightLineParser ...

produces

«Compiler source»

CompilerVisitor ...

JavaC

«Interpreter source»

InterpreterVisitor ...

«Abstract Machine for
Interpreter»

Machine

uses

In this course we will see two implementations of the straight-line language.
One is an interpreter and the other a compiler (to Java bytecode). We will see
them in the lectures on “Parsing in Practice” and “Code Generation”.
This diagram shows the input files at the left. From the grammar specification
file, slpl.jj, the Java Tree Builder (JTB) generates (1) an augmented
grammar specification with actions to build a (concrete syntax) parse tree from
a given source file. JTB also generates (2) Java source code for the syntax tree
nodes, and (3) default visitors and interfaces to visit a parse tree.
The augmented grammar file is processed by JavaCC (the Java “Compiler
Compiler”) to generate the source code of a StraightLineParser, i.e.,
which parses straight-line code and produces parse trees.
The straight-line compiler and interpreter are then implemented as visitors of
the parse tree. The CompilerVisitor will visit parse trees and produce Java
bytecode, whereas the InterpreterVisitor will interpret the parse tree
with the help of a specially designed “abstract machine” for the straight-line
language.
The source code is available here:
git clone git://scg.unibe.ch/lectures-cc-examples

Java classes for trees

abstract class Stm {}
class CompoundStm extends Stm {
 Stm stm1, stm2;
 CompoundStm(Stm s1, Stm s2)

{stm1=s1; stm2=s2;}
}
class AssignStm extends Stm {
 String id; Exp exp;
 AssignStm(String i, Exp e)

{id=i; exp=e;}
}
class PrintStm extends Stm {
 ExpList exps;
 PrintStm(ExpList e) {exps=e;}
}
abstract class Exp {}
class IdExp extends Exp {
 String id;
 IdExp(String i) {id=i;}
}

class NumExp extends Exp {
 int num;
 NumExp(int n) {num=n;}
}
class OpExp extends Exp {
 Exp left, right; int oper;
 final static int Plus=1,Minus=2,Times=3,Div=4;
 OpExp(Exp l, int o, Exp r)

{left=l; oper=o; right=r;}
}
class EseqExp extends Exp {
 Stm stm; Exp exp;
 EseqExp(Stm s, Exp e) {stm=s; exp=e;}
}
abstract class ExpList {}
class PairExpList extends ExpList {
 Exp head; ExpList tail;
 public PairExpList(Exp h, ExpList t)

{head=h; tail=t;}
}
class LastExpList extends ExpList {
 Exp head;
 public LastExpList(Exp h) {head=h;}
}

�41

Here are the syntax tree nodes automatically generated by JTB for
the straight-line language.

Straightline Interpreter and Compiler Runtime

�42

«Straightline
source code»

Examples
StraightLineParser

«Syntax Tree»

Goal ...

generates

Key

visits

CompilerVisitor ...

«Bytecode generation
library»

bcel.jar

bytecode

output

uses

visits

InterpreterVisitor ...

output

Machine

instructs

Here we see the run-time view of both the interpreter and the
compiler. In both cases source code is parse to generate a parse
tree as an intermediate representation.
The interpreter visits the tree and produces instructions for the
tailor-made abstract machine, and producing the output of
running the straight-line code.
The compiler, on the other hand, visits the tree and uses the
BCEL bytecode generation library to produce as output
executable Java bytecode representing the straight-line code.
Executing this bytecode should then produce the same output as
that of the interpreter.

What you should know!

✎ What is the difference between a compiler and an
interpreter?

✎ What are important qualities of compilers?
✎ Why are compilers commonly split into multiple passes?
✎ What are the typical responsibilities of the different parts

of a modern compiler?
✎ How are context-free grammars specified?
✎ What is “abstract” about an abstract syntax tree?
✎ What is intermediate representation and what is it for?
✎ Why is optimization a separate activity?

�43

Can you answer these questions?

✎ Is Java compiled or interpreted? What about Smalltalk?
Ruby? PHP? Are you sure?

✎What are the key differences between modern compilers
and compilers written in the 1970s?

✎Why is it hard for compilers to generate good error
messages?

✎What is “context-free” about a context-free grammar?

�44

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

