
Oscar Nierstrasz

7. Code Generation

Thanks to Jens Palsberg and Tony Hosking
for their kind permission to reuse and adapt
the CS132 and CS502 lecture notes.
http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

Roadmap

�2

> Runtime storage organization
> Procedure call conventions
> Instruction selection
> Register allocation
> Example: generating Java bytecode

See Modern compiler implementation in
Java (Second edition), chapters 6 & 9.

Roadmap

�3

> Runtime storage organization
> Procedure call conventions
> Instruction selection
> Register allocation
> Example: generating Java bytecode

Typical run-time storage organization

�4

• Allows both stack and heap
maximal freedom.

• Code and static data may be
separate or intermingled.

Heap grows “up”, stack grows “down”.

In a 32-bit architecture, memory addresses range from from 0 to
4GB, broken into pages, of which only the low and the high
pages are actually allocated. The low pages hold the compiled
program code, static data, and heap data. The heap “grows”
upwards as needed. High memory addresses refer to the run-time
stack. They “grow” downward with each procedure call and
“shrink” upward with each return.
Certain memory pages (e.g., holding compiled code) may
possibly be protected against modification.

The Procedure Abstraction

> The procedure abstraction supports separate compilation
—build large programs
—keep compile times reasonable
— independent procedures

> The linkage convention (calling convention):
—a social contract — procedures inherit a valid run-time environment

and restore one for their parents
—platform dependent — code generated at compile time

�5

Procedures as abstractions

�6

function foo()
{
 int a, b;
 ...
 bar(a);
 ...
}

function bar(int a)
{
 int x;
 ...
 bar(x);
 ...
}

bar() must preserve foo()’s state while executing.
what if bar() is recursive?

Every procedure requires memory to store its arguments, local
variables, and other information (e.g., where to return to). In
FORTRAN, which originally did not support recursion, the
memory was allocated statically. With the introduction of
recursion, each procedure invocation needs its own private
memory region which is dynamically allocated (and released).
This naturally leads to the construct of the run-time procedure call
stack.

See also: https://en.wikipedia.org/wiki/Call_stack

Activation records

�7

incoming
arguments

outgoing
arguments1 2

3

4
5

6 7

Each procedure activation has an “activation record” or “stack
frame”. Details may vary depending on the implementation. In
this example:

1.the callee’s incoming arguments are stored in the caller’s stack frame
2.the callee stores the return address in the code to jump to on completion
3.each frame has space to hold the local variables of the procedure
4.the callee saves the values of the registers (to be restored on return)
5.outgoing arguments for further calls are stored here (just like 1 above)
6.the frame pointer identifies the start of the current frame on the stack
7.the stack pointer points to the end of the stack

Registers

�8

> Typical machine has many of them
> Caller-save vs. Callee-save

—Convention depending on architecture
—Used for nifty optimizations

– When value is not needed after call the caller puts the value in a caller-
save register

– When value is needed in multiple called functions the caller saves it only
once

> Parameter passing put first k arguments in registers
(k=4..6)
—avoids needless memory traffic because of

– leaf procedures (many)
– interprocedural register allocation

—same with the return address

Recall that a limited number of registers constitute the working
memory of the CPU. Values must be explicitly loaded from
memory to perform operations with them, or stored back to
memory when they are modified.
Whenever a procedure calls another one, the current values of the
registers must be saved so that the callee may freely use all the
registers, and upon return they must be restored so that the caller
can safely assume that the registers are still valid.
The responsibility for saving and restoring registers may lie either
with the caller or the callee (with various tradeoffs).

Procedures as control abstractions

�9

• On entry, establish p’s
environment

• During a call, preserve
p’s environment

• On exit, tear down p’s
environment

The prologue of a procedure p prepares the stack and registers for
the body of the procedure to run. Typical actions are to push the
current stack and frame pointers to allocate a new frame.
The epilogue performs the reverse clean up actions.

See also: http://en.wikipedia.org/wiki/Function_prologue

Procedure linkage contract

Caller Callee

Call

pre-call
1. allocate basic frame
2. evaluate & store parameters
3. store return address
4. jump to child

prologue
1. save registers, state
2. store FP (dynamic link)
3. set new FP
4. store static link to outer scope
5. extend basic frame for local

data
6. initialize locals
7. fall through to code

Return

post-call
1. copy return value
2. de-allocate basic frame
3. restore parameters (if copy

out)

epilogue
1. store return value
2. restore state
3. cut back to basic frame
4. restore parent’s FP
5. jump to return address �10

At compile time, generate code to do this.
At run time, the code manipulates the frame and data areas.

A basic frame does not (yet) have space for local data.
The static link is for nested functions – the static link points to the
frame of the enclosing function (if any) [Appel p 124].

Variable scoping

�11

Who sees local variables? Where can they be allocated?

With downward exposure the compiler can allocate
local variables in frames on the run-time stack.

Downward exposure
• called procedures see
caller variables

• dynamic scoping vs
lexical scoping

Upward exposure
• procedures can return
references to variables

• functions that return
functions

With downward exposure, a procedure can pass (a reference to) a
local variable to a called procedure. The variable can be allocated
on the stack since it will be guaranteed to be available to all
called procedures.
With dynamic scoping, callees have access to the environment of
the caller (this is evil, and generally avoided in modern
programming languages).
With upward exposure, if a called procedure returns a reference to
a local variable, that variable must be allocated on the heap, as the
stack frame of the callee will be popped after the return.
Functions that return functions (i.e., blocks or anonymous
functions) are just a generalization of this idea. Such functions
may capture the environment in which they are defined, in which
case the whole environment may need to persist after the callee
returns.

Higher-order functions

�12

fun add(x)
 let fun sum(y) = x+y
 return sum
end

val inc = add(1)
val dec = add(-1)

val x = inc(5)
val y = dec(6)

Nested functions
+

Functions returned as
values

=
Higher-order

functions

Pascal has nested functions but no functions returned as values.
C has functions as values but not nested. ML, Scheme, Smalltalk,
Java etc. all have higher-order functions.
In the example, function add() returns locally-defined function
sum(). Note that sum() uses the argument x passed to add(),
hence this value must continue to be available after add()
returns summ() to its caller. The environment of add()
therefore cannot exist purely on the run-time stack, as it will
disappear after add() returns.

Lexically nested scopes

> view variables as (level, offset) pairs
—reflects scoping

> helps look up name to find most recent declaration
— If level = current level then variable is local,
— else must generate code to look up stack

> Must maintain
—access links to previous stack frame
—table of access links (display)

�13

Modern languages are lexically scoped. A nested scope has access
to its surrounding scope. A nested block has its own local
variables, but can access the variables of its surroundings blocks.
Similarly, nested functions have their own local variables, but
may access the variables of their surrounding functions.
By encoding variables as (level,offset) pairs, the run-time system
can keep track of which scope variables are in, and whether they
are to be found in the current stack frame or an earlier one.

Roadmap

�14

> Runtime storage organization
> Procedure call conventions
> Instruction selection
> Register allocation
> Example: generating Java bytecode

Calls: Saving and restoring registers

�15

callee saves caller saves

caller’s
registers

Call includes bitmap of caller’s
registers to be saved/restored.
Best: saves fewer registers,
compact call sequences

Caller saves and restores own
registers. Unstructured returns (e.g.,
exceptions) cause some problems
to locate and execute restore code.

callee’s
registers

Backpatch code to save registers
used in callee on entry, restore on
exit. Non-local gotos/exceptions
must unwind dynamic chain to
restore callee-saved registers.

Bitmap in callee’s stack frame is
used by caller to save/restore.
Unwind dynamic chain as at left.

all
registers

Easy. Non-local gotos/exceptions
must restore all registers from
“outermost callee”

Easy. (Use utility routine to keep
calls compact.) Non-local gotos/
exceptions need only restore
original registers.

The top-left corner (highlighted) is the usual approach.

Call/return (callee saves)

1. caller pushes space for return value
2. caller pushes SP (stack pointer)
3. caller pushes space for: return address, static

chain, saved registers
4. caller evaluates and pushes actuals onto stack
5. caller sets return address, callee’s static chain,

performs call
6. callee saves registers in register-save area
7. callee copies by-value arrays/records using

addresses passed as actuals
8. callee allocates dynamic arrays as needed
9. on return, callee restores saved registers
10.callee jumps to return address

�16See also slide 10 (Procedure linkage contract)

Note that the stack in the figure is upside down (grows
“downward”, so the “top” is at the bottom). The caller leaves
space at the “top” for the return value. The “incoming arguments”
here belong to the caller, but they can also be part of the callee’s
stack frame. (The terminology is confusing, as “incoming” is also
used to refer to parameters that the callee can use to store results.)
The caller here pushes space for locals etc onto the callee’s stack
frame, and evaluates and pushes the actual arguments onto the
stack (presumably the “incoming” arguments).
The callee saves the registers in the area allocated by the caller,
and restores them on return. When the callee returns, it leaves just
the return value on the stack. The epilogue of the caller (invoked
at the return address) will clean up the stack and frame pointers.

MIPS registers

Name Number Use Callee must preserve?
$zero $0 constant 0 N/A
$at $1 assembler temporary no

$v0–$v1 $2–$3 Values for function returns and
expression evaluation no

$a0–$a3 $4–$7 function arguments no
$t0–$t7 $8–$15 temporaries no
$s0–$s7 $16–$23 saved temporaries yes
$t8–$t9 $24–$25 temporaries no
$k0–$k1 $26–$27 reserved for OS kernel no

$gp $28 global pointer yes
$sp $29 stack pointer yes
$fp $30 frame pointer yes
$ra $31 return address N/A

�17
http://en.wikipedia.org/wiki/MIPS_architecture

MIPS = Microprocessor without Interlocked Pipeline Stages

MIPS procedure call convention

> Philosophy:
—Use full, general calling sequence only when necessary
—Omit portions of it where possible  

(e.g., avoid using FP register whenever possible)

> Classify routines:
—non-leaf routines call other routines
— leaf routines don’t

– identify those that require stack storage for locals
– and those that don’t

�18

MIPS procedure call convention

> Pre-call:
1. Pass arguments: use registers a0 . . . a3; remaining

arguments are pushed on the stack along with save space
for a0 . . . a3

2. Save caller-saved registers if necessary
3. Execute a jal instruction:

– jumps to target address (callee’s first instruction), saves return
address in register ra

�19

jal = jump and link
Essentially a call subroutine instruction.

MIPS procedure call convention

> Prologue:
1. Leaf procedures that use the stack and non-leaf procedures:

a) Allocate all stack space needed by routine:
– local variables
– saved registers
– arguments to routines called by this routine

subu $sp, framesize
b) Save registers (ra etc.), e.g.:

sw $31, framesize+frameoffset($sp)
sw $17, framesize+frameoffset-4($sp)
sw $16, framesize+frameoffset-8($sp)
where framesize and frameoffset (usually negative) are

compile- time constants
2. Emit code for routine

�20

subu = subtract unsigned
This updates the stack pointer by the current framesize. (Recall that the stack
grows downward.)

sw = store word
$31 is the return address, $16, $17 are temporaries etc. Store them on the stack
at the corresponding offset from the stack pointer.

MIPS procedure call convention

> Epilogue:
1. Copy return values into result registers (if not already there)
2. Restore saved registers

lw reg, framesize+frameoffset-N($sp)

3. Get return address
lw $31, framesize+frameoffset($sp)

4. Clean up stack
addu $sp,framesize

5. Return
j $31

�21

lw = load word
addu = add unsigned
j = jump

Roadmap

�22

> Runtime storage organization
> Procedure call conventions
> Instruction selection
> Register allocation
> Example: generating Java bytecode

Instruction selection

> Simple approach:
—Macro-expand each IR tuple/subtree to machine instructions
—Expanding independently leads to poor code quality
—Mapping may be many-to-one
—“Maximal munch” works well with RISC

> Interpretive approach:
—Model target machine state as IR is expanded

�23

The “maximal munch” principle is the rule that as much of the
input as possible should be processed when creating some
construct.
In this case, try to macro-expand the largest IR munch that you
can match.

See: https://en.wikipedia.org/wiki/Maximal_munch

Register and temporary allocation

> Limited # hard registers
—assume pseudo-register for each temporary
—register allocator chooses temporaries to spill
—allocator generates mapping
—allocator inserts code to spill/restore pseudo-registers to/

from storage as needed

�24

Note the analogy with page faults: pretend you have an unlimited
number of the resources you need (i.e., registers, memory pages),
and take special action when you run out.

IR tree patterns

> A tree pattern characterizes a fragment of the IR
corresponding to a machine instruction
—Instruction selection means tiling the IR tree with a minimal

set of tree patterns

�25

MIPS tree patterns (example)

�26…

At right are tree patterns to match; at left is the code to be
emitted.
(The rest of the example is elided.)

Optimal tiling

> “Maximal munch”
—Start at root of tree
—Tile root with largest tile that fits
—Repeat for each subtree

> NB: (locally) optimal ≠ (global) optimum
—optimum: least cost instructions sequence (shortest, fewest cycles)
—optimal: no two adjacent tiles combine to a lower cost tile
—CISC instructions have complex tiles ⇒ optimal ≠ optimum
—RISC instructions have small tiles ⇒ optimal ≈ optimum

�27

Optimum tiling

�28

> Dynamic programming
—Assign cost to each tree node — sum of instruction costs of best

tiling for that node (including best tilings for children)

http://en.wikipedia.org/wiki/Dynamic_programming

If we use the tile +(•,•) then we will still need two more tiles to
generate the code for the constants. If we use tiles +(•,CONST) or
+(CONST,•), then we only need one more tile to complete the
code, so this is a better choice.

Roadmap

�29

> Runtime storage organization
> Procedure call conventions
> Instruction selection
> Register allocation
> Example: generating Java bytecode

Register allocation

�30

> Want to have value in register when used
— limited resources
—changes instruction choices
—can move loads and stores
—optimal allocation is difficult (NP-complete)

Liveness analysis

> Problem:
—IR has unbounded # temporaries
—Machines has bounded # registers

> Approach:
—Temporaries with disjoint live ranges can map to same register
—If not enough registers, then spill some temporaries (i.e., keep in

memory)
> The compiler must perform liveness analysis for each

temporary
—It is live if it holds a value that may still be needed

�31

Control flow analysis

�32

> Liveness information is a form of data flow
analysis over the control flow graph (CFG):
—Nodes may be individual program statements or basic

blocks
—Edges represent potential flow of control

Liveness (review)

�33

A variable v is live on edge e if there is a path from e
to a use of v not passing through a definition of v

a and b are never live at the same time, so
two registers suffice to hold a, b and c

Here we see that a and b are not live at the same time, so two
registers suffice: one for both a and b and the other for c.
See chapter 10 of Appel (2nd edition) for this example and details
of algorithms.
NB: liveness analysis might also reveal errors — e.g., if c is a
local, then it has not been initialized.

Roadmap

�34

> Runtime storage organization
> Procedure call conventions
> Instruction selection
> Register allocation
> Example: generating Java bytecode

Straightline Compiler Files

�35

As we have seen (lecture 1: intro, and lecture 4: parsing in
practice), we use Java Tree Builder to generate (concrete) syntax
tree nodes from the grammar specification of our toy straightline
language. JTB also generates default visitors for the syntax tree,
and default actions to build the tree in the expanded grammar
spec.
Our compiler extends the default visitor, visiting the syntax tree
nodes and generating code.
Recall that the source code is available here:
git clone git://scg.unibe.ch/lectures-cc-examples

Straightline Compiler Runtime

�36

The visitor
package compiler;
...
public class CompilerVisitor extends DepthFirstVisitor {
Generator gen;

public CompilerVisitor(String className) {
gen = new Generator(className);

}

public void visit(Assignment n) {
n.f0.accept(this);
n.f1.accept(this);
n.f2.accept(this);
String id = n.f0.f0.tokenImage;
gen.assignValue(id);

}

public void visit(PrintStm n) {
n.f0.accept(this);
gen.prepareToPrint();
n.f1.accept(this);
n.f2.accept(this);
n.f3.accept(this);
gen.stopPrinting();

}
...

}

This time the visitor is
responsible for
generating bytecode.

�37

Since the syntax tree generated from our grammar by JTB is rather
generic, it has ugly generic names for the field holding subnodes.
We make use of a “Generator” object that keeps track of semantic
information and emits the actual bytecode with the help of the BCEL
framework.
When we visit a print statement, we first visit the “print” token (f0),
then the nodes for “()”, the expression list, and “)” (f1 through f3). We
prepare for printing, then visit the individual expression subnodes,
and finally complete the printing action.
As we shall see, gen.prepareToPrint() pushes the Java
print command onto the stack. Visiting the expression list will
leave the result of each expression on the stack. Finally
gen.stopPrinting() will cause the print method to be
executed.

Bytecode generation with BCEL
package compiler;
...
import org.apache.bcel.generic.*;
import org.apache.bcel.Constants;

public class Generator {
private Hashtable<String,Integer> symbolTable;
private InstructionFactory factory;
private ConstantPoolGen cp;
private ClassGen cg;
private InstructionList il;
private MethodGen method;
private final String className;

public Generator (String className) {
this.className = className;
symbolTable = new Hashtable<String,Integer>();
cg = new ClassGen(className, "java.lang.Object", className + ".java",

Constants.ACC_PUBLIC | Constants.ACC_SUPER, new String[] {});

cp = cg.getConstantPool();
factory = new InstructionFactory(cg, cp);

il = new InstructionList();
method = new MethodGen(Constants.ACC_PUBLIC | Constants.ACC_STATIC,

 Type.VOID, new Type[] { new ArrayType(Type.STRING, 1) },
 new String[] { "arg0" }, "main", className, il, cp);
}

...

We introduce a separate
class to introduce a
higher-level interface for
generating bytecode

�38

Creates a
class with a
static main!

Since our toy language is not object-oriented, we simply generate
a class with a single static main method to represent our program.
The Generator holds a symbol table and a number of objects
needed to interact with BCEL (such as the
InstructionFactory and the InstructionList).
The Java VM is stack-based machine, so the instructions we
generate push values onto the stack, or evaluate instructions that
pop values from the top of the stack and leave behind the result.

Invoking print methods
private void genPrintTopNum() {
il.append(factory.createInvoke("java.io.PrintStream", "print",

Type.VOID, new Type[] { Type.INT }, Constants.INVOKEVIRTUAL));
}
private void genPrintString(String s) {
pushSystemOut();
il.append(new PUSH(cp, s));
il.append(factory.createInvoke("java.io.PrintStream", "print",

Type.VOID, new Type[] { Type.STRING }, Constants.INVOKEVIRTUAL));
}
private void pushSystemOut() {
il.append(factory.createFieldAccess(

"java.lang.System", "out",
new ObjectType("java.io.PrintStream"), Constants.GETSTATIC));

}
public void prepareToPrint() {
pushSystemOut();

}
public void printValue() {
genPrintTopNum();
genPrintString(" ");

}
public void stopPrinting() {
genPrintTopNum();
genPrintString("\n");

}

To print, we must push
System.out on the stack,
push the arguments, then
invoke print.

�39

Binary operators

public void add() {
il.append(new IADD());

}

public void subtract() {
il.append(new ISUB());

}

public void multiply() {
il.append(new IMUL());

}

public void divide() {
il.append(new IDIV());

}

public void pushInt(int val) {
il.append(new PUSH(cp, val));

}

Operators simply consume
the top stack items and push
the result back on the stack.

�40

Variables

public void assignValue(String id) {
il.append(factory.createStore(Type.INT, getLocation(id)));

}

public void pushId(String id) {
il.append(factory.createLoad(Type.INT, getLocation(id)));

}

private int getLocation(String id) {
if(!symbolTable.containsKey(id)) {
symbolTable.put(id, 1+symbolTable.size());

}
return symbolTable.get(id);

}
Variables must be
translated to locations.
BCEL keeps track of the
needed space.

�41

Code generation

public void generate(File folder) throws IOException {
il.append(InstructionFactory.createReturn(Type.VOID));
method.setMaxStack();
method.setMaxLocals();
cg.addMethod(method.getMethod());
il.dispose();
OutputStream out =
new FileOutputStream(new File(folder, className + ".class"));

cg.getJavaClass().dump(out);
}

Finally we generate the
return statement, add the
method, and dump the
bytecode.

�42

Generated class files
public class Eg3 {
 public static void main(java.lang.String[] arg0);
 0 getstatic java.lang.System.out : java.io.PrintStream [12]
 3 iconst_1
 4 istore_1
 5 iload_1
 6 iload_1
 7 iload_1
 8 imul
 9 iadd
 10 iload_1
 11 iadd
 12 istore_1
 13 iload_1
 14 invokevirtual java.io.PrintStream.print(int) : void [18]
 17 getstatic java.lang.System.out : java.io.PrintStream [12]
 20 ldc <String " "> [20]
 22 invokevirtual java.io.PrintStream.print(java.lang.String) : void [23]
 25 getstatic java.lang.System.out : java.io.PrintStream [12]
 28 iload_1
 29 iconst_1
 30 iadd
 31 invokevirtual java.io.PrintStream.print(int) : void [18]
 34 getstatic java.lang.System.out : java.io.PrintStream [12]
 37 ldc <String "\n"> [25]
 39 invokevirtual java.io.PrintStream.print(java.lang.String) : void [23]
 42 return
}

Generated from:

�43

"print((a := 1; a := a+a*a+a, a),a+1)"

Decompiling the generated class files

�44

“Just for fun”, we decompile the generated bytecode to see the
equivalent Java code.
We used the JD Java decompiler: http://jd.benow.ca

�45

What you should know!

✎ How is the run-time stack typically organized?
✎ What is the “procedure linkage contract”?
✎ What is the difference between the FP and the SP?
✎ What are storage classes for variables?
✎ What is “maximal munch”?
✎ Why is liveness analysis useful to allocate registers?
✎ How does BCEL simplify code generation?

�46

Can you answer these questions?

✎Why does the run-time stack grow down and not up?
✎ In Java, which variables are stored on the stack?
✎Does Java support downward or upward exposure of

local variables?
✎Why is optimal tiling not necessarily the optimum?
✎What semantic analysis have we forgotten to perform in

our straightline to bytecode compiler?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

