
9. Bytecode and Virtual Machines!

Original material prepared by Adrian Lienhard and Marcus Denker !

Birds-eye view!

A virtual machine is an abstract computing
 architecture supporting a programming
 language in a hardware-independent fashion!

Z1, 1938!
© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

2	

Roadmap!

>  Introduction!
>  Bytecode!
>  The heap store !
>  Interpreter!
>  Automatic memory management!
>  Threading System!
>  Optimizations!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

3	

Implementing a Programming Language!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

4	

How are VMs implemented?!

Typically using an efficient and portable language!
such as C, C++, or assembly code!

Pharo VM platform-independent part written in Slang: ! 
– subset of Smalltalk, translated to C  
– core: 600 methods or 8k LOC in Slang  
– Slang allows one to simulate VM in Smalltalk!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

5	

Main Components of a VM!

The heap store !
Interpreter!
Automatic memory management!
Threading System!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

6	

Pros and Cons of the VM Approach!

Pros!
>  Platform independence of application code  

“Write once, run anywhere”!
>  Simpler programming model!
>  Security!
>  Optimizations for different hardware architectures!

Cons!
>  Execution overhead!
>  Not suitable for system programming!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

7	

Roadmap!

>  Introduction!
>  Bytecode !
>  The heap store !
>  Interpreter!
>  Automatic memory management!
>  Threading System!
>  Optimizations!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

8	

Reasons for working with Bytecode!

>  Generating Bytecode!
—  Implementing compilers for other languages!
—  Experimentation with new language features!

>  Parsing and Interpretation:!
—  Analysis (e.g., self and super sends)!
—  Decompilation (for systems without source)!
—  Printing of bytecode!
—  Interpretation: Debugger, Profiler!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

9	

The Pharo Virtual Machine!

>  Virtual machine provides a virtual processor!
—  Bytecode: The “machine-code” of the virtual machine!

>  Smalltalk (like Java): Stack machine!
—  easy to implement interpreters for different processors!
—  most hardware processors are register machines!

>  Pharo VM: Implemented in Slang !
—  Slang: Subset of Smalltalk. (“C with Smalltalk Syntax”)!
—  Translated to C!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

10	

Bytecode in the CompiledMethod!

>  CompiledMethod format:!

Number of !
temps, literals...!

Array of all !
Literal Objects!

Pointer to!
Source!

Header!

Literals!

Bytecode!

Trailer!

(Number methodDict at: #asInteger) inspect!

(Number>>#asInteger) inspect!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

11	

Bytecodes: Single or multibyte!

>  Different forms of bytecodes:!
—  Single bytecodes:!

–  Example: 120: push self!

—  Groups of similar bytecodes!
–  16: push temp 1!
–  17: push temp 2!
–  up to 31!

—  Multibyte bytecodes!
–  Problem: 4 bit offset may be too small!
–  Solution: Use the following byte as offset!
–  Example: Jumps need to encode large jump offsets!

Type! Offset!
4 bits! 4 bits!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

12	

>  Smalltalk code:!

>  Symbolic Bytecode!

Example: Number>>asInteger!

Number>>asInteger!
!"Answer an Integer nearest!
!the receiver toward zero."!

!^self truncated!

17 <70> self!
18 <D0> send: truncated!
19 <7C> returnTop!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

13	

Example: Step by Step!

>  17 <70> self!
—  The receiver (self) is pushed on the stack!

>  18 <D0> send: truncated!
—  Bytecode 208: send literal selector 1!
—  Get the selector from the first literal!
—  start message lookup in the class of the object that is on top of

 the stack!
—  result is pushed on the stack!

>  19 <7C> returnTop!
—  return the object on top of the stack to the calling method!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

14	

Pharo Bytecode!

>  256 Bytecodes, four groups:!

—  Stack Bytecodes!
–  Stack manipulation: push / pop / dup!

—  Send Bytecodes!
–  Invoke Methods!

—  Return Bytecodes!
–  Return to caller!

—  Jump Bytecodes!
–  Control flow inside a method!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

15	

Stack Bytecodes!

>  Push values on the stack!
—  e.g., temps, instVars, literals!
—  e.g: 16 - 31: push instance variable!

>  Push Constants!
—  False/True/Nil/1/0/2/-1!

>  Push self, thisContext!
>  Duplicate top of stack!
>  Pop!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

16	

Sends and Returns!

>  Sends: receiver is on top of stack!
—  Normal send!
—  Super Sends!
—  Hard-coded sends for efficiency, e.g. +, -!

>  Returns!
—  Return top of stack to the sender !
—  Return from a block!
—  Special bytecodes for return self, nil, true, false (for

 efficiency)!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

17	

>  Control Flow inside one method!
—  Used to implement control-flow efficiently!
—  Example:!

Jump Bytecodes!

17 <76> pushConstant: 1!
18 <77> pushConstant: 2!
19 <B2> send: <!
20 <99> jumpFalse: 23!
21 <20> pushConstant: 'true'!
22 <90> jumpTo: 24!
23 <73> pushConstant: nil!
24 <7C> returnTop!

^ 1<2 ifTrue: ['true']!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

18	

Roadmap!

>  Introduction!
>  Bytecode !
>  The heap store !
>  Interpreter!
>  Automatic memory management!
>  Threading System!
>  Optimizations!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

19	

Object Memory Layout!

32-bit direct-pointer scheme!

Reality is more complex: 
– 1-word header for instances of compact classes 
– 2-word header for normal objects 
– 3-word header for large objects!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

20	

Different Object Formats!

>  fixed pointer fields!
>  indexable types: 

– indexable pointer fields (e.g., Array) 
– indexable weak pointer fields (e.g., WeakArray)  
– indexable word fields (e.g., Bitmap)  
– indexable byte fields (e.g., ByteString)!

Object format (4bit) 
0 !no fields 
1 !fixed fields only 
2 !indexable pointer fields only 
3 !both fixed and indexable pointer fields 
4 !both fixed and indexable weak fields 
6 !indexable word fields only 
8-11 !indexable byte fields only 
12-15 !...!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

21	

“Answer the first object on the heap”!
anObject someObject!

“Answer the next object on the heap”!
anObject nextObject!

Excludes small
 integers!!

Iterating Over All Objects in Memory!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

22	

|count|!
count := 0.!
SystemNavigation default allObjectsDo:!
![:anObject | count := count + 1].!

Count!
529468!

SystemNavigation>>allObjectsDo: aBlock !
!| object endMarker |!
!object := self someObject.!
!endMarker := Object new.!
![endMarker == object]!
! !whileFalse: [aBlock value: object.!
! ! !object := object nextObject]!

Roadmap!

>  Introduction!
>  Bytecode !
>  The heap store !
>  Interpreter!
>  Automatic memory management!
>  Threading System!
>  Optimizations!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

23	

Stack vs. Register VMs!

Stack machines!
•  Smalltalk, Java and most other VMs!
•  Simple to implement for different hardware architectures!
•  Very compact code!

Register machines!
•  Potentially faster than stack machines!
•  Only few register VMs, e.g., Parrot VM (Perl6)!

VM provides a virtual processor that
 interprets bytecode instructions!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

24	

Interpreter State and Loop!

Interpreter state  
– instruction pointer (ip): points to current bytecode  
– stack pointer (sp): topmost item in the operand stack 
– current active method or block context 
– current active receiver and method!

Interpreter loop 
1. branch to appropriate bytecode routine  
2. fetch next bytecode  
3. increment instruction pointer  
4. execute the bytecode routine  
5. return to 1.!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

25	

Method Contexts!

method header:!
– primitive index!
– number of args!
– number of temps!
– large context flag!
– number of literals!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

26	

Stack Manipulating Bytecode Routine!

Example: bytecode <70> self!

Interpreter>>pushReceiverBytecode!
 self fetchNextBytecode.!
 self push: receiver!

Interpreter>>push: anObject!
 sp := sp + BytesPerWord.!
 self longAt: sp put: anObject!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

27	

Stack Manipulating Bytecode Routine!

Example: bytecode <01> pushRcvr: 1 !

Interpreter>>pushReceiverVariableBytecode!
 self fetchNextBytecode.!
 self pushReceiverVariable: (currentBytecode bitAnd: 16rF)!

Interpreter>>pushReceiverVariable: fieldIndex!
 self push: ( 
 self fetchPointer: fieldIndex ofObject: receiver)!

Interpreter>>fetchPointer: fieldIndex ofObject: oop!
 ^ self longAt: oop + BaseHeaderSize + (fieldIndex * BytesPerWord)!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

28	

Message Sending Bytecode Routine!

1. find selector, receiver and its class!
2. lookup message in the method dictionary of the class!
3. if method not found, repeat this lookup in successive

 superclasses; if superclass is nil, instead send
 #doesNotUnderstand:!

4. create a new method context and set it up!
5. activate the context and start executing the instructions

 in the new method!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

29	

Example: bytecode <E0> send: hello!

Message Sending Bytecode Routine!

Interpreter>>sendLiteralSelectorBytecode!
 selector := self literal: (currentBytcode bitAnd: 16rF).!
 argumentCount := ((currentBytecode >> 4) bitAnd: 3) - 1. !
 rcvr := self stackValue: argumentCount.!
 class := self fetchClassOf: rcvr.!
 self findNewMethod.!
 self executeNewMethod.!
 self fetchNewBytecode!

Example: bytecode <E0> send: hello!

This routine (bytecodes
 208-255) can use any of the
 first 16 literals and pass up to
 2 arguments!

 E0(hex) = 224(dec)!
!= 1110 0000(bin)!

 E0 AND F = 0!
!=> literal frame at 0!

 ((E0 >> 4) AND 3) - 1 = 1!
!=> 1 argument!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

30	

Primitives!

Primitive methods trigger a VM routine!
and are executed without a new!
method context unless they fail!

>  Improve performance (arithmetics, at:, at:put:, ...)!
>  Do work that can only be done in VM (new object creation, 

process manipulation, become, ...) !
>  Interface with outside world (keyboard input, networking, ...)!
>  Interact with VM plugins (named primitives)!

 ProtoObject>>nextObject!
 <primitive: 139>!
 self primitiveFailed!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

31	

Roadmap!

>  Introduction!
>  Bytecode !
>  The heap store !
>  Interpreter!
>  Automatic memory management!
>  Threading System!
>  Optimizations!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

32	

Automatic Memory Management!

Challenges!
– Fast allocation!
– Fast program execution!

Tell when an object is no longer used
 and then recycle the memory!

– Small predictable pauses!
– Scalable to large heaps!
– Minimal space usage!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

33	

Main Approaches!

>  1. Reference Counting!

>  2. Mark and Sweep!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

34!

Reference Counting GC!

Idea!
>  For each store operation increment count field in header

 of newly stored object!
>  Decrement if object is overwritten !
>  If count is 0, collect object and decrement the counter of

 each object it pointed to !

Problems!
>  Run-time overhead of counting (particularly on stack)!
>  Inability to detect cycles (need additional GC technique)!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

35	

Reference Counting GC!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

36	

Mark and Sweep GC!

Idea!
>  Suspend current process!
>  Mark phase: trace each accessible object leaving a mark

 in the object header (start at known root objects)!
>  Sweep phase: all objects with no mark are collected!
>  Remove all marks and resume current process!

Problems!
>  Need to “stop the world”!
>  Slow for large heaps generational collectors!
>  Fragmentation compacting collectors

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

37	

Mark and Sweep GC!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

38	

Generational Collectors!

Idea!
>  Partition objects into generations!
>  Create objects in young generation!
>  Tenuring: move live objects from young to old generation!
>  Incremental GC: frequently collect young generation (very fast)!
>  Full GC: infrequently collect young+old generation (slow)!

Difficulty!
>  Need to track pointers from old to new space!

Most new objects live very short lives;
 most older objects live forever [Ungar 87]!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

39	

Generational Collectors: Remembered Set!

Write barrier: remember objects with old-young pointers:!
>  On each store check whether 

stored object (object2) is young and  
storer (object1) is old!

>  If true, add storer to remembered set!
>  When marking young generation, use objects in remembered set as

additional roots!

object1.f := object2!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

40	

Compacting Collectors!

Idea!
>  During the sweep phase all live objects are packed to

the beginning of the heap!
>  Simplifies allocation since free space is in one

contiguous block!

Challenge !!
>  Adjust all pointers of moved objects!

– object references on the heap!
– pointer variables of the interpreter!!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

41	

The Pharo GC!

Pharo: mark and sweep compacting collector with two
 generations!

>  Cooperative, i.e., not concurrent!
>  Single threaded!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

42!

When Does the GC Run?!

– Incremental GC on allocation count or memory needs
– Full GC on memory needs
– Tenure objects if survivor threshold exceeded

 “Incremental GC after this many allocations”!
 SmalltalkImage current vmParameterAt: 5!

 “Tenure when more than this many objects survive”!
 SmalltalkImage current vmParameterAt: 6!

4000!

2000!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

43	

VM Memory Statistics!

 SmalltalkImage current
 vmStatisticsReportString!

 memory ! !20,245,028 bytes!
!old ! !14,784,388 bytes (73.0%)!
!young ! !117,724 bytes (0.6%)!
!used ! !14,902,112 bytes (73.6%)!
!free ! !5,342,916 bytes (26.4%)!

 GCs ! ! !975 (48ms between GCs)!
!full ! !0 totalling 0ms (0.0% uptime)!
!incr ! !975 totalling 267ms (1.0% uptime), avg 0.0ms!
!tenures !14 (avg 69 GCs/tenure)!

 Since last view !90 (54ms between GCs)!
!uptime ! !4.8s!
!full ! !0 totalling 0ms (0.0% uptime)!
!incr ! !90 totalling 29ms (1.0% uptime), avg 0.0ms!
!tenures !1 (avg 90 GCs/tenure)!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

44	

Memory System API!

 “Force GC”!
 Smalltalk garbageCollectMost!
 Smalltalk garbageCollect!

 “Is object in remembered set, is it young?”!
 Smalltalk rootTable includes: anObject!
 Smalltalk isYoung: anObject!

 “Various settings and statistics”!
 SmalltalkImage current getVMParameters!

 ”Do an incremental GC after this many allocations”!
 SmalltalkImage current vmParameterAt: 5 put: 4000.!
 ”Tenure when more than this many objects survive the GC”!
 SmalltalkImage current vmParameterAt: 6 put: 2000.!
 ”Grow/shrink headroom”!
 SmalltalkImage current vmParameterAt: 25 put: 4*1024*1024.!
 SmalltalkImage current vmParameterAt: 24 put: 8*1024*1024. !

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

45	

Finding Memory Leaks!

– maybe object is just not GCed yet (force a full GC!)!
– find the objects and then explore who references them!

 PointerFinder on:!
!AssignmentNode someInstance!

 PointerExplorer new
 openExplorerFor:
 AssignmentNode
 someInstance!

PointerFinder finds a path
 from a root to some object!

I have objects that do not get collected. Whatʼs wrong?!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

46	

Roadmap!

>  Introduction!
>  Bytecode !
>  The heap store !
>  Interpreter!
>  Automatic memory management!
>  Threading System!
>  Optimizations!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

47	

Threading System!

Multithreading is the ability to create concurrently!
running “processes”!

Non-native threads (green threads)!
– Only one native thread used by the VM!
– Simpler to implement and easier to port!

Native threads!
– Using the native thread system provided by the OS!
– Potentially higher performance!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

48	

Pharo: Green Threads!

Each process has its own execution stack, ip, sp, ...!

There is always one (and only one) running process!

Each process behaves as if it owns the entire VM!

Each process can be interrupted (context switching)!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

49	

Representing Processes and Run Queues!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

50	

Context Switching!

1.  store the current ip and sp registers to the current context!
2.  store the current context in the old processʼ suspendedContext!
3.  change Processor to point to newProcess!
4.  load ip and sp registers from new processʼ suspendedContext!

Interpreter>>transferTo: newProcess!

When you perform a context switch,
 which process should run next? !

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

51	

Process Scheduler!

>  Cooperative between processes of the same priority
>  Preemptive between processes of different priorities

Context is switched to the first process with highest priority when:
– current process waits on a semaphore
– current process is suspended or terminated
– Processor yield is sent

Context is switched if the following process has a higher priority:
– process is resumed or created by another process
– process is resumed from a signaled semaphore

When a process is interrupted, it moves to the back of its run queue

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

52	

Example: Semaphores and Scheduling!

 here := false.!
 lock := Semaphore forMutualExclusion.!
 [lock critical: [here := true]] fork.!
 lock critical: [!

!self assert: here not.!
!Processor yield.!
!self assert: here not].!

 Processor yield.!
 self assert: here! When is the forked

 process activated?!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

53	

Roadmap!

>  Introduction!
>  Bytecode !
>  The heap store !
>  Interpreter!
>  Automatic memory management!
>  Threading System!
>  Optimizations!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

54	

Many Optimizations...!

>  Method cache for faster lookup: receiver's class + method selector!
>  Method context cache (as much as 80% of objects created are

 context objects!)!

>  Interpreter loop: 256 way case statement to dispatch bytecodes!

>  Quick returns: methods that simply return a variable or known
 constant are compiled as a primitive method!

>  Small integers are tagged pointers: value is directly encoded in field
 references. Pointer is tagged with low-order bit equal to 1. The
 remaining 31 bit encode the signed integer value.!

>  ...!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

55	

Optimization: JIT (not in Pharo)!

Idea: Just In Time Compilation!
>  Translate unit (method, loop, ...) into native machine code at runtime!
>  Store native code in a buffer on the heap!

Challenges!
>  Run-time overhead of compilation!
>  Machine code takes a lot of space (4-8x compared to bytecode)!
>  Deoptimization (for debugging) is very tricky!

Adaptive compilation: gather statistics to compile only units that!
are heavily used (hot spots)!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

56	

References!

>  Virtual Machines, Iain D. Craig, Springer, 2006!
>  Back to the Future – The Story of Squeak, A Practical Smalltalk

 Written in Itself, Ingalls et al, OOPSLA ʼ97!
>  Smalltalk-80, the Language and Its Implementation (AKA “the Blue

 Book”), Goldberg, Robson, Addison-Wesley, ʼ83!
—  http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf!

>  The Java Virtual Machine Specification, Second Edition!
—  http://java.sun.com/docs/books/jvms/!

>  Stacking them up: a Comparison of Virtual Machines, Gough,
 IEEEʼ01!

>  Virtual Machine Showdown: Stack Versus Registers, Shi, Gregg,
 Beatty, Ertl, VEEʼ05!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

57!

What you should know!!

✎  What is the difference between the operand stack and
the execution stack?!

✎  How do bytecode routines and primitives differ?!
✎  Why is the object format encoded in a complicated 4bit

pattern instead of using regular boolean values?!
✎  Why is the object address not suitable as a hash value?!
✎  What happens if an object is only weakly referenced?!
✎  Why is it hard to build a concurrent mark sweep GC?!
✎  What does cooperative multithreading mean?!
✎  How do you protect code from concurrent execution?!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

58	

Can you answer these questions?!

✎  There is a lot of similarity between VM and OS design.
What are the common components?!

✎  Why is accessing the 16th instance variable of an object
more efficient than the 17th?!

✎  Which disastrous situation could occur if a local C
pointer variable exists when a new object is allocated?!

✎  Why does #allObjectsDo: not include small integers?!
✎  What is the largest possible small integer?!

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

59	

Attribution-ShareAlike 3.0 Unported!
You are free:!

to Share — to copy, distribute and transmit the work!
to Remix — to adapt the work!

Under the following conditions:!
Attribution. You must attribute the work in the manner specified by the author or
 licensor (but not in any way that suggests that they endorse you or your use of the
 work).!
Share Alike. If you alter, transform, or build upon this work, you may distribute the
 resulting work only under the same, similar or a compatible license.!

For any reuse or distribution, you must make clear to others the license terms of this work. The
 best way to do this is with a link to this web page.!

Any of the above conditions can be waived if you get permission from the copyright holder.!
Nothing in this license impairs or restricts the author's moral rights.!

License!

http://creativecommons.org/licenses/by-sa/3.0/	

© Oscar Nierstrasz!

Bytecodes and Virtual Machines!

60	

