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Birds-eye view

A virtual machine is an abstract computing 
architecture supporting a programming language 
in a hardware-independent fashion

Z1, 1938
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How are VMs implemented?

Typically using an efficient and portable language
such as C, C++, or assembly code

Pharo VM platform-independent part written in Slang:  
– subset of Smalltalk, translated to C  
– core: 600 methods or 8k LOC in Slang  
– Slang allows one to simulate VM in Smalltalk
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In this lecture we will look at the VM of Pharo Smalltalk, as it is 
based closely on the original Smalltalk-80 VM. On the one hand 
it is simpler than the Java VM, and on the other hand it heavily 
influenced VM technology that followed. 
A VM is typically implemented in C. The Pharo VM is written in 
a subset of Smalltalk that can either be directly interpreted as 
Smalltalk code (useful for debugging), or translated to C.



Smalltalk
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The Smalltalk language and its 
VM implementation are 
specified in the “Blue Book”.



In this lecture we won’t attempt to introduce Smalltalk itself, 
except to say that it is a classical dynamically-typed object-
oriented language. The key difference to more recent languages 
like Python or Ruby, is that it supports live programming. 
Smalltalk programs are always running in a live environment, 
which is incrementally modified by adding or modifying classes 
and methods. 
Many modern Smalltalk implementations are based on or inspired 
by the Blue Book. 

Adele Goldberg and David Robson. Smalltalk 80: the Language and its 
Implementation, Addison Wesley, Reading, Mass., May 1983. 
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf



Main Components of a VM
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The interpreter
The threading System 
The heap
Automatic memory management



A Virtual Machine must typically include: 
• a bytecode interpreter 
• a threading system to manage processes of the interpreted language  
• heap storage for running programs 
• a garbage collector to detect and free unused heap storage



Pros and Cons of the VM Approach

Pros
> Platform independence of application code  

“Write once, run anywhere”
> Simpler programming model
> Security
> Optimizations for different hardware architectures

Cons
> Execution overhead
> Not suitable for system programming
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The Pharo Virtual Machine

> Virtual machine provides a virtual processor
—Bytecode: The “machine-code” of the virtual machine

> Smalltalk (like Java): Stack machine
—easy to implement interpreters for different processors
—most hardware processors are register machines

> Pharo VM:  Implemented in Slang 
—Slang: Subset of Smalltalk. (“C with Smalltalk Syntax”)
—Translated to C
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Bytecode is analogous to assembler, except it targets a virtual 
machine rather than a physical one. Many VMs are stack 
machines: the generated bytecode pushes values onto a stack, and 
executes operations that consume one or more values on the top 
of the stack, replacing them with results.



Bytecode in the CompiledMethod

> CompiledMethod format:

Number of 
temps, literals...

Array of all 
Literal Objects

Pointer to
Source

Header

Literals

Bytecode

Trailer

(Number methodDict at: #asInteger) inspect

(Number>>#asInteger) inspect
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Smalltalk is unusual in that everything is consistently represented 
as objects down to a very low level, including compiled methods. 
We exploit this here to inspect the asInteger method of the 
Number class. 
A compiled method consists of: 

• a header that provides bookkeeping information (number of local variables 
etc.) 

• an array of literal objects (constants) used within the method 
• the actual bytecode to be executed 
• a trailer that points back to the source code (useful for tools) 

The code in the slide asks the Number class for its asInteger 
method (which is looked up in its method dictionary), and then 
sends it the inspect method to pop up an object inspector on 
the actual compiled method. 
NB: the last four “bytecodes” are actually the source pointer.



Bytecodes: Single or multibyte

> Different forms of bytecodes:
—Single bytecodes:

– Example:   112:  push self

—Groups of similar bytecodes
– 16: push temp 1
– 17: push temp 2
– up to 31

—Multibyte bytecodes
– Problem: 4 bit offset may be too small
– Solution: Use the following byte as offset
– Example: Jumps need to encode large jump offsets

Type Offset
4 bits 4 bits

�14



Smalltalk bytecodes are encoded in 8 bits, so there are up to 256 
of them, but some of these are actually groups of bytecodes in 
which the 4 bits represent an offset.



> Smalltalk code:

> Symbolic Bytecode

Example: Number>>asInteger

Number>>asInteger
"Answer an Integer nearest
the receiver toward zero."

^self truncated

17 <70> self
18 <D0> send: truncated
19 <7C> returnTop
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In Smalltalk code, the asInteger method of a number just sends 
the message “truncated” to self (AKA “this”), and 
returns the result. 
The corresponding bytecode: 

1.pushes self onto the stack 
2.sends the message “truncated” (stored as a literal in the compiled 

method) — this causes self to be popped and the result of the truncated 
method to be left on the stack 

3.(pops and) returns the top of the stack 



Example: Step by Step

> 17 <70> self
—Byte code 112: the receiver (self) is pushed on the stack

> 18 <D0> send: truncated
—Bytecode 208:  send literal selector 1
—Get the selector from the first literal
—start message lookup in the class of the object that is on top of the 

stack
—result is pushed on the stack

> 19 <7C> returnTop
—Byte code 124: return the object on top of the stack to the calling 

method
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Pharo Bytecode
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> 256 Bytecodes, four 
groups:

—Stack Bytecodes
– Stack manipulation:  

push / pop / dup

—Send Bytecodes
– Invoke Methods

—Return Bytecodes
– Return to caller

—Jump Bytecodes
– Control flow inside a method



The table is from page 596 of the “Blue book.”



Stack Bytecodes

> Push values on the stack
—e.g., temps, instVars, literals
—e.g: 16 - 31: push instance variable

> Push Constants
—False/True/Nil/1/0/2/-1

> Push self, thisContext
> Duplicate top of stack
> Pop
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Sends and Returns

> Sends: receiver is on top of stack
—Normal send
—Super Sends
—Hard-coded sends for efficiency, e.g. +, -

> Returns
—Return top of stack to the sender 
—Return from a block
—Special bytecodes for return self, nil, true, false (for 

efficiency)
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> Control Flow inside one method
—Used to implement control-flow efficiently
—Example:

Jump Bytecodes

17 <76> pushConstant: 1
18 <77> pushConstant: 2
19 <B2> send: <
20 <99> jumpFalse: 23
21 <20> pushConstant: 'true'
22 <90> jumpTo: 24
23 <73> pushConstant: nil
24 <7C> returnTop

^ 1<2 ifTrue: ['true']
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The example Smalltalk code sends “<2” to 1, resulting in a 
Boolean object. This object is sent the keyword message 
ifTrue: with a block as an argument. Only if the result is true, 
will the block (in square brackets) be evaluated to the string 
'true'. The result is returned (“^” symbol in Smalltalk). 
The bytecode achieves this by: 

• pushing 1 and 2 onto the stack 
• sending the message <, thus consuming these values and leaving a Boolean 

on top 
• the ifTrue: “method” is inlined as a jump, causing either the 'true' string or 

nil to be pushed and returned
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Object Memory Layout

32-bit direct-pointer scheme

Reality is more complex: 
– 1-word header for instances of 
compact classes 
– 2-word header for normal objects 
– 3-word header for large objects
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Objects in Smalltalk reside in heap storage. (A snapshot of the 
heap can be saved as an “image” file that can be restarted at a 
later time.) 
Until very recently, objects were identified by 32-bit direct 
pointers (as of 2016, 64-bit pointers are supported). 
The storage for a regular object consist of two headers and a 
series of fields. The first header identifies the class of the object 
(classes are also objects, so this is just an object pointer). The 
second header contains bookkeeping information. Each of the 
fields is an object pointer.



Different Object Formats

> fixed pointer fields
> indexable types: 

– indexable pointer fields (e.g., Array) 
– indexable weak pointer fields (e.g., WeakArray)  
– indexable word fields (e.g., Bitmap)  
– indexable byte fields (e.g., ByteString)

Object format (4bit) 
0 no fields 
1 fixed fields only 
2 indexable pointer fields only 
3 both fixed and indexable pointer fields 
4 both fixed and indexable weak fields 
6 indexable word fields only 
8-11 indexable byte fields only 
12-15 ...
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In practice, there are several different kinds of object formats are 
supported. 
The first bit of an object pointer indicates if the object is a 
SmallInteger (the remaining bits encode the number). 
Otherwise it is a “regular” object. 
Regular objects might have named fields, or possibly indexed 
fields (i.e., Array-like objects).



“Answer the first object on the heap”
anObject someObject

“Answer the next object on the heap”
anObject nextObject

Excludes small integers!

Iterating Over All Objects in Memory

|count|
count := 0.
SystemNavigation default allObjectsDo:

[:anObject | count := count + 1].
count 529468

SystemNavigation>>allObjectsDo: aBlock 
| object endMarker |
object := self someObject.
endMarker := Object new.
[endMarker == object]

whileFalse: [aBlock value: object.
object := object nextObject]
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Stack vs. Register VMs

Stack machines
• Smalltalk, Java and most other VMs
• Simple to implement for different hardware architectures
• Very compact code

Register machines
• Potentially faster than stack machines
• Only a few register VMs exist, e.g., Parrot VM (Perl6)

The VM provides a virtual processor 
that interprets bytecode instructions
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Interpreter State and Loop

Interpreter state  
– instruction pointer (ip): points to current bytecode  
– stack pointer (sp): topmost item in the operand stack 
– current active method or block context 
– current active receiver and method

Interpreter loop 
1. branch to appropriate bytecode routine  
2. fetch next bytecode  
3. increment instruction pointer  
4. execute the bytecode routine  
5. return to 1.
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Method Contexts

method header:
– primitive index
– number of args
– number of temps
– large context flag
– number of literals
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A method context is an object that represents an activation record 
(stack frame) for a method invocation. Each method context 
points to the context of its caller, thus constituting a stack of 
contexts. 
Note how the ip points to a bytecode in the compiled method, 
while the sp points to a location in the operand stack.



Stack Manipulating Bytecode Routine

Example: bytecode  <70> self

Interpreter>>pushReceiverBytecode
  self fetchNextBytecode.
  self push: receiver

Interpreter>>push: anObject
  sp := sp + BytesPerWord.
  self longAt: sp put: anObject
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This bytecode pushes self on the stack. Note that self refers 
to the receiver of the message, while self in the 
pushReceiverBytecode method refers to the 
Interpreter instance. (We want to push the receiver, not the 
bytecode interpreter!) 
The push: method increments the sp by enough bytes to hold an 
object pointer (i.e., one word), and then writes that word.



Stack Manipulating Bytecode Routine

Example: bytecode <01> pushRcvr: 1 

Interpreter>>pushReceiverVariableBytecode
  self fetchNextBytecode.
  self pushReceiverVariable: (currentBytecode bitAnd: 16rF)

Interpreter>>pushReceiverVariable: fieldIndex
  self push: (self fetchPointer: fieldIndex ofObject: receiver)

Interpreter>>fetchPointer: fieldIndex ofObject: oop
  ^ self longAt: oop + BaseHeaderSize + (fieldIndex * BytesPerWord)
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The first 16 bytecodes are all implemented by the same method, 
pushReceiverVariableBytecode. The bottom 4 bits of 
the bytecode encode which of the first 16 instance variables to 
push. (The bitAnd: method will extract these bits.) 
We then fetch the instance variable by computing the offset in 
memory starting after the receiver's header. 

See the Blue book p 598.



Message Sending Bytecode Routine

1. find selector, receiver and its class
2. lookup message in the method dictionary of the class
3. if method not found, repeat this lookup in successive 

superclasses; if superclass is nil, instead send 
#doesNotUnderstand:

4. create a new method context and set it up
5. activate the context and start executing the instructions in 

the new method
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Message Sending Bytecode Routine

Interpreter>>sendLiteralSelectorBytecode
  selector := self literal: (currentBytecode bitAnd: 16rF).
  argumentCount := ((currentBytecode >> 4) bitAnd: 3) - 1. 
  rcvr := self stackValue: argumentCount.
  class := self fetchClassOf: rcvr.
  self findNewMethod.
  self executeNewMethod.
  self fetchNewBytecode

Example: bytecode <E0> send: hello

This routine (bytecodes 
208-255) can use any of the 
first 16 literals and pass up to 2 
arguments

 E0(hex) = 224(dec)
= 1110 0000(bin)

 E0 AND F = 0
=> literal frame at 0

 ((E0 >> 4) AND 3) - 1 = 1
=> 1 argument
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Here too we have 48 bytecodes with the same implementation. 
The bottom 4 bits encode which literal (stored in the compiled 
method's literal frame) to send. An additional 2 bits encode 0, 1 or 
2 arguments to pass.



Primitives

Primitive methods trigger a VM routine
and are executed without a new
method context unless they fail

> Improve performance (arithmetics, at:, at:put:, ...)
> Do work that can only be done in VM (new object creation, 

process manipulation, become, ...) 
> Interface with outside world (keyboard input, networking, ...)
> Interact with VM plugins (named primitives)

ProtoObject>>nextObject
  <primitive: 139>
  self primitiveFailed
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The bodies of primitive methods start with a “pragma” (in angle 
brackets) indicating the VM method to invoke. If the primitive 
fails, the code following the pragma will be executed.
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Automatic Memory Management

Challenges
– Fast allocation
– Fast program execution

Tell when an object is no longer used 
and then recycle the memory

– Small predictable pauses
– Scalable to large heaps
– Minimal space usage
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Instead of requiring application developers to specify when 
memory allocated to objects can be safely recycled, automatic 
memory management makes use of an additional “garbage 
collection” process that periodically checks which objects are no 
longer accessible and recycles them automatically. 
Garbage collection was first conceived by John McCarthy in 
1959 for Lisp. 

https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)



Main Approaches

> 1. Reference Counting

> 2. Mark and Sweep
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There are two basic approaches to garbage collection. 
Reference counting requires that a count be maintained for each 
object of all the references pointing to it. Reference counts must 
be updated every time a reference is created or dropped. Objects 
that are no longer referenced can be recycled. 
Mark and sweep, on the other hand, requires a full pass over 
memory. In the “mark” phase, objects that are referenced at least 
once are “marked”. Any object not marked is not referenced and 
is recycled in a second “sweep” phase.



Reference Counting GC

Idea
> For each store operation increment count field in header 

of newly stored object
> Decrement if object is overwritten 
> If count is 0, collect object and decrement the counter of 

each object it pointed to 

Problems
> Run-time overhead of counting (particularly on stack)
> Inability to detect cycles (need additional GC technique)
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Reference Counting GC
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With naive reference counting, it is possible for disconnected 
cycles of objects to be left undetected as “garbage”.



Mark and Sweep GC

Idea
> Suspend current process
> Mark phase: trace each accessible object leaving a mark 

in the object header (start at known root objects)
> Sweep phase: all objects with no mark are collected
> Remove all marks and resume current process

Problems
> Need to “stop the world”
> Slow for large heaps ègenerational collectors
> Fragmentation ècompacting collectors
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Mark and Sweep GC
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Generational Collectors

Idea
> Partition objects into generations
> Create objects in young generation
> Tenuring: move live objects from young to old generation
> Incremental GC: frequently collect young generation (very 

fast)
> Full GC: infrequently collect young+old generation (slow)

Difficulty
> Need to track pointers from old to new space

Most new objects live very short lives; 
most older objects live forever [Ungar 87]
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Generational Collectors: Remembered Set

Write barrier: remember objects with old-young pointers:
> On each store check whether 

stored object (object2) is young and  
storer (object1) is old

> If true, add storer to remembered set
> When marking young generation, use objects in remembered set 

as additional roots

object1.f := object2
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Compacting Collectors

Idea
> During the sweep phase all live objects are packed to the 

beginning of the heap
> Simplifies allocation since free space is in one contiguous 

block

Challenge
> Adjust all pointers of moved objects

– object references on the heap
– pointer variables of the interpreter!
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The Pharo GC

Pharo: mark and sweep compacting collector with two 
generations

> Cooperative, i.e., not concurrent
> Single threaded
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When Does the GC Run?

– Incremental GC on allocation count or memory needs
– Full GC on memory needs
– Tenure objects if survivor threshold exceeded

�45



VM Memory Statistics

Smalltalk vm statisticsReport

uptime 0h9m47s
memory 103,424,000 bytes

old 94,471,968 bytes (91.30000000000001%)
young 771,840 bytes (0.7000000000000001%)
used 69,751,384 bytes (67.4%)
free 25,492,424 bytes (24.6%)

GCs 688 (854ms between GCs)
full 1 totalling 69ms (0.0% uptime), avg 69.0ms
incr 687 totalling 264ms (0.0% uptime), avg 0.4ms
tenures 153,132 (avg 0 GCs/tenure)
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Memory System API

 “Force GC”
 Smalltalk garbageCollectMost.
 Smalltalk garbageCollect.

 “Is object young?”
 Smalltalk isYoung: anObject.

 “Various settings and statistics”
 Smalltalk vm getParameters.

 ”Grow/shrink headroom”
 Smalltalk vm parameterAt: 25 put: 4*1024*1024.
 Smalltalk vm parameterAt: 24 put: 8*1024*1024. 
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Finding Memory Leaks

– maybe object is just not GCed yet (force a full GC!)
– find the objects and then explore who references them

 EyePointerExplorer openOn: #foo

The pointer finder  finds a path 
from a root to some object

I have objects that do not get collected. What’s wrong?
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Threading System

Multithreading is the ability to create concurrently
running “processes”

Non-native threads (green threads)
– Only one native thread used by the VM
– Simpler to implement and easier to port

Native threads
– Using the native thread system provided by the OS
– Potentially higher performance
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Pharo: Green Threads

Each process has its own execution stack, ip, sp, ...

There is always one (and only one) running process

Each process behaves as if it owns the entire VM

Each process can be interrupted (ècontext switching)
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Representing Processes and Run Queues
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Context Switching

1. store the current ip and sp registers to the current context
2. store the current context in the old process’ suspendedContext
3. change Processor to point to newProcess
4. load ip and sp registers from new process’ suspendedContext

Interpreter>>transferTo: newProcess

When you perform a context switch, 
which process should run next? 
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Process Scheduler

> Cooperative between processes of the same priority
> Preemptive between processes of different priorities

Context is switched to the first process with highest priority when: 
– current process waits on a semaphore 
– current process is suspended or terminated  
– Processor yield is sent

Context is switched if the following process has a higher priority: 
– process is resumed or created by another process 
– process is resumed from a signaled semaphore 

When a process is interrupted, it moves to the back of its run 
queue
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Example: Semaphores and Scheduling

 here := false.
 lock := Semaphore forMutualExclusion.
 [lock critical: [here := true]] fork.
 lock critical: [

self assert: here not.
Processor yield.
self assert: here not].

 Processor yield.
 self assert: here When is the forked 

process activated?
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Note that context is only switched when the currently running 
process voluntary yields. The forked process is at the same 
priority, but can only execute if it obtains exclusive access to the 
shared semaphore. 
When exactly will the forked process run? 
Will either (or both) of these processes terminate?
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Many Optimizations … (regular VM)

> Method cache for faster lookup: receiver’s class + method selector
> Method context cache (as much as 80% of objects created are 

context objects!)

> Interpreter loop: 256 way case statement to dispatch bytecodes

> Quick returns: methods that simply return a variable or known 
constant are compiled as a primitive method

> Small integers are tagged pointers: value is directly encoded in 
field references. Pointer is tagged with low-order bit equal to 1. 
The remaining 31 bits encode the signed integer value.

> ...
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A method cache remembers the last method looked up for a given 
receiver class and method selector. If we see the same class and 
selector then we don't need to perform the same expensive lookup 
again. 
A method context cache recycles the memory used for method 
contexts (since they are real objects in the heap instead of on a 
run-time stack).



Optimization: JIT

Idea: Just In Time Compilation
> Translate unit (method, loop, ...) into native machine code at 

runtime
> Store native code in a buffer on the heap

Challenges
> Run-time overhead of compilation
> Machine code takes a lot of space (4-8x compared to bytecode)
> Deoptimization (for debugging) is very tricky

Adaptive compilation: gather statistics to compile only units that
are heavily used (hot spots — not in Pharo)
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What you should know!

✎What is the difference between the operand stack and the 
execution stack?

✎How do bytecode routines and primitives differ?
✎Why is the object format encoded in a complicated 4bit 

pattern instead of using regular boolean values?
✎Why is the object address not suitable as a hash value?
✎What happens if an object is only weakly referenced?
✎Why is it hard to build a concurrent mark sweep GC?
✎What does cooperative multithreading mean?
✎How do you protect code from concurrent execution?
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Can you answer these questions?

✎There is a lot of similarity between VM and OS design. 
What are the common components?

✎Why is accessing the 16th instance variable of an object 
more efficient than the 17th?

✎Which disastrous situation could occur if a local C pointer 
variable exists when a new object is allocated?

✎Why does #allObjectsDo: not include small integers?
✎What is the largest possible small integer?
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