
Oscar Nierstrasz

2. Lexical Analysis

Thanks to Jens Palsberg and Tony Hosking
for their kind permission to reuse and adapt
the CS132 and CS502 lecture notes.
http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

Roadmap

> Introduction
> Regular languages
> Finite automata recognizers
> From RE to DFAs and back again
> Limits of regular languages

�2

See, Modern compiler implementation in
Java (Second edition), chapter 2.

Roadmap

> Introduction
> Regular languages
> Finite automata recognizers
> From RE to DFAs and back again
> Limits of regular languages

�3

Lexical Analysis

1. Maps sequences of characters to tokens
2. Eliminates white space (tabs, blanks, comments etc.)

�4
The string value of a token is a lexeme.

Scanner ParserSource
Code

Tokens IR

errors

x = x + y <ID,x> <EQ> <ID,x> <PLUS> <ID,y>

How to specify rules for token classification?

A scanner must recognize various parts of the language’s syntax

White space
<ws> ::= <ws> ’ ’

| <ws> ’\t’
| ’ ’
| ’\t’

Keywords and operators
specified as literal patterns: do, end

Comments
opening and closing delimiters: /* … */

Some parts are easy:

�5

Specifying patterns

Other parts are harder:
Identifiers

alphabetic followed by k alphanumerics (_, $, &, …))

Numbers
integers: 0 or digit from 1-9 followed by digits from 0-9
decimals: integer ’.’ digits from 0-9
reals: (integer or decimal) ’E’ (+ or —) digits from 0-9
complex: ’(’ real ’,’ real ’)’

We need an expressive notation to specify these patterns!

�6A key issue is ...

Roadmap

> Introduction
> Regular languages
> Finite automata recognizers
> From RE to DFAs and back again
> Limits of regular languages

�7

Languages and Operations

Operation Definition

Union L ∪ M = { s ⏐ s ∈ L or s ∈ M }

Concatenation LM = { st ⏐ s ∈ L and t ∈ M }

Kleene closure L* = ∪I=0,∞ Li

Positive closure L+ = ∪I=1,∞ Li

A language is a set of strings

�8

Formally, a language is a set of strings (or “sentences”). We can
perform various operations over languages, such as union,
concatenation etc.
In the slide, L and M are languages, while s and t are strings.
Operations over languages produce new languages by iterating
over strings they contain.
The Kleene closure produces all possible concatenations of
strings in a language L.
Examples:

L = { a, b }, M = { c, d }
LM = { ac, ad, bc, bd }
L* = { ^, a, b, aa, ab, ba, bb, aaa, aab, aba, ... }

Production Grammars

> Powerful formalism for
language description
—Start symbol (S0)
—Production rules (A → abA)
—Non-terminals (A, B)
—Terminals (a,b)

> Rewriting

�9

Context sensitive

Recursively
enumerable

Regular

Context free

A common way to specify languages is with the help of
production grammars. These consist of a set of rewrite rules that
allow you generate all possible strings in a language.
A grammar starts with a start symbol S0, and consists of a
number of rules of the form

A → abA

consisting of non-terminals, like S0 and A, that can be expanded
using further production rules, and terminals, like a and b, that
cannot.
By repeated expending terminals using different rules, one can
generate all possible strings in the language specified by the
grammar.

Detail: The Chomsky Hierarchy

> Type 0: α → β
—Unrestricted grammars generate recursively enumerable

languages. Minimal requirement for recognizer: Turing machine.
> Type 1: αAβ → αγβ

—Context-sensitive grammars generate context-sensitive languages,
recognizable by linear bounded automata

> Type 2: A → γ
—Context-free grammars generate context-free languages,

recognizable by non-deterministic push-down automata
> Type 3: A → a and A → aB

—Regular grammars generate regular languages, recognizable by
finite state automata

NB: A is a non-terminal; α, β, γ are strings of terminals and non-terminals
�10

Since compilers need to recognize languages rather than generate
them, we need a way to turn a grammar into a recogniser.
The Chomsky Hierarchy (named after Noam Chomsky)
formalizes how different constraints over the production rules
produce very different classes of languages. Unrestricted
grammars (i.e., where the left and right-hand sides of the rules
may contain a mix of terminals and non-terminals) are the hardest
to parse, and require a Turing machine to recognize them.
Programming languages are mostly context-free (only non-
terminals on the left-hand side), with occasionally some context-
sensitive features. Typically the tokens of a programming
language (i.e., identifiers, strings, comments etc.) are Type 3 and
can be recognized by a FSA.

https://en.wikipedia.org/wiki/Chomsky_hierarchy

Grammars for regular languages

Regular grammars generate regular languages

Definition:
In a regular grammar, all productions have one of two forms:

1. A → aA
2. A → a
where A is any non-terminal and a is any terminal symbol

These are also called type 3 grammars (Chomsky)

�11

Regular languages can be described by Regular
Expressions

Regular expressions (RE) over an alphabet Σ:
1. ε is a RE denoting the set {ε}
2. If a ∈ Σ, then a is a RE denoting {a}
3. If r and s are REs denoting L(r) and L(s), then:

> (r)⏐(s) is a RE denoting L(r) ∪L(s)
> (r)(s) is a RE denoting L(r)L(s)
> (r)* is a RE denoting L(r)*

�12

We adopt a precedence for operators: Kleene closure, then
concatenation, then alternation as the order of precedence.
For any RE r, there exists a grammar g such that L(r) = L(g)

Epsilon is the set with the “empty” string. As you can see, we
don’t define a+ (1 or more copies of a) or [a] (optional a) as
they can be derived.
Patterns are often specified as regular languages.
Notations used to describe a regular language (or a regular set)
include both regular expressions and regular grammars

Examples

Let Σ = {a,b}

> a⏐b denotes {a,b}

> (a⏐b) (a⏐b) denotes {aa,ab,ba,bb}

> a* denotes {ε,a,aa,aaa,…}

> (a⏐b)* denotes the set of all strings of a’s and b’s
(including ε)

> Universit(ä⏐ae)t Bern(e⏐) ...
�13

Algebraic properties of REs

r⏐s = s⏐r ⏐ is commutative

r⏐(s⏐t) = (r⏐s)⏐t ⏐ is associative

r (st) = (rs)t concatenation is associative

r(s⏐t) = rs⏐rt
(s⏐t)r = sr⏐tr

concatenation distributes over ⏐

εr = r
rε = r

ε is the identity for concatenation

r * = (r⏐ε)* ε is contained in *

r ** = r* * is idempotent

�14

Examples of using REs to specify lexical patterns

identifiers
letter → (a ⏐b ⏐ c ⏐… ⏐z ⏐ A ⏐ B ⏐ C ⏐ … ⏐ Z)
digit → (0⏐1⏐2⏐3⏐4⏐5⏐6⏐7⏐8⏐9)
id → letter (letter ⏐ digit)*

numbers
integer → (+⏐—⏐ ε) (0⏐(1⏐2⏐3⏐… ⏐9) digit *)
decimal → integer . (digit)*
real → (integer ⏐ decimal) E (+ ⏐—) digit *
complex → ’(‘ real ’,’ real ’)’

�15

Roadmap

> Introduction
> Regular languages
> Finite automata recognizers
> From RE to DFAs and back again
> Limits of regular languages

�16

Recognizers

From a regular expression we
can construct a deterministic
finite automaton (DFA)

letter → (a ⏐b ⏐ c ⏐… ⏐z ⏐ A ⏐ B ⏐ C ⏐ … ⏐ Z)
digit → (0⏐1⏐2⏐3⏐4⏐5⏐6⏐7⏐8⏐9)
id → letter (letter ⏐ digit)*

�17

Any regular language can be recognized by a deterministic finite
state automaton (DFA).
A finite state automaton (FSA) has a finite number of states, a
start state, a number of final states, and labelled transitions
between them. An FSA is deterministic if, given a state and a
label, there is always a unique transition to take. In contrast, a
non-deterministic finite automation (NFA) may offer a (non-
deterministic) choice of transitions.
In the example, the start state is 0, the final states are 2 and 3
(leading respectively to acceptance or rejection of the input), and
the transitions are all deterministic.
On any given input of a letter, a digit or another character, there is
always a unique transition available.
The obvious question now is, given a regular expression, how can
we generate the corresponding DFA?

Code for the recognizer

�18

Note that the transitions are encoded in the next_state matrix

Tables for the recognizer

Two tables control the recognizer

char_class char a-z A-Z 0-9 other
value letter letter digit other

next_state
0 1 2 3

letter 1 1 — —
digit 3 1 — —
other 3 2 — —

To change languages, we can just change tables
�19

Automatic construction

> Scanner generators automatically construct code from
regular expression-like descriptions
—construct a DFA
—use state minimization techniques
—emit code for the scanner (table driven or direct code)

> A key issue in automation is an interface to the parser

> lex is a scanner generator supplied with UNIX
—emits C code for scanner
—provides macro definitions for each token (used in the parser)
—nowadays JavaCC, ANTLR, Bison etc. are more popular

�20

NFA example

What about the RE (a⏐b)*abb ?

State s0 has multiple transitions on a!

This is a non-deterministic finite automaton
�21

Review: Finite Automata

A non-deterministic finite automaton (NFA) consists of:
1. a set of states S = { s0 , … , sn }
2. a set of input symbols Σ (the alphabet)
3. a transition function move (δ) mapping state-symbol pairs to sets of states
4. a distinguished start state s0

5. a set of distinguished accepting (final) states F

A Deterministic Finite Automaton (DFA) is a special case of an NFA:
1. no state has a ε-transition, and
2. for each state s and input symbol a, there is at most one edge labeled a

leaving s.

A DFA accepts x iff there exists a unique path through the transition graph from
the s0 to an accepting state such that the labels along the edges spell x.

�22

DFA example

Example: the set of strings containing an even number of
zeros and an even number of ones

The RE is (00⏐11)*((01⏐10)(00⏐11)*(01⏐10)(00⏐11)*)*

�23Note how the RE walks through the DFA.

The states capture whether there are an even number or odd
number of zeroes or ones. This gives 4 possible states.
Note how the RE effectively takes all possible paths through the
DFA, always returning back to the start/accepting state: Initially
we might just visit states s1 and s2, always returning to s0, then
we might visit s3 via s1 or s2, possibly loop back through s1 or
s2, return to s0, loop again through s1 and s2 without visiting s3,
and then repeat any number of times.

DFAs and NFAs are equivalent

1. DFAs are a subset of NFAs

2. Any NFA can be converted into a DFA, by simulating sets
of simultaneous states:
—each DFA state corresponds to a set of NFA states
—NB: possible exponential blowup

�24

The key idea to converting a NFA to a DFA is to construct a new
DFA that simulates taking all possible paths simultaneously
whenever there is a non-deterministic choice. The simulator then
may be in multiple states at once. Since a DFA must always be in
a unique state, the states of the DFA must be all possible subsets
of the NFA states.
In theory this could blow up exponentially, but very often only
few of these subsets are actually reachable in practice.

NFA to DFA using the subset construction

�25

In the NFA we start in s0, so in the DFA we start in {s0}. Then we
simultaneously follow a to s0 and s1, leading to DFA state
{s0,s1}. Alternatively we can follow b back to {s0}.
We continue to follow all possible transitions through the NFA,
thus generating only the reachable states of the DFA.
Although there are 16 possible subsets of states of the NFA, only
4 states are actually reachable, thus avoiding any exponential
explosion.

Roadmap

> Introduction
> Regular languages
> Finite automata recognizers
> From RE to DFAs and back again
> Limits of regular languages

�26

Constructing a DFA from a RE

> RE → NFA
—Build NFA for each term; connect with ε moves

> NFA → DFA
—Simulate the NFA using the subset construction

> DFA → minimized DFA
—Merge equivalent states

> DFA → RE
—Construct Rkij = Rk-1ik (Rk-1kk)* Rk-1kj ∪ Rk-1ij

—Or convert via Generalized NFA (GNFA)

�27

Building a DFA from a regular expression requires several steps.
1.We build a NFA from the RE by using templates representing the individual

subexpressions, and wiring them together with ε transitions (i.e., that can be
taken silently without consuming input).

2.We convert the NFA to a DFA using the simulation approach we have seen
earlier.

3.This may generate a DFA with “too many states”, so we apply a
minimization algorithm that merges equivalent states.

4.We close the loop, showing how from a DFA we can construct the
equivalent RE. To do this, we iteratively rewrite the DFA, replacing labels
on transitions by RE fragments, until we end up with a trivial DFA with two
states and a transition labeled with the RE that we want.

Roadmap

> Introduction
> Regular languages
> Finite automata recognizers
> From RE to DFAs and back again

> RE to NFA
> NFA to DFA
> DFA to minimized DFA
> DFA back to RE

> Limits of regular languages

�28

RE to NFA

�29

Start State

Thee function N takes as argument an RE and generates an
equivalent NFA. N is specified in a recursive rule-based fashion
over the syntax of an RE. The dotted regions in the right-hand
side represent recursive invocations of N.

RE to NFA example: (a⏐b)*abb

abb

(a⏐b)*(a⏐b)

�30(a⏐b)*abb

To generate a NFA from the RE (a⏐b)*abb, we first generate N(a|
b), combining the templates for N(A|B) and N(A).
Next we apply N(A*), adding two new states and three ε
transitions.
We generate N(abb) by combining the N(A) and N(AB)
templates, and finally we wire the two parts together by merging
the states labeled (7) representing the end of (a|b)* and the start of
abb.

Roadmap

> Introduction
> Regular languages
> Finite automata recognizers
> From RE to DFAs and back again

> RE to NFA
> NFA to DFA
> DFA to minimized DFA
> DFA back to RE

> Limits of regular languages

�31

NFA to DFA: the subset construction

Input: NFA N
Output: DFA D with states SD

and transitions TD such that
L(D) = L(N)

Method: Let s be a state in N and
P be a set of states. Use the
following operations:

> ε-closure(s) — set of states of N
reachable from s by ε transitions
alone

> ε-closure(P) — set of states of N
reachable from some s in P by ε
transitions alone

> move(T,a) — set of states of N to
which there is a transition on input a
from some s in P

add state P = ε-closure(s0)
unmarked to SD
while ∃ unmarked state P in SD

mark P
for each input symbol a

U = ε-closure(move(P,a))
if U ∉ SD
then add U unmarked to SD
TD[P,a] = U

end for
end while
ε-closure(s0) is the start state of D
A state of D is accepting if it
contains an accepting state of N

�32

This algorithm simply formalizes the subset construction we saw
earlier.
We begin the the start state s0 of the input NFA N, and we use P to
represent the set of states (a “multi-state”) that we reach by
simultaneously taking all transitions with the same label. Every
time we reach a new multi-state P, we add it to the DFA we are
building, D.
We also add P to the set SD of “unmarked” multi-states that we
have yet to explore.
Whenever we take a P to explore, we “mark” it by removing it
from SD. Whenever we reach a “new” multi-state P we add it to D
and SD. When we run out of multi-states, we are done!

NFA to DFA using subset construction: example

A = {0,1,2,4,7}
B = {1,2,3,4,6,7,8}
C = {1,2,4,5,6,7}
D = {1,2,4,5,6,7,9}
E = {1,2,4,5,6,7,10}

�33

We take as input the NFA at the top and generate the DFA below.
From the start state 0, we can take ε moves to states 1, 2, 4 and 7,
hence our start (multi-)state is A = {0,1,2,4,7}. We add this state
to our DFA.
From A we can take transitions a (from either 2 or 7), or b (from
4). Following a leads us to states 3 or 8. Taking the ε-closure
gives us B = {1,2,3,4,6,7,8}.
Following b from A leads us from state 4 to state 5, whose ε-
closure is C = {1,2,4,5,6,7}.
We can now “mark” A and continue by exploring B and C.
Eventually we reach state E, which includes the end state 10, and
so represents a terminal state for the DFA.

Roadmap

> Introduction
> Regular languages
> Finite automata recognizers
> From RE to DFAs and back again

> RE to NFA
> NFA to DFA
> DFA to minimized DFA
> DFA back to RE

> Limits of regular languages

�34

DFA Minimization

�35http://en.wikipedia.org/wiki/DFA_minimization

Theorem: For each regular language that can be
accepted by a DFA, there exists a DFA with a
minimum number of states.

Minimization approach:
merge equivalent states.

States A and C are
indistinguishable, so they
can be merged!

http://en.wikipedia.org/wiki/DFA_minimization

States A and C can be merged because after b*a we always end
up in state B.
This is analogous to the fact that (a|bb*a) = b*a.

DFA Minimization algorithm

> Create lower-triangular table DISTINCT, initially blank
> For every pair of states (p,q):

—If pf is final and q is not, or vice versa
– DISTINCT(pf,q) = ε

> Loop until no change for an iteration:
—For every pair of states (p,q) and each symbol α

– If DISTINCT(p,q) is blank and  
DISTINCT(δ(p,α), δ(q,α)) is not blank
– DISTINCT(p,q) = α

> Combine all states that are not distinct

�36

The table DISTINCT (initially blank) records for each state if it is
distinct from every other state. Every state is the same as itself, and
DISTINCT(X,Y) ⇔ DISTINCT(Y,X), so we only need a lower
triangle of the table.
Initially we only know that the final state pf is distinct from every
other state q, so we put the label ε to record this in DISTINCT(pf,q)
for all such q.
We now work backwards looking for states with blank fields.
Suppose we do not yet know if p and q are distinct, i.e.,
DISTINCT(p,q) is blank. Now suppose we can take an α transition
from p to δ(p,α) and from q to δ(q,α), but δ(p,α) and δ(q,α) are
DISTINCT, then we can conclude that p and q are also distinct
(since taking the same transition leads to distinct states). We record
this as DISTINCT(p,q) = α.

Minimization in action

�37

C and A are indistinguishable
so can be merged

E is the final state, so distinct from all other states. We mark all
its squares with ε.
Now we see that D has a b-transition to E and has blank entries,
but no other state has b-transitions to E. We therefore mark all its
squares with b. (The mark is the “proof” of distinctness: a b-move
takes A and C both to C, and B to D. Since C and D are both
distinct from E, we know that D is distinct from A, B and C.)
Now we note that B can take a b-move to D, but neither A nor C
can, so we mark those squares with b.
We are left with A and C. An a-move brings both to B and a b-
move brings both to C, so we cannot distinguish them.
There are no other blank squares left, so we are done, and A and
C can be merged.

DFA Minimization example

�38

It is easy to see that this is in fact
the minimal DFA for (a⏐b)*abb …

After merging A and C, we get the new DFA below (A/C=0, B=2,
D=2, E=3).
Actually it is easy to see that this is the minimal DFA:

• Start with the required path abb. This gives us 4 states. Now add the missing
arrows.

• Any a transition brings us to state 1, since we must follow with bb.
• Any b not in the path brings us back to state 0, since we must still follow

with abb.

Roadmap

> Introduction
> Regular languages
> Finite automata recognizers
> From RE to DFAs and back again

> RE to NFA
> NFA to DFA
> DFA to minimized DFA
> DFA back to RE

> Limits of regular languages

�39

DFA to RE via GNFA

> A Generalized NFA is an NFA where transitions may have
any RE as labels

> Conversion algorithm:
1. Add a new start state and accept state with ε-transitions to/from

the old start/end states
2. Merge multiple transitions between two states to a single RE

choice transition
3. Add empty ∅−transitions between states where missing
4. Iteratively “rip out” old states and replace “dangling transitions”

with appropriately labeled transitions between remaining states
5. STOP when all old states are gone and only the new start and

accept states remain

�40

The idea is that we iteratively simplify the GNFA, deleting states,
but maintain equivalence by making the transitions more
complex. At the end, we have a completely trivial GNFA with
only two states, but the transitions (an RE) expresses the whole
GNFA.

GNFA conversion algorithm

1. Let k be the number of states of G, k≥2
2. If k=2, then RE is the label found between qs and qa (start

and accept states of G)
3. While k>2, select qrip ≠ qs or qa

— Q´ = Q – {qrip}
— For any qi ∈ Q´ — {qa} let δ´(qi,qj) = R1 R2* R3 ∪ R4 where: 

R1 = δ´(qi,qrip), R2 = δ´(qrip,qrip), R2 = δ´(qrip,qj), R4 = δ´(qi,qj)
— Replace G by G´

�41

The initial DFA

Add new start and accept states

Add missing empty transitions
(we’ll just pretend they’re there)

An “empty transition” expresses that fact that “you can’t get there
from here”. For example, you cannot get from 0 to s.

Delete an arbitrary state

Fix dangling transitions s→1 and 3→1
Don’t forget to merge the existing transitions!

We have to “repair” all transitions that go through the deleted
node, in particular from s to 1 and from 3 to 1.
The RE from s to 1 is clearly b*a.
Note that there were two original paths from 3 to 1: the path bb*a
via the deleted state 0, as well as the transition a directly from 3
to 1. Merging these yields bb*a|a (which is the same as b*a).

NB: bb*a|a = (bb*|ε)a = b*a

Simplify the RE
Delete another state

NB: aa*b|bb*aa*b = (ε|bb*)aa*b = b*aa*b

Hm … not what we expected

b*aa*b (b*aa*b)* b = (a|b)*abb ?

> We can rewrite:
—b*aa*b (b*aa*b)* b
—b*a*ab (b*a*ab)* b
—(b*a*ab)* b*a* abb

> But does this hold?
—(b*a*ab)* b*a* = (a|b)* We can show that the

minimal DFAs for these
REs are isomorphic …

Proof: Split any string in (a|b)* by occurrences of ab. This will
match (Xab)*X, where X does not contain ab. X is clearly b*a*.

Proof #2 (by @grammarware):
(b*a*ab)*b*a* = (b*a⁺b)*b*a*
 = b*(a⁺b⁺)*a*
 = b*(b*|(a⁺b⁺)*)a*
 = b*(b*|(a⁺b⁺)*|a*)a*
 = b*(a|b)*a*
 = (a|b)*a*
 = (a|b)*

Roadmap

> Introduction
> Regular languages
> Finite automata recognizers
> From RE to DFAs and back again
> Limits of regular languages

�56

Limits of regular languages

Not all languages are regular!

One cannot construct
DFAs to recognize
these languages:

L = { pkqk }
L = { wcwr | w ∈ Σ*, wr is w reversed }

In general, DFAs cannot count!

However, one can construct DFAs for:
• Alternating 0’s and 1’s:

(ε | 1)(01)*(ε | 0)
• Sets of pairs of 0’s and 1’s

(01 | 10)+
�57

So, what is hard?

Certain language features can cause problems:
> Reserved words

—PL/I had no reserved words
—if then then then = else; else else = then

> Significant blanks
—FORTRAN and Algol68 ignore blanks
—do 10 i = 1,25
—do 10 i = 1.25

> String constants
—Special characters in strings
—Newline, tab, quote, comment delimiter

> Finite limits
—Some languages limit identifier lengths
—Add state to count length
—FORTRAN 66 — 6 characters(!) �58

How bad can it get?

Compiler needs context
to distinguish variables
from control constructs!

�59

What you should know!

✎ What are the key responsibilities of a scanner?
✎ What is a formal language? What are operators over

languages?
✎ What is a regular language?
✎ Why are regular languages interesting for defining

scanners?
✎ What is the difference between a deterministic and a

non-deterministic finite automaton?
✎ How can you generate a DFA recognizer from a regular

expression?
✎ Why aren’t regular languages expressive enough for

parsing?

�60

Can you answer these questions?

✎Why do compilers separate scanning from parsing?
✎Why doesn’t NFA → DFA translation normally result in an

exponential increase in the number of states?
✎Why is it necessary to minimize states after translation a

NFA to a DFA?
✎How would you program a scanner for a language like

FORTRAN?

�61

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

