
Oscar Nierstrasz

8. Bytecode and Virtual Machines

Original material prepared by  
Adrian Lienhard and Marcus Denker

Roadmap

> Introduction
> Bytecode
> The heap
> Interpreter
> Automatic memory management
> Threading System
> Optimizations

�2

References

> Virtual Machines, Iain D. Craig, Springer, 2006
> Back to the Future – The Story of Squeak, A Practical Smalltalk

Written in Itself, Ingalls et al, OOPSLA ’97
> Smalltalk-80, the Language and Its Implementation (AKA “the

Blue Book”), Goldberg, Robson, Addison-Wesley, ’83
— http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf

> The Java Virtual Machine Specification, Second Edition
— http://java.sun.com/docs/books/jvms/

> Stacking them up: a Comparison of Virtual Machines, Gough,
IEEE’01

> Virtual Machine Showdown: Stack Versus Registers, Shi, Gregg,
Beatty, Ertl, VEE’05

�3

http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://java.sun.com/docs/books/jvms/

Birds-eye view

A virtual machine is an abstract computing
architecture supporting a programming language
in a hardware-independent fashion

Z1, 1938
�4

Roadmap

> Introduction
> Bytecode
> The heap
> Interpreter
> Automatic memory management
> Threading System
> Optimizations

�5

Pre-processor

Program

Parser Code
Generator Assembler

Parse tree / IR Machine codeAssembly code

InterpreterTranslator Bytecode
Generator

Program ... Bytecode

Bytecode
Interpreter

JIT Compiler

Implementing a Programming Language

�6

How are VMs implemented?

Typically using an efficient and portable language
such as C, C++, or assembly code

Pharo VM platform-independent part written in Slang:  
– subset of Smalltalk, translated to C  
– core: 600 methods or 8k LOC in Slang  
– Slang allows one to simulate VM in Smalltalk

�7

In this lecture we will look at the VM of Pharo Smalltalk, as it is
based closely on the original Smalltalk-80 VM. On the one hand
it is simpler than the Java VM, and on the other hand it heavily
influenced VM technology that followed.
A VM is typically implemented in C. The Pharo VM is written in
a subset of Smalltalk that can either be directly interpreted as
Smalltalk code (useful for debugging), or translated to C.

Smalltalk

�8

The Smalltalk language and its
VM implementation are
specified in the “Blue Book”.

In this lecture we won’t attempt to introduce Smalltalk itself,
except to say that it is a classical dynamically-typed object-
oriented language. The key difference to more recent languages
like Python or Ruby, is that it supports live programming.
Smalltalk programs are always running in a live environment,
which is incrementally modified by adding or modifying classes
and methods.
Many modern Smalltalk implementations are based on or inspired
by the Blue Book.

Adele Goldberg and David Robson. Smalltalk 80: the Language and its
Implementation, Addison Wesley, Reading, Mass., May 1983.
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf

Main Components of a VM

�9

The interpreter
The threading System
The heap
Automatic memory management

A Virtual Machine must typically include:
• a bytecode interpreter
• a threading system to manage processes of the interpreted language
• heap storage for running programs
• a garbage collector to detect and free unused heap storage

Pros and Cons of the VM Approach

Pros
> Platform independence of application code  

“Write once, run anywhere”
> Simpler programming model
> Security
> Optimizations for different hardware architectures

Cons
> Execution overhead
> Not suitable for system programming

�10

Roadmap

> Introduction
> Bytecode
> The heap
> Interpreter
> Automatic memory management
> Threading System
> Optimizations

�11

The Pharo Virtual Machine

> Virtual machine provides a virtual processor
—Bytecode: The “machine-code” of the virtual machine

> Smalltalk (like Java): Stack machine
—easy to implement interpreters for different processors
—most hardware processors are register machines

> Pharo VM: Implemented in Slang
—Slang: Subset of Smalltalk. (“C with Smalltalk Syntax”)
—Translated to C

�12

Bytecode is analogous to assembler, except it targets a virtual
machine rather than a physical one. Many VMs are stack
machines: the generated bytecode pushes values onto a stack, and
executes operations that consume one or more values on the top
of the stack, replacing them with results.

Bytecode in the CompiledMethod

> CompiledMethod format:

Number of
temps, literals...

Array of all
Literal Objects

Pointer to
Source

Header

Literals

Bytecode

Trailer

(Number methodDict at: #asInteger) inspect

(Number>>#asInteger) inspect

�13

Smalltalk is unusual in that everything is consistently represented
as objects down to a very low level, including compiled methods.
We exploit this here to inspect the asInteger method of the
Number class.
A compiled method consists of:

• a header that provides bookkeeping information (number of local variables
etc.)

• an array of literal objects (constants) used within the method
• the actual bytecode to be executed
• a trailer that points back to the source code (useful for tools)

The code in the slide asks the Number class for its asInteger
method (which is looked up in its method dictionary), and then
sends it the inspect method to pop up an object inspector on
the actual compiled method.
NB: the last four “bytecodes” are actually the source pointer.

Bytecodes: Single or multibyte

> Different forms of bytecodes:
—Single bytecodes:

– Example: 112: push self

—Groups of similar bytecodes
– 16: push temp 1
– 17: push temp 2
– up to 31

—Multibyte bytecodes
– Problem: 4 bit offset may be too small
– Solution: Use the following byte as offset
– Example: Jumps need to encode large jump offsets

Type Offset
4 bits 4 bits

�14

Smalltalk bytecodes are encoded in 8 bits, so there are up to 256
of them, but some of these are actually groups of bytecodes in
which the 4 bits represent an offset.

> Smalltalk code:

> Symbolic Bytecode

Example: Number>>asInteger

Number>>asInteger
"Answer an Integer nearest
the receiver toward zero."

^self truncated

17 <70> self
18 <D0> send: truncated
19 <7C> returnTop

�15

In Smalltalk code, the asInteger method of a number just sends
the message “truncated” to self (AKA “this”), and
returns the result.
The corresponding bytecode:

1.pushes self onto the stack
2.sends the message “truncated” (stored as a literal in the compiled

method) — this causes self to be popped and the result of the truncated
method to be left on the stack

3.(pops and) returns the top of the stack

Example: Step by Step

> 17 <70> self
—Byte code 112: the receiver (self) is pushed on the stack

> 18 <D0> send: truncated
—Bytecode 208: send literal selector 1
—Get the selector from the first literal
—start message lookup in the class of the object that is on top of the

stack
—result is pushed on the stack

> 19 <7C> returnTop
—Byte code 124: return the object on top of the stack to the calling

method

�16

Pharo Bytecode

�17

> 256 Bytecodes, four
groups:

—Stack Bytecodes
– Stack manipulation:  

push / pop / dup

—Send Bytecodes
– Invoke Methods

—Return Bytecodes
– Return to caller

—Jump Bytecodes
– Control flow inside a method

The table is from page 596 of the “Blue book.”

Stack Bytecodes

> Push values on the stack
—e.g., temps, instVars, literals
—e.g: 16 - 31: push instance variable

> Push Constants
—False/True/Nil/1/0/2/-1

> Push self, thisContext
> Duplicate top of stack
> Pop

�18

Sends and Returns

> Sends: receiver is on top of stack
—Normal send
—Super Sends
—Hard-coded sends for efficiency, e.g. +, -

> Returns
—Return top of stack to the sender
—Return from a block
—Special bytecodes for return self, nil, true, false (for

efficiency)

�19

> Control Flow inside one method
—Used to implement control-flow efficiently
—Example:

Jump Bytecodes

17 <76> pushConstant: 1
18 <77> pushConstant: 2
19 <B2> send: <
20 <99> jumpFalse: 23
21 <20> pushConstant: 'true'
22 <90> jumpTo: 24
23 <73> pushConstant: nil
24 <7C> returnTop

^ 1<2 ifTrue: ['true']

�20

The example Smalltalk code sends “<2” to 1, resulting in a
Boolean object. This object is sent the keyword message
ifTrue: with a block as an argument. Only if the result is true,
will the block (in square brackets) be evaluated to the string
'true'. The result is returned (“^” symbol in Smalltalk).
The bytecode achieves this by:

• pushing 1 and 2 onto the stack
• sending the message <, thus consuming these values and leaving a Boolean

on top
• the ifTrue: “method” is inlined as a jump, causing either the 'true' string or

nil to be pushed and returned

Roadmap

> Introduction
> Bytecode
> The heap
> Interpreter
> Automatic memory management
> Threading System
> Optimizations

�21

Object Memory Layout

32-bit direct-pointer scheme

Reality is more complex: 
– 1-word header for instances of
compact classes 
– 2-word header for normal objects 
– 3-word header for large objects

�22

Objects in Smalltalk reside in heap storage. (A snapshot of the
heap can be saved as an “image” file that can be restarted at a
later time.)
Until very recently, objects were identified by 32-bit direct
pointers (as of 2016, 64-bit pointers are supported).
The storage for a regular object consist of two headers and a
series of fields. The first header identifies the class of the object
(classes are also objects, so this is just an object pointer). The
second header contains bookkeeping information. Each of the
fields is an object pointer.

Different Object Formats

> fixed pointer fields
> indexable types: 

– indexable pointer fields (e.g., Array) 
– indexable weak pointer fields (e.g., WeakArray)  
– indexable word fields (e.g., Bitmap)  
– indexable byte fields (e.g., ByteString)

Object format (4bit) 
0 no fields 
1 fixed fields only 
2 indexable pointer fields only 
3 both fixed and indexable pointer fields 
4 both fixed and indexable weak fields 
6 indexable word fields only 
8-11 indexable byte fields only 
12-15 ...

�23

In practice, there are several different kinds of object formats are
supported.
The first bit of an object pointer indicates if the object is a
SmallInteger (the remaining bits encode the number).
Otherwise it is a “regular” object.
Regular objects might have named fields, or possibly indexed
fields (i.e., Array-like objects).

“Answer the first object on the heap”
anObject someObject

“Answer the next object on the heap”
anObject nextObject

Excludes small integers!

Iterating Over All Objects in Memory

|count|
count := 0.
SystemNavigation default allObjectsDo:

[:anObject | count := count + 1].
count 529468

SystemNavigation>>allObjectsDo: aBlock
| object endMarker |
object := self someObject.
endMarker := Object new.
[endMarker == object]

whileFalse: [aBlock value: object.
object := object nextObject]

�24

Roadmap

> Introduction
> Bytecode
> The heap
> Interpreter
> Automatic memory management
> Threading System
> Optimizations

�25

Stack vs. Register VMs

Stack machines
• Smalltalk, Java and most other VMs
• Simple to implement for different hardware architectures
• Very compact code

Register machines
• Potentially faster than stack machines
• Only a few register VMs exist, e.g., Parrot VM (Perl6)

The VM provides a virtual processor
that interprets bytecode instructions

�26

Interpreter State and Loop

Interpreter state  
– instruction pointer (ip): points to current bytecode  
– stack pointer (sp): topmost item in the operand stack 
– current active method or block context 
– current active receiver and method

Interpreter loop 
1. branch to appropriate bytecode routine  
2. fetch next bytecode  
3. increment instruction pointer  
4. execute the bytecode routine  
5. return to 1.

�27

Method Contexts

method header:
– primitive index
– number of args
– number of temps
– large context flag
– number of literals

�28

A method context is an object that represents an activation record
(stack frame) for a method invocation. Each method context
points to the context of its caller, thus constituting a stack of
contexts.
Note how the ip points to a bytecode in the compiled method,
while the sp points to a location in the operand stack.

Stack Manipulating Bytecode Routine

Example: bytecode <70> self

Interpreter>>pushReceiverBytecode
 self fetchNextBytecode.
 self push: receiver

Interpreter>>push: anObject
 sp := sp + BytesPerWord.
 self longAt: sp put: anObject

�29

This bytecode pushes self on the stack. Note that self refers
to the receiver of the message, while self in the
pushReceiverBytecode method refers to the
Interpreter instance. (We want to push the receiver, not the
bytecode interpreter!)
The push: method increments the sp by enough bytes to hold an
object pointer (i.e., one word), and then writes that word.

Stack Manipulating Bytecode Routine

Example: bytecode <01> pushRcvr: 1

Interpreter>>pushReceiverVariableBytecode
 self fetchNextBytecode.
 self pushReceiverVariable: (currentBytecode bitAnd: 16rF)

Interpreter>>pushReceiverVariable: fieldIndex
 self push: (self fetchPointer: fieldIndex ofObject: receiver)

Interpreter>>fetchPointer: fieldIndex ofObject: oop
 ^ self longAt: oop + BaseHeaderSize + (fieldIndex * BytesPerWord)

�30

The first 16 bytecodes are all implemented by the same method,
pushReceiverVariableBytecode. The bottom 4 bits of
the bytecode encode which of the first 16 instance variables to
push. (The bitAnd: method will extract these bits.)
We then fetch the instance variable by computing the offset in
memory starting after the receiver's header.

See the Blue book p 598.

Message Sending Bytecode Routine

1. find selector, receiver and its class
2. lookup message in the method dictionary of the class
3. if method not found, repeat this lookup in successive

superclasses; if superclass is nil, instead send
#doesNotUnderstand:

4. create a new method context and set it up
5. activate the context and start executing the instructions in

the new method

�31

Example: bytecode <E0> send: hello

Message Sending Bytecode Routine

Interpreter>>sendLiteralSelectorBytecode
 selector := self literal: (currentBytecode bitAnd: 16rF).
 argumentCount := ((currentBytecode >> 4) bitAnd: 3) - 1.
 rcvr := self stackValue: argumentCount.
 class := self fetchClassOf: rcvr.
 self findNewMethod.
 self executeNewMethod.
 self fetchNewBytecode

Example: bytecode <E0> send: hello

This routine (bytecodes
208-255) can use any of the
first 16 literals and pass up to 2
arguments

 E0(hex) = 224(dec)
= 1110 0000(bin)

 E0 AND F = 0
=> literal frame at 0

 ((E0 >> 4) AND 3) - 1 = 1
=> 1 argument

�32

Here too we have 48 bytecodes with the same implementation.
The bottom 4 bits encode which literal (stored in the compiled
method's literal frame) to send. An additional 2 bits encode 0, 1 or
2 arguments to pass.

Primitives

Primitive methods trigger a VM routine
and are executed without a new
method context unless they fail

> Improve performance (arithmetics, at:, at:put:, ...)
> Do work that can only be done in VM (new object creation, 

process manipulation, become, ...)
> Interface with outside world (keyboard input, networking, ...)
> Interact with VM plugins (named primitives)

ProtoObject>>nextObject
 <primitive: 139>
 self primitiveFailed

�33

The bodies of primitive methods start with a “pragma” (in angle
brackets) indicating the VM method to invoke. If the primitive
fails, the code following the pragma will be executed.

Roadmap

> Introduction
> Bytecode
> The heap
> Interpreter
> Automatic memory management
> Threading System
> Optimizations

�34

Automatic Memory Management

Challenges
– Fast allocation
– Fast program execution

Tell when an object is no longer used
and then recycle the memory

– Small predictable pauses
– Scalable to large heaps
– Minimal space usage

�35

Instead of requiring application developers to specify when
memory allocated to objects can be safely recycled, automatic
memory management makes use of an additional “garbage
collection” process that periodically checks which objects are no
longer accessible and recycles them automatically.
Garbage collection was first conceived by John McCarthy in
1959 for Lisp.

https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)

Main Approaches

> 1. Reference Counting

> 2. Mark and Sweep

�36

There are two basic approaches to garbage collection.
Reference counting requires that a count be maintained for each
object of all the references pointing to it. Reference counts must
be updated every time a reference is created or dropped. Objects
that are no longer referenced can be recycled.
Mark and sweep, on the other hand, requires a full pass over
memory. In the “mark” phase, objects that are referenced at least
once are “marked”. Any object not marked is not referenced and
is recycled in a second “sweep” phase.

Reference Counting GC

Idea
> For each store operation increment count field in header

of newly stored object
> Decrement if object is overwritten
> If count is 0, collect object and decrement the counter of

each object it pointed to

Problems
> Run-time overhead of counting (particularly on stack)
> Inability to detect cycles (need additional GC technique)

�37

Reference Counting GC

�38

With naive reference counting, it is possible for disconnected
cycles of objects to be left undetected as “garbage”.

Mark and Sweep GC

Idea
> Suspend current process
> Mark phase: trace each accessible object leaving a mark

in the object header (start at known root objects)
> Sweep phase: all objects with no mark are collected
> Remove all marks and resume current process

Problems
> Need to “stop the world”
> Slow for large heaps ègenerational collectors
> Fragmentation ècompacting collectors

�39

Mark and Sweep GC

�40

Generational Collectors

Idea
> Partition objects into generations
> Create objects in young generation
> Tenuring: move live objects from young to old generation
> Incremental GC: frequently collect young generation (very

fast)
> Full GC: infrequently collect young+old generation (slow)

Difficulty
> Need to track pointers from old to new space

Most new objects live very short lives;
most older objects live forever [Ungar 87]

�41

Generational Collectors: Remembered Set

Write barrier: remember objects with old-young pointers:
> On each store check whether 

stored object (object2) is young and  
storer (object1) is old

> If true, add storer to remembered set
> When marking young generation, use objects in remembered set

as additional roots

object1.f := object2

�42

Compacting Collectors

Idea
> During the sweep phase all live objects are packed to the

beginning of the heap
> Simplifies allocation since free space is in one contiguous

block

Challenge
> Adjust all pointers of moved objects

– object references on the heap
– pointer variables of the interpreter!

�43

The Pharo GC

Pharo: mark and sweep compacting collector with two
generations

> Cooperative, i.e., not concurrent
> Single threaded

�44

When Does the GC Run?

– Incremental GC on allocation count or memory needs
– Full GC on memory needs
– Tenure objects if survivor threshold exceeded

�45

VM Memory Statistics

Smalltalk vm statisticsReport

uptime 0h9m47s
memory 103,424,000 bytes

old 94,471,968 bytes (91.30000000000001%)
young 771,840 bytes (0.7000000000000001%)
used 69,751,384 bytes (67.4%)
free 25,492,424 bytes (24.6%)

GCs 688 (854ms between GCs)
full 1 totalling 69ms (0.0% uptime), avg 69.0ms
incr 687 totalling 264ms (0.0% uptime), avg 0.4ms
tenures 153,132 (avg 0 GCs/tenure)

�46

Memory System API

 “Force GC”
 Smalltalk garbageCollectMost.
 Smalltalk garbageCollect.

 “Is object young?”
 Smalltalk isYoung: anObject.

 “Various settings and statistics”
 Smalltalk vm getParameters.

 ”Grow/shrink headroom”
 Smalltalk vm parameterAt: 25 put: 4*1024*1024.
 Smalltalk vm parameterAt: 24 put: 8*1024*1024.

�47

Finding Memory Leaks

– maybe object is just not GCed yet (force a full GC!)
– find the objects and then explore who references them

 EyePointerExplorer openOn: #foo

The pointer finder finds a path
from a root to some object

I have objects that do not get collected. What’s wrong?

�48

Roadmap

> Introduction
> Bytecode
> The heap
> Interpreter
> Automatic memory management
> Threading System
> Optimizations

�49

Threading System

Multithreading is the ability to create concurrently
running “processes”

Non-native threads (green threads)
– Only one native thread used by the VM
– Simpler to implement and easier to port

Native threads
– Using the native thread system provided by the OS
– Potentially higher performance

�50

Pharo: Green Threads

Each process has its own execution stack, ip, sp, ...

There is always one (and only one) running process

Each process behaves as if it owns the entire VM

Each process can be interrupted (ècontext switching)

�51

Representing Processes and Run Queues

�52

Context Switching

1. store the current ip and sp registers to the current context
2. store the current context in the old process’ suspendedContext
3. change Processor to point to newProcess
4. load ip and sp registers from new process’ suspendedContext

Interpreter>>transferTo: newProcess

When you perform a context switch,
which process should run next?

�53

Process Scheduler

> Cooperative between processes of the same priority
> Preemptive between processes of different priorities

Context is switched to the first process with highest priority when: 
– current process waits on a semaphore 
– current process is suspended or terminated  
– Processor yield is sent

Context is switched if the following process has a higher priority: 
– process is resumed or created by another process 
– process is resumed from a signaled semaphore

When a process is interrupted, it moves to the back of its run
queue

�54

Example: Semaphores and Scheduling

 here := false.
 lock := Semaphore forMutualExclusion.
 [lock critical: [here := true]] fork.
 lock critical: [

self assert: here not.
Processor yield.
self assert: here not].

 Processor yield.
 self assert: here When is the forked

process activated?

�55

Note that context is only switched when the currently running
process voluntary yields. The forked process is at the same
priority, but can only execute if it obtains exclusive access to the
shared semaphore.
When exactly will the forked process run?
Will either (or both) of these processes terminate?

Roadmap

> Introduction
> Bytecode
> The heap
> Interpreter
> Automatic memory management
> Threading System
> Optimizations

�56

Many Optimizations … (regular VM)

> Method cache for faster lookup: receiver’s class + method selector
> Method context cache (as much as 80% of objects created are

context objects!)

> Interpreter loop: 256 way case statement to dispatch bytecodes

> Quick returns: methods that simply return a variable or known
constant are compiled as a primitive method

> Small integers are tagged pointers: value is directly encoded in
field references. Pointer is tagged with low-order bit equal to 1.
The remaining 31 bits encode the signed integer value.

> ...
�57

A method cache remembers the last method looked up for a given
receiver class and method selector. If we see the same class and
selector then we don't need to perform the same expensive lookup
again.
A method context cache recycles the memory used for method
contexts (since they are real objects in the heap instead of on a
run-time stack).

Optimization: JIT

Idea: Just In Time Compilation
> Translate unit (method, loop, ...) into native machine code at

runtime
> Store native code in a buffer on the heap

Challenges
> Run-time overhead of compilation
> Machine code takes a lot of space (4-8x compared to bytecode)
> Deoptimization (for debugging) is very tricky

Adaptive compilation: gather statistics to compile only units that
are heavily used (hot spots — not in Pharo)

�58

What you should know!

✎What is the difference between the operand stack and the
execution stack?

✎How do bytecode routines and primitives differ?
✎Why is the object format encoded in a complicated 4bit

pattern instead of using regular boolean values?
✎Why is the object address not suitable as a hash value?
✎What happens if an object is only weakly referenced?
✎Why is it hard to build a concurrent mark sweep GC?
✎What does cooperative multithreading mean?
✎How do you protect code from concurrent execution?

�59

Can you answer these questions?

✎There is a lot of similarity between VM and OS design.
What are the common components?

✎Why is accessing the 16th instance variable of an object
more efficient than the 17th?

✎Which disastrous situation could occur if a local C pointer
variable exists when a new object is allocated?

✎Why does #allObjectsDo: not include small integers?
✎What is the largest possible small integer?

�60

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

