
Oscar Nierstrasz

CP — Concurrency: State Models and
Design Patterns
 
1. Introduction

x z
y

P1 P2
P3

P1

P2

P3

x y

z

2

Concurrent Programming

Lecturer Prof. Oscar Nierstrasz

Assistants Pascal Gadient, Mohammadreza Hazhirpasand

Lectures Wednesday @ 10h15-12h00

Exercises Wednesday @ 12h00-13h00

WWW http://scg.unibe.ch/teaching/cp/

http://scg.unibe.ch/teaching/cp/

This is a note (a hidden slide). You will find some of these
scattered around the PDF versions of the slides.

> Course Overview
> Concurrency and Parallelism
> Challenges: Safety and Liveness
> Expressing Concurrency

—Process Creation
—Communication and Synchronization

Roadmap

4

5

Goals of this course

> Introduce basic concepts of concurrency
—safety, liveness, fairness

> Present tools for reasoning about concurrency
—LTS, Petri nets

> Learn the best practice programming techniques
—idioms and patterns

> Get experience with the techniques
—lab sessions

Schedule

6

1 22-Sep-21 Introduction
2 29-Sep-21 Java and Concurrency
3 6-Oct-21 Safety and Synchronization
4 13-Oct-21 Safety Patterns + Transactional Memory
5 20-Oct-21 Liveness and Guarded Methods
6 27-Oct-21 Lab session
7 3-Nov-21 Liveness and Asynchrony
8 10-Nov-21 Condition Objects
9 17-Nov-21 Fairness and Optimism

10 24-Nov-21 Lab session
11 1-Dec-21 Petri Nets
12 8-Dec-21 Architectural Styles for Concurrency
13 15-Dec-21 TBA
14 22-Dec-21 Exam

Texts

7

Doug Lea: Concurrent
Programming in Java: Design
Principles and Patterns,
Addison-Wesley, 1996

Jeff Magee, Jeff
Kramer, Concurrency:
State Models & Java
Programs, Wiley, 1999

Concurrency raises complex issues for programming software
systems. In this course we take a pragmatic approach to balancing
theory and practice. The book by Magee and Kramer provides us
with theoretical foundations needed to understand the problems
posed by concurrency and the formal tools we need to reason
about it. The book by Lea, on the other hand, focuses on common
design patterns used to manage concurrency and reduce its
complexity.

8

Further reading

Brian Goetz et al,
Java Concurrency in Practice,
Addison Wesley, 2006.

The book by Goetz provides a complement to the other two
books, by presenting some of the more modern concurrency
features and libraries offered by the Java platform.

> Course Overview
> Concurrency and Parallelism
> Challenges: Safety and Liveness
> Expressing Concurrency

—Process Creation
—Communication and Synchronization

Roadmap

9

A Survey of Concurrent Programming Concepts
and Notations

10

Gregory R. Andrews and Fred B. Schneider.

Concepts and Notations for Concurrent Programming.

In ACM Computing Surveys 15(1) p. 3—43, March 1983.

Although this survey is now very old, it still offers an excellent
and very readable introduction to the main concepts of concurrent
programming. Most of the content of this introductory lecture is
based on this survey.

DOI: 10.1145/356901.356903

Locally available:
http://scgresources.unibe.ch/Literature/CP/Andr83aSurvey.pdf

11

Concurrency

> A sequential program has a single thread of control.
—Its execution is called a process.

> A concurrent program has multiple threads of control.
—These may be executed as parallel processes.

Beware, the words “thread” and “process” have multiple,
overlapping, and inconsistent meanings in Computer Science.
Generally we will use the word “process” to mean an instance of
a running software program, with its own address space. A
“thread” refers to a “thread of control” within a given process. A
thread, then, does not have its own address space. A process may
contain multiple threads.

12

Parallelism

A concurrent program can be executed by:

Multiprogramming: processes share one or more
processors

Multiprocessing:
each process runs on its own
processor but with shared
memory

Distributed
processing:

each process runs on its own
processor connected by a
network to others

Assume only that all processes
make positive finite progress.

13

Why do we need concurrent programs?

> Reactive programming
—minimize response delay; maximize throughput

> Real-time programming
—process control applications

> Simulation
—modelling real-world concurrency

> Parallelism
—speed up execution by using multiple CPUs

> Distribution
—coordinate distributed services

Reactive programming is used in applications characterized by
asynchronous events. Programs react to asynchronous streams of
data. Events could be user events, or data streams from social media,
or even financial data.
In real-time programming, programs need to handle events within
real-time constraints. Examples are process control applications that
react to sensors on an automated factory floor.
Simulation programs can be structured as processes each of which
simulates a real-world entity.
Parallelism is closely related to concurrency, but focuses on speeding
up algorithms by splitting them up into parts that can run in parallel.
Concurrent programs in general don't necessarily have parallelism as
a goal, but rather as an inherent aspect of the problem to be solved.
Distribution is also closely related to concurrency, but focuses rather
on distributing tasks across a number of more loosely connected
devices.

> Course Overview
> Concurrency and Parallelism
> Challenges: Safety and Liveness
> Expressing Concurrency

—Process Creation
—Communication and Synchronization

Roadmap

14

15

Difficulties

But concurrent applications introduce complexity:

Safety
> concurrent processes may corrupt shared data
Liveness
> processes may “starve” if not properly coordinated
Non-determinism
> the same program run twice may give different results
Run-time overhead
> thread construction, context switching and

synchronization take time

Concurrency and atomicity

16

{ x = 0 }
P1: x := x+1
P2: x := x+2
{ x = ? }

Programs P1 and P2 execute concurrently:

What are possible
values of x after P1
and P2 complete?

What is the intended
final value of x?

Consider carefully all possible interleavings of P1 and P2.
NB: what exactly are you assuming to be the atomic actions of P1
and P2?

17

Safety

Safety = ensuring consistency

A safety property says “nothing bad happens”

—Mutual exclusion: shared resources must be updated atomically
—Condition synchronization: operations may be delayed if shared

resources are in the wrong state
– (e.g., read from empty buffer)

One way of thinking about safety is that the data of our program
are not corrupted. This is clearly related to the notion of a class
invariant in object-oriented programming. Safety (of an object) is
ensured if the class invariant is respected.
Another way of thinking about safety is that the program does not
reach a “bad state”. The “bad state” can manifest itself as
inconsistent memory, or perhaps some other undesirable property.

18

Liveness

Liveness = ensuring progress

A liveness property says “something good happens”

—No Deadlock: some process can always access a shared resource
—No Starvation: all processes can eventually access shared

resources

Safety can be ensured trivially simply by not doing anything.
(Some bureaucracies function like this.) But a useful program
should actually do something useful, which is why we need both
safety and liveness.
There can be many degrees of liveness. “No deadlock” is fairly
weak, as it states that some progress is made in the system. “No
starvation” is stronger since it ensures that all components will
make some progress eventually.

> Course Overview
> Concurrency and Parallelism
> Challenges: Safety and Liveness
> Expressing Concurrency

—Process Creation
—Communication and Synchronization

Roadmap

19

20

Expressing Concurrency

A programming language must provide mechanisms for:

Process creation
> how do you specify concurrent processes?
Communication
> how do processes exchange information?
Synchronization
> how do processes maintain consistency?

21

Process Creation

Most concurrent languages offer some variant of the
following:

> Co-routines
> Fork and Join
> Cobegin/coend

22

Co-routines

Co-routines are only pseudo-concurrent and require explicit transfers of control

Program

call A()

Coroutine A Coroutine B

call B()

resume A()

return

resume B()

Co-routines can be used to implement most
higher-level concurrent mechanisms.

Co-routines are a rather old-fashioned mechanism to explicitly
hand off control between multiple threads. They are no longer
used in any mainstream programming language, but sometimes
you will find them offered as library functions for low-level
programs (e.g., assembler) as building blocks for creating higher-
level concurrency constructs.

23

Fork and Join

Fork can be used to create any number of processes:
Join waits for another process to terminate.

Program P1

fork P2

Program P2 Program P3

fork P3join P2

Fork and join are unstructured, so
require care and discipline!

The “fork and join” mechanism is the most common way to
create processes or threads. For example, it is used by both the
Unix O/S to create (heavyweight) processes and by Java to create
(lightweight) threads.
The “join” mechanism provides the way for a parent process or
thread to wait until the completion of any of its children.

24

Cobegin/coend

Cobegin/coend blocks are better structured:

but they can only create a fixed number of processes.
The caller continues when all of the coblocks have terminated.

cobegin S1 || S2 || ... || Sn coend

Main S1 S2 S3 S4

The “cobegin/coend” statement was introduced by Dijkstra as
more structured alternative to fork and join. Its main disadvantage
is that only a fixed number of processes or threads can be created.

> Course Overview
> Concurrency and Parallelism
> Challenges: Safety and Liveness
> Expressing Concurrency

—Process Creation
—Communication and Synchronization

Roadmap

25

26

Communication and Synchronization

In approaches based on shared
variables, processes communicate
indirectly.
Explicit synchronization mechanisms
are needed. x z

y

P1 P2 P3

P1

P2

P3

x
y

z

In message passing approaches,
communication and
synchronization are combined.
Communication may be either
synchronous or asynchronous.

There are two fundamentally different ways of thinking about
communication and synchronization in concurrent programs, but
they are functionally equivalent. It is relatively straightforward to
implement or simulate one approach with the other.
In the shared variables approach, processes communicate and
synchronize using shared memory. Synchronization mechanisms
(such as locks) are needed to ensure safety.
In message-passing approaches, processes directly send messages
to each other. Message sending may be synchronous (i.e., sending
and receiving occur simultaneously) or asynchronous. Senders
and receivers may be explicitly identified, or some higher-level
medium may be used to exchange messages.

Remote Procedure Calls

Synchronization Techniques

27

Message
Oriented

Message Passing

Path Expressions

Operation Oriented

Procedure
Oriented

Monitors

Each approach emphasizes a
different style of programming.

Semaphores

Different approaches are roughly equivalent in expressive power
and can be used to implement each other.

Busy-waiting

Andrews and Schneider (in their survey) provide this chart to
show how various concurrency approaches are related to each
other. The approaches also progress in time from top to bottom.
Busy-waiting is one of the oldest techniques, and was supplanted
by semaphores in the 1960s. During the 1970s, numerous other
approaches were developed, based either on a procedural
paradigm, or on a message-passing paradigm. Remote procedure
calls sit somewhere in the middle.

28

Busy-Waiting

Busy-waiting is primitive but effective
Processes atomically test and set shared variables.

Condition synchronization is easy to implement:
—to signal a condition, a process sets a shared variable
—to wait for a condition, a process repeatedly tests the variable
Mutual exclusion is more difficult to realize correctly and efficiently

…

Busy-waiting is one of the oldest mechanisms to support
synchronization. As the name suggests, a process repeatedly tests
the value of a variable to to determine whether a particular
condition holds. The actual low-level primitive is called “test and
set”, as a process may atomically test whether a variable has a
particular value, and then set it. A lock can be modeled by such a
variable. If two processes simultaneously try to test and set the
lock, then it is guaranteed that just one will succeed.
The other process must then busy-wait, repeatedly attempting a
test-and-set until it succeeds to acquire the lock.
Busy-waiting may be effective for hardware, but is not very
efficient for software processes which waste cycles as they busy-
wait.

See also: https://en.wikipedia.org/wiki/Test-and-set

29

Semaphores

Semaphores were introduced by Dijkstra (1968) as a higher-
level primitive for process synchronization.

A semaphore is a non-negative, integer-valued variable s with
two operations:

>P(s):
—delays until s>0
—then, atomically executes s := s-1

>V(s)
—atomically executes s:= s+1

Semaphores eliminate the need for busy-waiting. A semaphore
represents an non-negative integer value with two atomic
operations. A V operation always succeeds, and increases the
value of the semaphore. A P decreases the value, but only if the
current value is not zero.
If the semaphore is zero, then a P will cause the invoking process
to wait (without busy-waiting) until another process performs a V.
In case multiple processes are attempting a P, an order may be
imposed on waiting processes to ensure fairness (i.e., a queue, or
priorities).
Aside: The terms “P” and “V” come from Dutch. V = “verhogen”
(to increase), and P = “prolaag” (probeer te verlagen — try to
decrease)

See also: https://en.wikipedia.org/wiki/Semaphore_(programming)

Programming with semaphores

30

process P2
loop

P (mutex)
Critical Section
V (mutex)
Non-critical Section

end
end

Many problems can be solved using binary
semaphores, which take on values 0 or 1.

Semaphores can be implemented using busy-
waiting, but usually implemented in O/S kernel.

process P1
loop

P (mutex) { wants to enter }
Critical Section
V (mutex) { exits }
Non-critical Section

end
end

A “critical section” in a concurrent program is any portion of
code that attempts to access a shared resource, i.e., where safety
issues may arise.

See also: https://en.wikipedia.org/wiki/Critical_section

31

Monitors

A monitor encapsulates resources and operations that
manipulate them:

> operations are invoked like ordinary procedure calls
—invocations are guaranteed to be mutually exclusive
—condition synchronization is realized using wait and signal

primitives
—there exist many variations of wait and signal ...

Monitors were proposed by Per Brinch Hansen and Tony Hoare
as a more structured alternative to semaphores. Monitors nicely
encapsulate the fact that one normally obtains and releases access
rights to a shared resource in a structured way.
The precise semantics of wait and signal vary from
implementation to implementation.
Java supports a variant of monitors.

See also: https://en.wikipedia.org/wiki/Monitor_(synchronization)

Programming with monitors

32

procedure fetch(var it : T);
begin

if size = 0 then
 notempty.wait

it := slots[head];
size := size - 1;
head := (head+1) mod N;
 notfull.signal

end

begin
size := 0;
head := 0;
tail := 0;

end

type buffer(T) = monitor
var
slots : array [0..N-1] of T;
head, tail : 0..N-1;
size : 0..N;
notfull, notempty:condition;

procedure deposit(p : T);
begin

if size = N then
notfull.wait

slots[tail] := p;
size := size + 1;
tail := (tail+1) mod N;
notempty.signal

end

This is an example of a bounded buffer implemented using monitors in an
unnamed programming language. A monitor is a data type (i.e., a class)
that encapsulates internal data and synchronized operations operating on
that data.
The buffer type encapsulates an array of items, head and tail
variables that identify the first and last elements within the array (i.e., that
cycle around), the current size of the buffer (number of elements stored
in the array), and two condition variables that express whether the buffer is
not full or not empty.
The deposit and fetch operations follow a classical monitor style in
which a condition variable is checked before performing any operation.
The monitor guarantees that only one operation may gain access to the
monitor at a time. If the wait condition fails, the “lock” is released and
another waiting thread can gain access.
Here, if a thread is blocked on deposit because the buffer is full, a fetch
thread may get in, and signal notfull at the end, thus waking up the waiting
thread.

33

Problems with monitors

Monitors are more structured than semaphores, but they
are still tricky to program:
—Conditions must be manually checked
—Simultaneous signal and return is not supported

A signalling process is temporarily suspended to allow
waiting processes to enter!
—The monitor state may change between signal and resumption of

signaller
—Unlike with semaphores, multiple signals are not saved
—Nested monitor calls must be specially handled to prevent deadlock

34

Path Expressions

Path expressions express the allowable sequence of
operations as a kind of regular expression:

buffer : (put; get)*

Although they elegantly express solutions to
many problems, path expressions are too
limited for general concurrent programming.

It seems as though path expressions a rediscovered every few
years. Path expressions are ideal for expressing synchronization
that follows a well-defined sequences of states, as in a state
machine. (Think of the equivalence of regular expressions and
finite state automata.) When synchronization does not fit into this
pattern (e.g., if there is an unbounded number of synchronization
states), then path expressions fail miserably.

35

Message Passing

Message passing combines communication and
synchronization:

> The sender specifies the message and a destination
—a process, a port, a set of processes, ...

> The receiver specifies message variables and a source
—source may or may not be explicitly identified

> Message transfer may be:
—asynchronous: send operations never block
—buffered: sender may block if the buffer is full
—synchronous: sender and receiver must both be ready

36

PROC buffer(CHAN OF INT give, take, signal)
...
SEQ
numitems := 0 ...
WHILE TRUE
ALT
numitems ≤ size & give?thebuffer[inindex]
SEQ
numitems := numitems + 1
inindex := (inindex + 1) REM size

numitems > 0 & signal?any
SEQ
take!thebuffer[outindex]
numitems := numitems - 1
outindex := (outindex + 1) REM size

Send and Receive

In CSP and Occam, source and destination are explicitly named:

Producer Buffer Consumer

give!x
signal!()

take?x

take!x

signal?()give?x

NB: The consumer must signal!any to inform
the buffer that it wishes to take?avalue

In this example, a buffer can synchronize either with a producer
(as long as the buffer is not full) or with a consumer (as long as it
is not empty).
Communication with the producer consists in a single action, in
which the producer sends a give message with the payload x to
the buffer.
Communication with the consumer consists in two steps: first the
consumer sends a signal message, thereby requesting a value;
then the buffer sends it the value at the head of the queue with a
synchronous take message.

37

Remote Procedure Calls and Rendezvous

In Ada, the caller identity need not be known in advance:
task body buffer is ...
begin loop

select
when no_of_items < size =>
accept give(x : in item) do
the_buffer(in_index) := x;

end give;
no_of_items := no_of_items + 1; ...

or
when no_of_items > 0 =>
accept take(x : out item) do
x := the_buffer(out_index);

end take;
no_of_items := no_of_items - 1; ...

end select;
end loop; ...

In contrast to Occam, Ada tasks will accept messages from
unknown senders. This starts to look much more like monitors (or
objects), where only the sender needs to know the identity of the
receiver.

38

What you should know!

> Why do we need concurrent programs?
> What problems do concurrent programs introduce?
> What are safety and liveness?
> What is the difference between deadlock and starvation?
> How are concurrent processes created?
> How do processes communicate?
> Why do we need synchronization mechanisms?
> How do monitors differ from semaphores?
> In what way are monitors equivalent to message-

passing?

39

Can you answer these questions?

> What is the difference between concurrency and
parallelism?

> When does it make sense to use busy-waiting?
> Are binary semaphores as good as counting

semaphores?
> How could you implement a semaphore using monitors?
> How would you implement monitors using semaphores?
> What problems could nested monitors cause?
> Is it better when message passing is synchronous or

asynchronous?

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

