
Oscar Nierstrasz

4. Safety Patterns & Transactional
Memory

Roadmap

2

> Idioms, Patterns and Architectural Styles
> Immutability:

—avoid safety problems by avoiding state changes
> Full Synchronization:

—dynamically ensure exclusive access
> Partial Synchronization:

—restrict synchronization to “critical sections”
> Containment:

—structurally ensure exclusive access
> Transactional Memory

Roadmap

3

> Idioms, Patterns and Architectural Styles
> Immutability:

—avoid safety problems by avoiding state changes
> Full Synchronization:

—dynamically ensure exclusive access
> Partial Synchronization:

—restrict synchronization to “critical sections”
> Containment:

—structurally ensure exclusive access
> Transactional Memory

4

Idioms, Patterns and Architectural Styles

Idioms, patterns and architectural styles express best
practice in resolving common design problems.

Idiom
> “an implementation technique”

— function objects, OCF, futures, RPC

Design pattern
> “a commonly-recurring structure of communicating components that

solves a general design problem within a particular context”
— Observer, Proxy, Master/Slave

Architectural pattern
> “a fundamental structural organization schema for software systems”

— dataflow, blackboard

Roadmap

5

> Idioms, Patterns and Architectural Styles
> Immutability:

—avoid safety problems by avoiding state changes
> Full Synchronization:

—dynamically ensure exclusive access
> Partial Synchronization:

—restrict synchronization to “critical sections”
> Containment:

—structurally ensure exclusive access
> Transactional Memory

6

Pattern: Immutable classes

Intent: Bypass safety issues by not changing an object’s state after
creation.

Applicability
> When objects represent values of simple ADTs

—colours (java.awt.Color), numbers (java.lang.Integer)
> When updating by copying is cheap

—“hello” + “ ” + “world” → “hello world”
> When classes can be separated into mutable and immutable

versions
—java.lang.String vs. java.lang.StringBuffer

> When multiple instances can represent the same value
—i.e., two copies of 712 represent the same integer

A design pattern consists of extensive documentation of a general
solution to a recurring design problem. Typically design patterns
require several pages of text to describe them in sufficient detail.
Here we only summarize them in a few slides.
Design patterns are usually described in a structured way, as seen
here.
There is a descriptive name for the pattern. The intent
summarizes the purpose of the pattern. Applicability summarizes
the situations in which it can be applied. Additionally there may
be design steps, examples, variants, discussion and related
patterns or synonyms.
The immutable class pattern is one of the simplest ways to ensure
safety, since an immutable object cannot be corrupted.

7

Immutability Variants

Stateless methods
—methods that do not access an object’s state do not need to be
synchronized (can be declared static)

—any temporary state should be local to the method

Stateless objects
—an object whose “state” is dynamically computed needs no

synchronization!

“Hardening”
—object becomes immutable after a mutable phase
—expose to concurrent threads only after hardening

8

Immutable classes — design steps

> Declare a class with instance variables that are never
changed after construction.

class Relay { // helper for some Server class
private final Server server_;
Relay(Server s) { // blank finals must be

server_ = s; // initialized in all
} // constructors
void doIt() {

server_.doIt();
}

}

Most of the patterns are illustrated by running examples in the
accompanying examples repository. This is one of few “toy”
examples without an running example.
The Relay is immutable because it simply delegates requests to
a server, and the server identity cannot be changed.

9

Design steps ...

> Especially if the class represents an immutable data
abstraction (such as String), consider overriding
Object.equals and Object.hashCode.

> Consider writing methods that generate new objects of
this class. (e.g., color manipulation)

> Consider declaring the class as final.

> If only some variables are immutable, use synchronization
or other techniques for the methods that are not stateless.

Immutable objects are often used to represent abstract “values”. If
these values can be compared, then you should implement the
appropriate equals method. In Java, as in in most object-oriented
languages, when you implement equals you should always
reimplement the hashCode method, so that values can be used
reliably as keys in a dictionary.
Note that these points are only suggestions, not rules. For
example, declaring a class as final ensures that its immutability
won't be invalidated by subclasses, but it also impedes
extensibility.

Example — immutable complex numbers

10

public class Complex {
 private final int x, y;
 public Complex(int x, int y) { this.x = x; this.y = y; }
 public Object plus(Complex other) {
 return new Complex(this.x+other.x, this.y+other.y);
 }
 public Object times(Complex other) {
 return new Complex(this.x*other.x - this.y*other.y,
 this.x*other.y + other.x*this.y);
 }
 public boolean equals(Object o) {
 if (o instanceof Complex) {
 Complex other = (Complex) o;
 return (this.x == other.x) && (this.y == other.y);
 }
 return false;
 }
...
}

ComplexComplex numbers never change state,
so are thread-safe by design

This example illustrates the main points. Instance variables are
final. Public methods return new instances of this class. We
override equals (and hashCode).
We do not declare the class as final, so it is possible to extend the
class, though this might break immutability.
Recall, source code of all examples is available from the course
examples git repo:
git clone git://scg.unibe.ch/lectures-cp-examples

Roadmap

11

> Idioms, Patterns and Architectural Styles
> Immutability:

—avoid safety problems by avoiding state changes
> Full Synchronization:

—dynamically ensure exclusive access
> Partial Synchronization:

—restrict synchronization to “critical sections”
> Containment:

—structurally ensure exclusive access
> Transactional Memory

12

Pattern: Fully Synchronized Objects

Intent: Maintain consistency by fully synchronizing all
public methods. At most one method will run at any point
in time.

Applicability
> You want to eliminate all possible read/write and write/

write conflicts, regardless of the context in which it the
object is used.

> All methods can run to completion without waits, retries,
or infinite loops.

In this pattern, all public methods are mutually exclusive, and
make no use of wait or notify.

13

Full Synchronization in Java — design steps

> Declare all (public) methods as synchronized
—Do not allow any direct access to state (i.e, no public instance

variables; no methods that return references to instance variables).
—Constructors cannot be marked as synchronized in Java — use

a synchronized block in case a constructor passes this to
multiple threads.

—Methods that access static variables must either do so via static
synchronized methods or within blocks of the form
synchronized(getClass()) { ... }.

> Ensure that every public method leaves the object in a
consistent state, even if it exits via an exception.

Be very careful if the constructor passes the pseudo-variable
this to an external method before construction is complete. This
can be very evil.
Note that static variables belong to the class, and not to the object.
To ensure that access is synchronized, you can use a
synchronized block that uses the result of getClass() as a
lock. (All accessors must use the same lock!)

14

Design steps ...

> State-dependent actions must rely on balking:
—Return failure (i.e., exception) to client if preconditions fail
—If the precondition does not depend on state (e.g., just on the

arguments), then check outside synchronized code
—Provide public accessor methods so that clients can check

conditions before making a request

> Keep methods short so they can atomically run to
completion.

Normally you should apply this pattern only when all operations
can always run to completion without waiting for a
synchronization condition.
If this is not possible, then the only solution is to “balk”, i.e., to
give up.
Since this means client requests may fail, you should provide an
interface that allows clients to check the condition themselves
before requesting service.

15

Example: a BalkingBoundedCounter

public class BalkingBoundedCounter implements BalkingCounter {
 protected long count = BoundedCounter.MIN; // from MIN to MAX
 public synchronized long value() { return count; }
 public synchronized void inc() throws BalkingException {
 if (count >= BoundedCounter.MAX) {
 throw new BalkingException("cannot increment");;
 }
 else {
 ++count;
 }
 checkInvariant();
 }
 public synchronized void dec() throws BalkingException {
 ...
 }
} Counter

NB: Client may need to busy-wait

What safety problems could arise if
this class were not fully synchronized?

We will see a number of different implementation of
BoundedCounter objects, each illustrating a different design
pattern for synchronization.
What safety problems could arise if this class were not fully
synchronized?
(Ask yourself what possible race conditions would exist.)

16

BusyWaitingClient

public class BalkingBoundedCounterTest {
...
public abstract class BusyWaitingClient extends Thread {

BusyWaitingClient() { this.start(); }
public void run() {

boolean succeeded = false;
while (!succeeded) {

try {
action();
succeeded = true;

} catch (BalkingException e) {
Thread.yield();

}
}

}
abstract void action() throws BalkingException;

}
}

Busy-wait loop could starve

The problem with a balking design is that clients are forced to
busy-wait if a request fails. In such a design there is no guarantee
that the client will eventually succeed.

Example: an ExpandableArray

17

public class ExpandableArray<Value> {
 protected Value[] data; // the elements
 protected int size; // the number of slots used
 static final int DEFAULT_SIZE = 10;
 public ExpandableArray(int initialSize) {
 data = new Array(initialSize); // reserve some space
 size = 0;
 }
...
 public synchronized Value at(int i) throws NoSuchElementException {
 if (i < 0 || i >= size) {
 throw new NoSuchElementException();
 } else {
 return data[i];
 }
 }
...

ExpandableArray
All public operations
are synchronized

The challenge here will be how to support atomic operations over
the entire array.

18

Example ...

...
 public synchronized void append(Value x) { // add at end
 if (size >= data.length) { // need a bigger array
 Object[] olddata = data; // so increase ~50%
 data = new Array(3 * (size + 1) / 2);
 System.arraycopy(olddata, 0, data, 0, olddata.length);
 }
 data[size++] = x;
 }
 public synchronized void removeLast() throws NoSuchElementException

{
 if (size == 0) {
 throw new NoSuchElementException();
 } else {
 data[--size] = null;
 }
 }

}

public interface Mutator<Value> {
 public Value update(Value x);
}
public class BatchArray<Value> extends ExpandableArray<Value> {
 public BatchArray(int initialSize) { super(initialSize); }
 public BatchArray() { super(); }
 public synchronized void updateAll(Mutator<Value> p) {
 for (int i = 0; i < size; ++i) {
 data[i] = p.update(data[i]);
 }
 }
}

Bundling Atomicity

19

> Consider adding synchronized methods that perform
sequences of actions as a single atomic action

What possible liveness
problems does this introduce?

 In this solution, the ExpandableArray passes its all elements to a
Mutator object within a synchronized updateAll method. This
guarantees that all updates will occur within a single critical
section.
What could go wrong here?

20

Testing atomicity

public class BatchArrayTest {
 private BatchArray<Integer> ba;
 private Thread t1, t2;
 private static final int ARRAYSIZE = 20;

 public BatchArrayTest() {
 ba = new BatchArray<Integer>();
 for (int i = 1; i <= ARRAYSIZE; ++i) {
 ba.append(new Integer(i)); // all values different
 }
 t1 = mutatorThread(1,ba);
 t2 = mutatorThread(2,ba);
 }

 private Thread mutatorThread(final int id, final BatchArray<Integer> ba) {
 return new Thread() {
 public void run() {
 ba.updateAll(new Mutator () {
 public Object update(Object x) {
 Thread.yield(); // yielding has no effect
 randomSleep(); // makes no difference
 return id; // set all values to my id
 } }); } };
 }

Each mutator thread tries to set
all array values to its unique id

These Mutator objects just set all elements of the array to a single
value. To test whether updateAll is truly atomic, we introduce
a Thread.yield() and a random sleep. Since the yield
occurs within a synchronized updateAll method, the lock is
not released, and atomicity is ensured. (A lock is only released
with a wait, not a yield.)

21

@Test
 public void testNoInterference() {
 t1.start();
 t2.start();
 try {
 t1.join();
 t2.join();
 } catch (InterruptedException e) {
 System.err.println("Couldn't join mutator threads!");
 e.printStackTrace();
 }
 for (int i=0; i<ba.size(); i++) {
 assertEquals(ba.at(1), ba.at(i));
 }
 }

Testing atomicity

If we remove synchronization from
BatchArray, the test may fail.

We test that the array contains
one set of unique values.

This method tests that updateAll is truly atomic by checking
that all values in the array are the same, i.e., that the two mutators
did not somehow interleave.

Roadmap

22

> Idioms, Patterns and Architectural Styles
> Immutability:

—avoid safety problems by avoiding state changes
> Full Synchronization:

—dynamically ensure exclusive access
> Partial Synchronization:

—restrict synchronization to “critical sections”
> Containment:

—structurally ensure exclusive access
> Transactional Memory

23

Pattern: Partial Synchronization

Intent: Reduce overhead by synchronizing only within
“critical sections”.

Applicability
> When objects have both mutable and immutable instance

variables.
> When methods can be split into a “critical section” that

deals with mutable state and a part that does not.

This pattern relaxes full synchronization by reducing the scope of
the critical sections. The caveat is that you must reason very
carefully about which code belongs in a critical section or you
may endanger safety. Don't apply this pattern unless you are sure
of what you are doing and you are certain it is needed (i.e., to
improve liveness).

24

Partial Synchronization — design steps

> Fully synchronize all methods
> Remove synchronization for

—accessors to atomic or immutable values
—methods that access mutable state through a single other, already

synchronized method
> Replace method synchronization by block synchronization

for methods where access to mutable state is restricted to
a single, critical section

The strategy here is to start with a fully synchronized design, and
then gradually introduce partial synchronization where it is safe
to do so. This is wiser than starting with an unsynchronized (and
unsafe) design and gradually introducing critical sections.
Note that access to immutable values is always safe, so no
synchronization is needed there.
When replacing method synchronization by block
synchronization, take care to introduce a single synchronized
block. If the object is in an inconsistent state between two
synchronized blocks, you risk violating the class invariant and
another synchronized public method may incorrectly start in
between.

25

Example: LinkedCells

public class LinkedCell {
 protected double value; // NB:doubles are not atomic!
 protected final LinkedCell next; // fixed

 public LinkedCell (double value, LinkedCell next) {
 this.value = value;
 this.next = next;
 }
 public synchronized double value() {
 return value;
 }
 public synchronized void setValue(double v) {
 value = v;
 }
 public LinkedCell next() { // not synched!
 return next; // next is immutable
 } LinkedCell

In Java, updating an integer value is guaranteed to be atomic, but
updating a double is not. In these example we therefore use
doubles to properly motivate the need for synchronized access.
Note that the next variable is immutable in this linked list
example. The accessor therefore does not need to be
synchronized.

Example ...

 public double sum() { // add up all element values
 double v = value(); // get via synchronized accessor
 if (next() != null) {
 v += next().sum();
 }
 return v;
 }
 public boolean includes(double x) { // search for x
 synchronized(this) { // synch to access value
 if (value == x) {
 return true;
 }
 }
 if (next() == null) {
 return false;
 } else {
 return next().includes(x);
 }
 }
}

26

Interestingly the sum method does not need to be synchronized at
all. The linked list is traversed using immutable links that need no
synchronized access. The values themselves are mutable, but they
are read using a synchronized accessor.
The includes method recursively searches the linked list for a
specific value. Each cell tests if it holds the searched for value,
and if not, delegates to the next cell. The only mutable value
accessed is the value variable, so only here do we need a
synchronized block.
Can we get rid of the synchronized block here too by using the
synchronized accessor method instead of directly reading the
value variable?

Roadmap

27

> Idioms, Patterns and Architectural Styles
> Immutability:

—avoid safety problems by avoiding state changes
> Full Synchronization:

—dynamically ensure exclusive access
> Partial Synchronization:

—restrict synchronization to “critical sections”
> Containment:

—structurally ensure exclusive access
> Transactional Memory

28

Pattern: Containment

Intent: Achieve safety by avoiding shared variables.
Unsynchronized objects are “contained” inside other
objects that have at most one thread active at a time.

Applicability
> There is no need for shared access to the embedded

objects.
> The embedded objects can be conceptualized as

exclusively held resources.

This is an important pattern to recognize. Even in a highly
concurrent application, certain objects may only be manipulated
within a given thread at a time. Such objects are “owned” by or
“contained” within another object. As long as the outer object is
synchronized, then the contained objects do not need to be.
As we shall see shortly, things get a little trickier when the
contained objects may move from one container to another.

29

Applicability (2)

> Embedded objects must be structured as islands —
communication-closed sets of objects reachable only from
a single unique reference.
—They cannot contain methods that reveal their identities to other

objects.

> You are willing to hand-check designs for compliance.

> You can deal with or avoid indefinite postponements or
deadlocks in cases where host objects must transiently
acquire multiple resources.

You must take care that references to contained objects not leak
outside their containers. If they do, all bets are off!
Aside: the same holds true for “private” instance variables in
plain Java applications. If a reference to a private variable
leaks out, it can be accessed and manipulated from outside.
The last point concerns designs in which owned objects may be
transferred from one container to another. If containers have to
incrementally acquire resources, this can lead to liveness
problems (upcoming lecture).

30

Contained Objects — Design steps

> Define the interface for the outer host object.
—The host could be, e.g., an Adaptor, or a Proxy, that provides

synchronized access to an existing, unsynchronized class

> Ensure that the host is fully synchronized, or is in turn a
contained object.

31

Design steps (2)

> Define instances variables that are unique references to
the contained objects.
—Make sure that these references cannot leak outside the host!
—Establish policies and implementations that ensure that acquired

references are really unique!
—Consider methods to duplicate or clone contained objects, to

ensure that copies are unique

A particular danger arises when contained objects represent
values that may be returned to clients. In this case, either you
must make sure that ownership is transferred (see next slide), or
that a copy is returned instead.

32

Managed Ownership

> Model contained objects as physical resources
1.If you have one, then you can do something that you couldn't do

otherwise
2.If you have one, then no one else has it
3.If you give one to someone else, then you no longer have it
4.If you destroy one, then no one will ever have it

> If contained objects can be passed among hosts, define a
transfer protocol
—Hosts should be able to acquire, give, take, exchange and forget

resources
—Consider using a dedicated class to manage transfer

A minimal transfer protocol class

33

public class ResourceVariable<Resource> {
 protected Resource resource;
 public ResourceVariable(Resource resource)
 {
 this.resource = resource;
 }

 public synchronized Resource exchange(Resource newResource)
 {
 Resource oldResource = resource;
 resource = newResource;
 return oldResource;
 }
}

Ownership

A simple buffer for transferring objects between threads:

Usage: var = rv.exchange(var);

Without synchronization we can provoke a race condition.
Consider possible interleavings of two threads invoking
exchange at the same time ...

Roadmap

> Idioms, Patterns and Architectural Styles
> Immutability:

—avoid safety problems by avoiding state changes
> Full Synchronization:

—dynamically ensure exclusive access
> Partial Synchronization:

—restrict synchronization to “critical sections”
> Containment:

—structurally ensure exclusive access
> Transactional Memory

34

Transactional Memory

35

 // Insert a node into a doubly-linked list atomically
 atomic {
 if (node_count == MAX_SIZE)
 abort;
 newNode->prev = node;
 newNode->next = node->next;
 node->next->prev = newNode;
 node->next = newNode;
 node_count++;
 }

Intent: Move the management of the synchronization from the
programmer to the runtime by only specifying what pieces of
code must happen atomically.

Revisiting the Account Example

36

> Alternative to lock-based synchronization
—Simpler than synchronization
—You don’t lock on a particular object; just say atomic

> Transaction = piece of code that executes R/W to shared
memory
—Inspired from database transactions
—ACI semantics (but D from databases)

– Atomicity
– Consistency
– Isolation

37

Transactional Memory (contd.)

There exist numerous implementations of software transactional
memory for Java.
See:

https://en.wikipedia.org/wiki/Software_transactional_memory#Java

Transactional Memory (contd.)

> Threads are optimistic
—write to a memory location without worrying about other threads
—keep log of changes
—make the changes permanent with a commit if no conflicts

> Can be either SW, HW, or SW + HW
—Hardware

– Instructions: start transaction, end transaction, rollback
– A rollback would undo all the loads and stores from the beginning of the

transaction
– Problem: HW has a hard time with long transactions...

—Software
– slow
– easier to experiment with algorithms, approaches

38

Transactional Memory (contd.)

> Applicability
—When your job mix allows it: situations where there are frequent

reads and infrequent writes
—Otherwise, overhead of rollback and of keeping logs too large
—When you do not have side effects in transactions

39

An interesting perspective

40

> Analogy between TM and GC (http://homes.cs.washington.edu/~djg/papers/
analogy_oopsla07.pdf)

– system takes care of it without the programmer ever knowing or caring
about

– in some cases manual management will be more performant than the
automated version

http://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf
http://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf
http://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf
http://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf

41

What you should know!

> Why are immutable classes inherently safe?
> Why doesn’t a “relay” need to be synchronized?
> What is “balking”? When should a method balk?
> When is partial synchronization better than full

synchronization?
> How does containment avoid the need for

synchronization?

42

Can you answer these questions?

> When is it all right to declare only some methods as
synchronized?

> When is an inner class better than an explicitly named
class?

> What could happen if any of the ExpandableArray
methods were not synchronized?

> What liveness problems can full synchronization
introduce?

> Why is it a bad idea to have two separate critical sections
in a single method?

> Does it matter if a contained object is synchronized or
not?

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

