b

u

b
UNIVERSITAT
BERN

Thanks to Bryan Ford for his input string
kind permission to reuse and /

adapt the slides of his POPL
2004 presentation on PEGs.
> derive structure

http://www.brynosaurus.com/




Roadmap

vV V V V

Domain Specific Languages
Parsing Expression Grammars
Packrat Parsers

Parser Combinators



Sources

> Parsing Techniques — A Practical Guide
— Grune & Jacobs, Springer, 2008
— [Chapter 15.7 — Recognition Systems]
> “Parsing expression grammars: a recognition-based syntactic
foundation”
— Ford, POPL 2004, doi:10.1145/964001.964011

> “Packrat parsing: simple, powerful, lazy, linear time”
— Ford, ICFP 02, doi:10.1145/583852.581483

> The Packrat Parsing and Parsing Expression Grammars Page:
— http://pdos.csail.mit.edu/~baford/packrat/

> Dynamic Language Embedding With Homogeneous Tool Support
— Renggli, PhD thesis, 2010, http://scg.unibe.ch/bib/Reng10d



http://pdos.csail.mit.edu/~baford/packrat/

Roadmap

> Domain Specific Languages
> Parsing Expression Grammars
> Packrat Parsers

> Parser Combinators



Domain Specific Languages

> A DSL is a specialized language targeted to a particular
problem domain

—Not a GPL

—NMay be internal or external to a host GPL
—Examples: SQL, HTML, Makefiles



A domain-specific language (DSL) 1s a language dedicated to a
particular application domain. This domain may be technical
(e.g., SQL) or 1t might be closer to the actual business domain.

A DSL may be external, in which case 1t has its own syntax and
implementation independent of the host language, or it may be
internal, in which case 1t 1s embedded, and may even hijack the
host-language syntax to emulate a language within a language.




External DSLs (Examples)

-— this 1s the entity pencolor white
entity ANDGATE is fd 100
port ( rt 120
fd 100

A : in std logic;

B : in std logic; re 120
O : out sta logic); td 100
- — rt 60

end entity ANDGATE; pencolor blue
fd 100
—— this 1is the architecture rt 120
architecture RTL of ANDGATE is fd 100
begin rt 120
O <= A and B; fd 100
end architecture RTL; rt 60




Internal DSLs

A “Fluent Interface” is a DSL that hijacks the host syntax

Function sequencing

computer () ;
processor();
cores(2);

Function nesting

1386 () ;
dlSkf)7 computer (
- s1ze(150); processor (
disk();

_ cores(2),
size(75); Processor.Type.1386),
speed(7200); disk (
sata(); size(150)),
end(); disk(
size(75),
speed(7200),
Disk.Interface.SATA));

Function chaining

computer ()
.processor ()

.cores(2)
.1386()
.end()

.disk()

.size(150)
.end()

.disk()

.size(75)
.speed(7200)
.sata()

.end ()

.end();



Fluent Interfaces

> Other approaches_- sizer.FromImage(i)
_ _ .ReduceByPercent(x)
—Higher-order functions Pixalize()
—Operator overloading .ReduceByPercent (x)
__Macros .OutputImageFormat(ImageFormat.Jpeg)
. ToLocation(o)

—Meta-annotations .Save():



Embedded languages

An embedded language may adapt the
syntax or semantics of the host language

- e Adaptsemantics

- = === Adaptsyntax and semantics
b - j<\

l—lﬁl—l E O N oy

. Zparse> > <transform5 \ > <attribute>
A / HON A
. Source AST I [ Attrlbuted AST

Source ~ Smalltalk Semantlc ) Eytéc&je ''''''' > Complled
Code __ __ __ Parser N JAnalysis Generahoi. ’/ — — .. .. Bytecode

Traditional Smalltalk Compiler

We will explore some techniques used to
specify external and embedded DSLs



Roadmap

vV V V V

Domain Specific Languages
Parsing Expression Grammars
Packrat Parsers

Parser Combinators

10



Recognition systems

“Why do we cling to a generative mechanism for the
description of our languages, from which we then
laboriously derive recognizers, when almost all we
ever do is recognizing text? Why don’t we specify
our languages directly by a recognizer?”

Some people answer these two questions by “We
shouldn’t” and “We should”, respectively.
— Grune & Jacobs, 2008



Recall that Chomsky-style grammars define a language by the set
of strings that they generate. Parsing then must go backwards to
reverse engineer a parse for a given sentence in the language.




Designing a Language Syntax

Textbook Method
1. Formalize syntax via a context-free grammar
2. Write a parser generator (.*CC) specification
3. Hack on grammar until “nearly LALR(1)”
4. Use generated parser



What exactly does a CFG describe?

Short answer: a rule system to generate language strings

Example CFG @, — start symbol
S — aaS

£ asS

VAN
aa aaaaS
RN
output strings / dddad

S—¢




What exactly do we want to describe?

Proposed answer: a rule system to recognize language strings

Parsing Expression Grammars (PEGs) model

recursive descent parsing best practice

Example PEG
S<aaS/¢

d

va

/ input string

f

S

>

derive structure




Unlike the CFG 1n the previous slide that generates sentences 1n a
language, this PEG specifies rules to recognize sentences in a top-
down fashion.

The “/” symbol represents an ordered choice. First we recognize
“aa”. This succeeds, so then we try to recognize S. Again we
recognize “aa” and again recurse 1n S. This time “aa” fails, so we
try to recognize €. This succeeds, so we are done.

(In general we may fail and have to backtrack.)




Key benefits of PEGs

> Simplicity, formalism of CFGs

> Closer match to syntax practices
—NMore expressive than deterministic CFGs (LL/LR)

—Natural expressiveness:
— prioritized choice
— syntactic predicates

—Unlimited lookahead, backtracking
> Linear time parsing for any PEG (!)



As we shall see, linear parse time can be achieved with the help
of memoization using a “packrat parser”.




Key assumptions

Parsing functions must
1. be stateless — depend only on input string
2. make decisions locally — return one result or fall



Parsing Expression Grammars

> APEGP=(Z,N, R, eg)
—2 : a finite set of terminals (character set)

—N : finite set of non-terminals

—R : finite set of rules of the form “A <— €7,
where A € N, and e is a parsing expression

—eg : the start expression (a parsing expression)



Parsing Expressions

the empty string

terminal (a € 2)

> (o ™

non-terminal (A € N)

e, & sequence

e,/ e prioritized choice

e?, e*, e+ optional, zero-or-more, one-or-more

&e, le syntactic predicates




This looks pretty similar to a CFG with some important
differences.

Choice 1s prioritized: €1 / €2 means first try e, then try es.

The syntactic predicates do not consume any mput. &e succeeds
1f e would succeed, and !e succeeds i1f e would fail.

66' %9

NB: “.” 1s considered to match anything, so matches the end

of 1mput.




How PEGs express languages

> (Given an input string s, a parsing expression e either:
—Matches and consumes a prefix 8’ of s, or
—Failson s

S matches “badder”
S < ba S matches “baddest™

S fails on “abad”

S fails on “babe”



Prioritized choice with backtracking

S A/Bl Means: first try to parse an A.
If A fails, then backtrack and try to parse a B.

: S matches “if C then S foo”
— ifCt S
< I Cthen S else S S matches “if C then S, else S,”

- S fails on “if C else S”




NB: Note that if we reverse the order of the sub-expressions, then
the second sub-expression will never be matched.




Greedy option and repetition

A< ¢e? IS equivalent to A<ele
A<e” IS equivalent to A<eAle
A< et IS equivalent to A<ee”

| < L+ | matches “foobar”
L<— a/b/c/... | fails on “123”



Syntactic Predicates

&e  succeeds whenever e does, but consumes no input
le succeeds whenever e fails, but consumes no input

A matches “foobar”
foo &(bar —
(bar) A fails on “foobie”
B matches “foobie”
B fails on “foobar”



Example: nested comments

Comment < Begin Internal® End

Internal < |End ( Comment / Terminal )
Begin «— [**
End «— ¥

Terminal < [any character]

C matches “/**ab*/cd”
C matches “/**a/**b*/c*/”
C fails on “/**al**b*/




A comment starts with a “begin” marker. Then there must be
some internal stuff and an end marker.

The internal stuff must not start with an end marker: 1t may be a
nested comment or any terminal (single char).




Formal properties of PEGs

> Expresses all deterministic languages — LR(k)
> Closed under union, intersection, complement

> Can express some non-context free languages
—e.g., anbhnen

> Undecidable whether L(G) = I



What can’t PEGs express directly?

> Ambiguous languages
—That’s what CFGs are for!

> Globally disambiguated languages?
—{a,b}"a {a,b}"

> State- or semantic-dependent syntax

—C, C++ typedef symbol tables
—Python, Haskell, ML layout



Roadmap

vV V V V

Domain Specific Languages
Parsing Expression Grammars
Packrat Parsers

Parser Combinators

26



Top-down parsing techniques

Predictive parsers
* use lookahead to decide which rule to trigger
¢ fast, linear time

Backtracking parsers
e try alternatives in order; backtrack on failure
e simpler, more expressive (possibly exponential time!)



Example
Add < Mul + Add / Mul
Mul < Prim * Mul / Prim
Prim < (Add)/Dec
Dec < 0/1/...79

NB: This is a
scannerless parser
— the terminals are
all single characters.

public class SimpleParser {

final String input;
SimpleParser (String input) {
this.input = input;
}
class Result {
int num; // result calculated so far
int pos; // input position parsed so far
Result(int num, int pos) {
this.num num;
this.pos poOS;
}
}

class Fail extends Exception {
Fail() { super() ; }
Fail(String s) { super(s) ; }
}

protected Result add(int pos) throws Fail {
try {
Result lhs = this.mul (pos);
Result op = this.eatChar('+', lhs.pos);
Result rhs = this.add(op.pos);
return new Result(lhs.num+rhs.num, rhs.pos);
} catch(Fail ex) { }
return this.mul (pos);

}



Notice how alternative choices are expressed as a series of try/
catch blocks. Each rule takes as an argument the current position
in the input string. The new position 1s returned as part of the
partial result computed thus far.

NB: Instead of using exceptions, we could encode failure in the
Result instances. Then instead of putting alternatives 1n try/catch
blocks, we would have to test each result for failure.

Scannerless parsers are especially useful when mixing languages
with different terminals.




Add <- Mul + Add Add <- Mul + Add [ ... ]
Mul <- Prim * Mul Mul <- Prim * Mul Prim <- ( Add )

- 17 g .3 73 Pri - ( Add ) Pri - ( Add ) Char (
Parsing “6*(3+4) Char ¢ thar. ¢ brat <= bec) [GACKTRAGK

Prim <- Dec [BACKTRACK] Prim <- Dec [BACKTRACK] Dec <- Num

Dec <- Num Dec <- Num Char 0
Char 0 Char 0 Char 1
Char 1 Char 1 Char 2
Char 2 Char 2 Char 3
Char 3 Char 3 Char 4
Char 4 Char 4 Char +
Char 5 Char 5 Add <- Mul [BACKTRACK]
Char 6 Char 6 Mul <- Prim * Mul
Char * Char * Prim <- ( Add )
Mul <- Prim * Mul Mul <- Prim * Mul Char (
Prim <- ( Add ) Prim <- ( Add ) Prim <- Dec [BACKTRACK]
Char ( Char ( Dec <- Num
Add <- Mul + Add Add <- Mul + Add Char 0
Mul <- Prim * Mul Mul <- Prim * Mul Char 1
Add < MUI + Add / MUI Prim <- ( Add ) Prim <- ( Add ) Char 2
. . Char ( Char ( Char 3
MUI <— Pr|m * Mul / Pr|m Prim <- Dec [BACKTRACK] Prim <- Dec [BACKTRACK] Char 4
— Dec <- Num Dec <- Num Char *
" Char 0 Char 0 Mul <- Prim [BACKTRACK]
Prim < _( Add ) [ Dec Char 1 Char 1 Prim <- ( Add )
Char 2 Char 2 Char (
DeC <— O / 1 / o / 9 Char 3 Char 3 Prim <- Dec [BACKTRACK]
- - - Char * Char * Dec <- Num
Mul <- Prim [BACKTRACK] Mul <- Prim [BACKTRACK] Char @
Prim <- ( Add ) Prim <- ( Add ) Char 1
Char ( Char ( Char 2
Prim <- Dec [BACKTRACK] Prim <- Dec [BACKTRACK] Char 3
Dec <- Num Dec <- Num Char 4
Char 0 Char 0 Char )
Char 1 Char 1 Eof
Char 2 Char 2 312 steps
Char 3 Char 3 6*(3+4) -> 42
Char + Char +
Add <- Mul + Add Add <- Mul + Add
Mul <- Prim * Mul Mul <- Prim * Mul

Prim <- ( Add ) Prim <- ( Add )



The SimpleParser class reports whenever an alternative
choice fails, as this will trigger backtracking to try a further
alternative.

Here we see that the Prim rule fails 1nitially as its first choice 1s to
look for a parenthesized expression, but instead 1t finds a digit.

The parse backtracks 13 times and takes a total of 312 steps.

Source code: git://scg.unibe.ch/lectures-cc-examples

Subfolder: cc-SimplePackrat




Memoized parsing: Packrat Parsers

public class SimplePackrat extends SimpleParser {
Hashtable<Integer,Result>[] hash;
final int ADD
final int MUL

> Formally developed final int PRIM = 2;
by Birman in 1970s ~ final int HASHES = 3;

SimplePackrat (String input) {
super (input) ;
hash = new Hashtable[HASHES];
for (int i=0; i<hash.length; i++) {

By memO[Z[ng hash[1i] = new Hashtable<Integer,Result>();

. }
parsing results, we }
aVOId haVIng to protected Result add(int pos) throws Fail {
recalculate partla”y if (!'hash[ADD].containsKey(pos)) {

hash[ADD] .put(pos, super.add(pos));
successful parses. }
return hash[ADD] .get (pos);

}



Introducing a cache 1n any program 1s usually straightforward.
When you compute a result, first check if you already have a
cached value. If so, return 1t; 1f not, compute it and save 1it.

Here we use a hash table to store the results of recognizing a
particular non-terminal at a given position in the mput. Our
packrat parser subclasses the SimpleParser class, overrides
every method implementing a parse rule with a new one that
performs the cache lookup, and defaults to the super method 1n
case there 1s no cached value.




Memoized parsing “6*(3+4)”

Add
Mul
Prim
Dec

(N |

Mul + Add / Mul
Prim * Mul / Prim
(Add )/ Dec
0/1/.../9

Add <- Mul + Add

Mul <- Prim * Mul

Prim <- ( Add )

Char (

Prim <- Dec [BACKTRACK]
Dec <- Num

Char
Char
Char
Char
Char
Char
Char
Char
Mul <- Prim * Mul

Prim <- ( Add )

Char (

Add <- Mul + Add

Mul <- Prim * Mul

Prim <- ( Add )

Char (

Prim <- Dec [BACKTRACK]
Dec <- Num

Char 0

Char
Char
Char
Char
Mul <- Prim [BACKTRACK]

¥OO U P WNES

* W NP

Char +

Add <- Mul + Add

Mul <- Prim * Mul

Prim <- ( Add )

Char (

Prim <- Dec [BACKTRACK]
Dec <- Num

Char 0

Char
Char
Char
Char
Char
Mul <- Prim [BACKTRACK]

PRIM -- retrieving hashed result
Char +

Add <- Mul [BACKTRACK]

MUL -- retrieving hashed result
Char )

Char *

Mul <- Prim [BACKTRACK]

PRIM -- retrieving hashed result
Char +

Add <- Mul [BACKTRACK]

¥ B WN P

MUL -- retrieving hashed result
Eof
56 steps

6*(3+4) -> 42

PRIM -- retrieving hashed result



A “packrat parser” 1s a PEG that memoizes (1.e., caches)
intermediate parsing results so they do not have to be recomputed
while backtracking.

In our grammar this 1s useful in two places. In the Add rule we
may successfully recognize a Mul and then fail on “+ Add”. This
would cause the PEG to backtrack and try the second alternative
of the Add rule, forcing it to recognize Mul again. With a packrat
parser we will see that we already recognized a Mul at position O
in the mput, so we simply retrieve that result instead of
recomputing it.

The second case 1s the Mul rule, which would cause Prim to be
parsed again 1n case the first alternative fails.




What is Packrat Parsing good for?

> Linear cost
—bounded by size(input) x #(parser rules)

> Recognizes strictly larger class of languages than
deterministic parsing algorithms (LL(k), LR(k))

pi b

> (Good for scannerless parsing
—fine-grained tokens, unlimited lookahead



Note that we must cache at most # positions for each parser rule.




Scannerless Parsing

> Traditional linear-time parsers have fixed lookahead
—With unlimited lookahead, don’t need separate lexical analysis!

> Scannerless parsing enables unified grammar for entire
language
—Can express grammars for mixed languages with different lexemes!



What is Packrat Parsing not good for?

> (General CFG parsing (ambiguous grammars)
—produces at most one result

> Parsing highly “stateful” syntax (C, C++)
—memoization depends on statelessness

> Parsing in minimal space
—LL/LR parsers grow with stack depth, not input size



Roadmap

vV V V V

Domain Specific Languages
Parsing Expression Grammars
Packrat Parsers

Parser Combinators

35



Parser Combinators

> Parser combinators in functional languages are higher
order functions used to build parsers
—e.g., Parsec, Haskell

> |[n an OO0 language, a combinator is a (functional) object
—To build a parser, you simply compose the combinators

—Combinators can be reused, or specialized with new semantic
actions

— compiler, pretty printer, syntax highlighter ...
—e.g., PetitParser, Smalltalk



The examples we saw so far implemented PEGs 1n Java using one
method per parser rule.

With parser combinators, each parse rule is a first class value. In
functional languages, these values are higher-order functions,
which are composed to build more complex parser combinators.

In an OO language, parser combinators are objects. A complex
parser 1s just a tree of objects.




PetitParser — a PEG parser combinator library

for Smalltalk

PEG expressions are
implemented by subclasses of
PPParser. PEG operators are
messages sent to parsers

PPParser

/
and

end

not

plus

star

def:

parse:
basicParse:

T

PPStarParser

PPListParser PPAndParser PPEndOfinputParser
parsers
4 basicParse: basicParse:
PPSequenceParser PPChoiceParser
basicParse: basicParse:

basicParse:

http://source.lukas-renggli.ch/petit.html




PetitParser example

Add <  Mul + Add / Mul
Mul <  Prim * Mul / Prim
Prim< (Add)/Dec

| goal add mul prim dec |

dec := $0 - $9. Dec < 0/1/...79
add := ( mul, S+ asParser, add )
/ mul.
mul := ( prim, $* asParser, mul)
/ prim.
prim := ( S$( asParser, add, $) asParser)
/ dec.

goal := add end.
goal parse: '6*(3+4)' asParserStream

> #($6 $* #(S( #($3 $+ $4) $)))



PetitParser overloads Smalltalk syntax to define a DSL for
writing parser combinators.

The dollar sign denotes a character in Smalltalk. To obtain a
parser for a character, we send 1t the message asParser. The
comma 1s used to sequentially compose parsers and the slash
creates a prioritized choice.




Semantic actions in PetitParser

Add <  Mul + Add / Mul

| goal add mul prim dec | Mul <  Prim * Mul / Prim
Prim< (Add)/Dec
dec := ($0 - $9) Dec < 0/1/.../9

==> [ :token [ token asNumber ].

add := ((mul , $+ asParser , add)
==> [ :nodes [ nodes first + nodes third ])
/ mul.

mul := ((prim , $* asParser , mul)
==> [ :nodes [ nodes first + nodes third ])
/ prim.

prim := (($( asParser , add , S$) asParser)
==> [ :nodes | nodes second ])
/ dec.

goal := add end.

goal parse: '6*(3+4)' asParserStream = 42



By default, a PP parser just returns a parse tree. In this example,
we add semantic actions to parsers. Each action 1s a block
(anonymous function) that takes the parse result and transforms
it. The rules here simply evaluate the recognized expressions.




Parser Combinator libraries

> Some OO parser combinator libraries:
—dJava: JParsec
—C#: NParsec
—Ruby: Ruby Parsec
—Python: Pysec
—and many more ...



Jparsec — composing a parser from parts

public class Calculator {

static Parser<Double> calculator(Parser<Double> atom) {
Parser .Reference<Double> ref = Parser.newReference();
Parser<Double> unit = ref.lazy().between(term(" ("), term(")")).or(atom);
Parser<Double> parser = new OperatorTable<Double>()
.infixl(op("+", BinaryOperator.PLUS), 10)
.infixl(op("-", BinaryOperator.MINUS), 10)
.infixl (op("*", BinaryOperator.MUL).or (WHITESPACE MUL), 20)
.infixl (op("/", BinaryOperator.DIV), 20)
.prefix(op("-", UnaryOperator.NEG), 30).build(unit);
ref.set (parser);
return parser;

}

public static final Parser<Double> CALCULATOR = calculator (NUMBER) .from(
TOKENIZER, IGNORED);

http://jparsec.codehaus.orq/jparsec2+Tutorial



http://jparsec.codehaus.org/jparsec2+Tutorial

What you should know!

> s a CFG a language recognizer or a language
generator? What are the practical implications of this?

> How are PEGs defined?

S~ How do PEGs differ from CFGs?

> What problem do PEGs solve?

S~ How does memoization aid backtracking parsers?

>~ What are scannerless parsers? What are they good for?
~ How can parser combinators be implemented as objects?



Can you answer these questions?

~ Why is it critical for PEGs that parsing functions be
stateless?

~ Why do PEG parsers have unlimited lookahead?

> Why are PEGs and packrat parsers well suited to
functional programming languages?

~ What kinds of languages are scannerless parsers good
for? When are they inappropriate?



@creative
commons

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that

@ suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.orqg/licenses/by-sa/4.0/



http://creativecommons.org/licenses/by-sa/4.0/

