
2. Lexical Analysis!

Prof. O. Nierstrasz!

Thanks to Jens Palsberg and Tony Hosking for their kind permission
to reuse and adapt the CS132 and CS502 lecture notes.!
http://www.cs.ucla.edu/~palsberg/!
http://www.cs.purdue.edu/homes/hosking/!

Roadmap!

>  Regular languages!
>  Finite automata recognizers!
>  From regular expressions to deterministic finite automata, and back!
>  Limits of regular languages!

2	

See, Modern compiler implementation
in Java (Second edition), chapter 2.!

© Oscar Nierstrasz!

Roadmap!

>  Regular languages!
>  Finite automata recognizers!
>  From regular expressions to deterministic finite automata, and back!
>  Limits of regular languages!

3	

© Oscar Nierstrasz!

Scanner!

• map characters to tokens!

•  character string value for a token is a lexeme !
• eliminates white space (tabs, blanks, comments etc.)!
• a key issue is speed ⇒ use specialized recognizer!

x = x + y! <id,x> = <id,x> + <id,y>!

4	

© Oscar Nierstrasz!

Specifying patterns!

A scanner must recognize various parts of the languageʼs syntax!

White space!
<ws> !::= !<ws> ʼ ʼ!

! !| !<ws> ʼ\tʼ!
! !| !ʼ ʼ!
! !| !ʼ\tʼ!

Keywords and operators!
!specified as literal patterns: do, end!

Comments!
!opening and closing delimiters: /* … */!

Some parts are easy:!

5	

© Oscar Nierstrasz!

Specifying patterns!

Other parts are much harder:!

Identifiers!
!alphabetic followed by k alphanumerics (_, $, &, …))!

Numbers!
!integers: 0 or digit from 1-9 followed by digits from 0-9!
!decimals: integer ʼ.ʼ digits from 0-9!
!reals: (integer or decimal) ʼEʼ (+ or —) digits from 0-9!
!complex: ʼ(ʼ real ʼ,ʼ real ʼ)ʼ!

We need an expressive notation to specify these patterns!!
6	

© Oscar Nierstrasz!

Operations on languages!

Operation! Definition!

Union! L ∪ M = { s ⏐ s ∈ L or s ∈ M }!

Concatenation! LM = { st ⏐ s ∈ L and t ∈ M }!

Kleene closure! L* = ∪I=0,∞ Li!

Positive closure! L+ = ∪I=1,∞ Li!

A language is a set of strings!

7	

© Oscar Nierstrasz!

Regular expressions describe regular
languages!

>  Regular expressions over an alphabet Σ:!
1.  ε is a RE denoting the set {ε}!
2.  If a ∈ Σ, then a is a RE denoting {a}!
3.  If r and s are REs denoting L(r) and L(s), then:!

>  (r) is a RE denoting L(r)!
>  (r)⏐(s) is a RE denoting L(r) ∪L(s)!
>  (r)(s) is a RE denoting L(r)L(s)!
>  (r)* is a RE denoting L(r)*!

If we adopt a precedence for operators, the extra
parentheses can go away. We assume closure, then
concatenation, then alternation as the order of precedence. !

8	

© Oscar Nierstrasz!

Examples!

identifier!
!letter → (a ⏐b ⏐ c ⏐… ⏐z ⏐ A ⏐ B ⏐ C ⏐ … ⏐ Z)!
!digit → (0⏐1⏐2⏐3⏐4⏐5⏐6⏐7⏐8⏐9)!
!id → letter (letter ⏐ digit)*!

numbers!
!integer → (+⏐—⏐ ε) (0⏐(1⏐2⏐3⏐… ⏐9) digit *)!
!decimal → integer . (digit)*!
!real → (integer ⏐ decimal) E (+ ⏐—) digit *!
!complex → ʼ(ʻ real ʼ,ʼ real ʼ)ʼ!

We can use REs to build scanners automatically.!
9	

© Oscar Nierstrasz!

Algebraic properties of REs!

r⏐s = s⏐r! ⏐ is commutative!
r⏐(s⏐t) = (r⏐s)⏐t ! ⏐ is associative!
r (st) = (rs)t ! concatenation is associative!
r(s⏐t) = rs⏐rt !
(s⏐t)r = sr⏐tr ! concatenation distributes over ⏐ !

εr = r!
rε = r! ε is the identity for concatenation!

r * = (r⏐ε)*! ε is contained in *!
r ** = r*! * is idempotent!

10	

© Oscar Nierstrasz!

Examples!

Let Σ = {a,b}!

>  a⏐b denotes {a,b}!

>  (a⏐b) (a⏐b) denotes {aa,ab,ba,bb}!

>  a* denotes {ε,a,aa,aaa,…}!

>  (a⏐b)* denotes the set of all strings of aʼs and bʼs
(including ε), i.e., (a⏐b)* = (a*⏐b*)* !

>  a⏐a*b denotes {a,b,ab,aab,aaab,aaaab,…}!

11	

© Oscar Nierstrasz!

Roadmap!

>  Regular languages!
>  Finite automata recognizers!
>  From regular expressions to deterministic finite automata, and back!
>  Limits of regular languages!

12	

© Oscar Nierstrasz!

Recognizers!

From a regular expression we can construct a
deterministic finite automaton (DFA) !

letter → (a ⏐b ⏐ c ⏐… ⏐z ⏐ A ⏐ B ⏐ C ⏐ … ⏐ Z)!
digit → (0⏐1⏐2⏐3⏐4⏐5⏐6⏐7⏐8⏐9)!
id → letter (letter ⏐ digit)*!

13	

© Oscar Nierstrasz!

Code for the recognizer!

14	

© Oscar Nierstrasz!

Tables for the recognizer!

Two tables control the recognizer!

char_class!
char! a-z! A-Z! 0-9! other!
value! letter! letter! digit! other!

next_state!
0! 1! 2! 3!

letter! 1! 1! —! —!
digit! 3! 1! —! —!
other! 3! 2! —! —!

To change languages, we can just change tables!
15	

© Oscar Nierstrasz!

Automatic construction!

>  Scanner generators automatically construct code from
regular expression-like descriptions !
—  construct a DFA !
—  use state minimization techniques !
—  emit code for the scanner (table driven or direct code) !

>  A key issue in automation is an interface to the parser !

>  lex is a scanner generator supplied with UNIX !
—  emits C code for scanner !
—  provides macro definitions for each token (used in the parser) !

16	

© Oscar Nierstrasz!

Grammars for regular languages!

Regular grammars generate regular languages!

Provable fact:!
—  For any RE r, there exists a grammar g such that L(r) = L(g)!

Definition: !
In a regular grammar, all productions have one of two forms: !
1.  A → aA!
2.  A → a!
where A is any non-terminal and a is any terminal symbol !

These are also called type 3 grammars (Chomsky) !

17	

© Oscar Nierstrasz!

Aside: The Chomsky Hierarchy!

>  Type 0: α → β!
—  Unrestricted grammars generate recursively enumerable

languages, recognizable by Turing machines!
>  Type 1: αAβ → αγβ!

—  Context-sensitive grammars generate context-sensitive
languages, recognizable by linear bounded automata!

>  Type 2: A → γ!
—  Context-free grammars generate context-free languages,

recognizable by non-deterministic push-down automata!
>  Type 3: A → b and A → aB!

—  Regular grammars generate regular languages, recognizable by
finite state automata !

NB: A is a non-terminal; α, β, γ are strings of terminals and non-terminals!

18!© Oscar Nierstrasz!

More regular languages!

Example: the set of strings containing an even number
of zeros and an even number of ones !

The RE is (00⏐11)*((01⏐10)(00⏐11)*(01⏐10)(00⏐11)*)*!
19	

© Oscar Nierstrasz!

More regular expressions!

What about the RE (a⏐b)*abb ?!

State s0 has multiple transitions on a!!

This is a non-deterministic finite automaton!

20	

© Oscar Nierstrasz!

Review: Finite Automata!

A non-deterministic finite automaton (NFA) consists of:!
1.  a set of states S = { s0 , … , sn } !
2.  a set of input symbols Σ (the alphabet)!
3.  a transition function move mapping state-symbol pairs to sets of

states!
4.  a distinguished start state s0
5.  a set of distinguished accepting (final) states F

A Deterministic Finite Automaton (DFA) is a special case of an NFA:!
1.  no state has a ε-transition, and!
2.  for each state s and input symbol a, there is at most one edge

labeled a leaving s.

A DFA accepts x iff there exists a unique path through the transition
graph from the s0 to an accepting state such that the labels along
the edges spell x. !

21	

© Oscar Nierstrasz!

DFAs and NFAs are equivalent!

1.  DFAs are clearly a subset of NFAs!

2.  Any NFA can be converted into a DFA, by simulating
sets of simultaneous states: !
—  each DFA state corresponds to a set of NFA states !
—  NB: possible exponential blowup!

22	

© Oscar Nierstrasz!

NFA to DFA using the subset construction!

23	

© Oscar Nierstrasz!

Roadmap!

>  Regular languages!
>  Finite automata recognizers!
>  From regular expressions to deterministic finite automata, and

back!
>  Limits of regular languages!

24	

© Oscar Nierstrasz!

Constructing a DFA from a regular expression!

>  RE → NFA!
—  Build NFA for each term; connect with ε moves!

>  NFA → DFA!
—  Simulate the NFA using the subset construction!

>  DFA → minimized DFA!
—  Merge equivalent states!

>  DFA → RE!
—  Construct Rk

ij = Rk-1
ik (Rk-1

kk)* Rk-1
kj ∪ Rk-1

ij!
—  Or convert via Generalized NFA (GNFA)!

25	

© Oscar Nierstrasz!

RE to NFA!

26	

© Oscar Nierstrasz!

RE to NFA example: (a⏐b)*abb!

abb!

(a⏐b)*!(a⏐b)!

27	

© Oscar Nierstrasz!

NFA to DFA: the subset construction!

Input: NFA N!
Output: DFA D with states SD and

transitions TD such that L(D) = L
(N)!

Method: Let s be a state in N and
P be a set of states. Use the
following operations:!

>  ε-closure(s) — set of states of N
reachable from s by ε transitions
alone!

>  ε-closure(P) — set of states of N
reachable from some s in P by ε
transitions alone!

>  move(T,a) — set of states of N to
which there is a transition on input a
from some s in P!

add state P = ε-closure(s0)
unmarked to SD!
while ∃ unmarked state P in SD!
!mark P!
!for each input symbol a!
! !U = ε-closure(move(P,a)) !
! !if U ∉ SD!
! !then add U unmarked to SD!
! !TD[T,a] = U!
!end for!

end while!
ε-closure(s0) is the start state of D!
A state of D is accepting if it
contains an accepting state of N!

28	

© Oscar Nierstrasz!

NFA to DFA using subset construction:
example!

A = {0,1,2,4,7}
B = {1,2,3,4,6,7,8}
C = {1,2,4,5,6,7}
D = {1,2,4,5,6,7,9}
E = {1,2,4,5,6,7,10}

29	

© Oscar Nierstrasz!

DFA Minimization!

30	

http://en.wikipedia.org/wiki/DFA_minimization!

Theorem: For each regular language that can be
accepted by a DFA, there exists a DFA with a
minimum number of states.!

Minimization approach:
merge equivalent states.!

States A and C are
indistinguishable, so they
can be merged!!

© Oscar Nierstrasz!

DFA Minimization algorithm!

>  Create lower-triangular table DISTINCT, initially
blank!

>  For every pair of states (p,q):!
—  If p is final and q is not, or vice versa!

–  DISTINCT(p,q) = ε!
>  Loop until no change for an iteration:!

—  For every pair of states (p,q) and each symbol α !
–  If DISTINCT(p,q) is blank and  

DISTINCT(δ(p,α), δ(q,α)) is not blank!
–  DISTINCT(p,q) = α!

>  Combine all states that are not distinct !

© Oscar Nierstrasz! 31	

Minimization in action!

© Oscar Nierstrasz! 32	

C and A are indistinguishable!
so can be merged!

DFA Minimization example!

33	

© Oscar Nierstrasz!

It is easy to see that this is in fact
the minimal DFA for (a⏐b)*abb …!

DFA to RE via GNFA!

>  A Generalized NFA is an NFA where transitions may
have any RE as labels !

>  Conversion algorithm:!
1.  Add a new start state and accept state with ε-transitions to/from

the old start/end states!
2.  Merge multiple transitions between two states to a single RE

choice transition!
3.  Add empty ∅-transitions between states where missing!
4.  Iteratively “rip out” old states and replace “dangling transitions”

with appropriately labeled transitions between remaining states!
5.  STOP when all old states are gone and only the new start and

accept states remain!

© Oscar Nierstrasz! 34	

GNFA conversion algorithm!

1.  Let k be the number of states of G, k≥2!
2.  If k=2, then RE is the label found between qs and qa

(start and accept states of G)!
3.  While k>2, select qrip ≠ qs or qa !

—  Q´ = Q – {qrip}!
—  For any qi ∈ Q´ — {qa} let δ´(qi,qj) = R1 R2* R3 ∪ R4 where: 

R1 = δ´(qi,qrip), R2 = δ´(qrip,qrip), R2 = δ´(qrip,qj), R4 = δ´(qi,qj)!
—  Replace G by G´!

© Oscar Nierstrasz! 35	

© Oscar Nierstrasz! 36	

The initial NFA!

© Oscar Nierstrasz! 37	

Add new start and accept states!

© Oscar Nierstrasz! 38	

Add missing empty transitions!
(weʼll just pretend theyʼre there)!

© Oscar Nierstrasz! 39	

Delete an arbitrary state!

© Oscar Nierstrasz! 40	

Fix dangling transitions s→1 and 3→1!
Donʼt forget to merge the existing transitions!!

© Oscar Nierstrasz! 41	

Simplify the RE!
Delete another state!

NB: bb*a|a = (bb*|ε)a = b*a!

© Oscar Nierstrasz! 42	

© Oscar Nierstrasz! 43	

© Oscar Nierstrasz! 44	

© Oscar Nierstrasz! 45	

© Oscar Nierstrasz! 46	

© Oscar Nierstrasz! 47	

Hm … not what we expected!

b*aa*b (b*aa*b)* b = (a|b)*abb ?!

>  We can rewrite:!
—  b*aa*b (b*aa*b)* b !
—  b*a*ab (b*a*ab)* b !
—  (b*a*ab)* b*a* abb !

>  But does this hold?!
—  (b*a*ab)* b*a* = (a|b)*!

© Oscar Nierstrasz! 48	

We can show that the
minimal DFAs for these
REs are isomorphic …!

Roadmap!

>  Regular languages!
>  Finite automata recognizers!
>  From regular expressions to deterministic finite automata, and back!
>  Limits of regular languages!

49	

© Oscar Nierstrasz!

Limits of regular languages!

Not all languages are regular!!

One cannot construct
DFAs to recognize
these languages:!

L = { pkqk }!
L = { wcwr | w ∈ Σ*, wr is w reversed } !

In general, DFAs cannot count!!

However, one can construct DFAs for:!
•  Alternating 0ʼs and 1ʼs:!

(ε | 1)(01)*(ε | 0)!
•  Sets of pairs of 0ʼs and 1ʼs!

(01 | 10)+!

50	

© Oscar Nierstrasz!

So, what is hard?!

Certain language features can cause problems:!
>  Reserved words!

—  PL/I had no reserved words !
—  if then then then = else; else else = then!

>  Significant blanks!
—  FORTRAN and Algol68 ignore blanks!
—  do 10 i = 1,25!
—  do 10 i = 1.25!

>  String constants!
—  Special characters in strings!
—  Newline, tab, quote, comment delimiter!

>  Finite limits!
—  Some languages limit identifier lengths!
—  Add state to count length!
—  FORTRAN 66 — 6 characters(!)!

51	

© Oscar Nierstrasz!

How bad can it get?!

Compiler needs context
to distinguish variables
from control constructs!!

52	

© Oscar Nierstrasz!

What you should know!!

✎  What are the key responsibilities of a scanner?!
✎  What is a formal language? What are operators over

languages?!
✎  What is a regular language?!
✎  Why are regular languages interesting for defining

scanners?!
✎  What is the difference between a deterministic and a

non-deterministic finite automaton?!
✎  How can you generate a DFA recognizer from a regular

expression?!
✎  Why arenʼt regular languages expressive enough for

parsing?!

53	

© Oscar Nierstrasz!

Can you answer these questions?!

✎  Why do compilers separate scanning from parsing?!
✎  Why doesnʼt NFA → DFA translation normally result in

an exponential increase in the number of states?!
✎  Why is it necessary to minimize states after translation a

NFA to a DFA?!
✎  How would you program a scanner for a language like

FORTRAN?!

54	

© Oscar Nierstrasz!

© Oscar Nierstrasz! 55	

Attribution-ShareAlike 3.0 Unported!
You are free:!

to Share — to copy, distribute and transmit the work!
to Remix — to adapt the work!

Under the following conditions:!
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).!
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.!

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.!

Any of the above conditions can be waived if you get permission from the copyright holder.!
Nothing in this license impairs or restricts the author's moral rights.!

License!

http://creativecommons.org/licenses/by-sa/3.0/	

