
Oscar Nierstrasz 

4. Safety Patterns & Transactional 
Memory



Roadmap

2

> Idioms, Patterns and Architectural Styles
> Immutability:

—avoid safety problems by avoiding state changes
> Full Synchronization:

—dynamically ensure exclusive access
> Partial Synchronization:

—restrict synchronization to “critical sections”
> Containment:

—structurally ensure exclusive access
> Transactional Memory



Roadmap

3

> Idioms, Patterns and Architectural Styles
> Immutability:

—avoid safety problems by avoiding state changes
> Full Synchronization:

—dynamically ensure exclusive access
> Partial Synchronization:

—restrict synchronization to “critical sections”
> Containment:

—structurally ensure exclusive access
> Transactional Memory



4

Idioms, Patterns and Architectural Styles

Idioms, patterns and architectural styles express best 
practice in resolving common design problems.

Idiom
> “an implementation technique”

— function objects, OCF, futures, RPC

Design pattern
> “a commonly-recurring structure of communicating components that 

solves a general design problem within a particular context”
— Observer, Proxy, Master/Slave

Architectural pattern
> “a fundamental structural organization schema for software systems”

— dataflow, blackboard
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Pattern: Immutable classes

Intent: Bypass safety issues by not changing an object’s state after 
creation.

Applicability
> When objects represent values of simple ADTs 

—colours (java.awt.Color), numbers (java.lang.Integer) 
> When updating by copying is cheap

—“hello” + “ ” + “world” → “hello world”
> When classes can be separated into mutable and immutable 

versions
—java.lang.String vs. java.lang.StringBuffer

> When multiple instances can represent the same value
—i.e., two copies of 712 represent the same integer



A design pattern consists of extensive documentation of a general 
solution to a recurring design problem. Typically design patterns 
require several pages of text to describe them in sufficient detail. 
Here we only summarize them in a few slides. 
Design patterns are usually described in a structured way, as seen 
here. 
There is a descriptive name for the pattern. The intent 
summarizes the purpose of the pattern. Applicability summarizes 
the situations in which it can be applied. Additionally there may 
be design steps, examples, variants, discussion and related 
patterns or synonyms. 
The immutable class pattern is one of the simplest ways to ensure 
safety, since an immutable object cannot be corrupted.
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Immutability Variants

Stateless methods
—methods that do not access an object’s state do not need to be 
synchronized (can be declared static)

—any temporary state should be local to the method

Stateless objects
—an object whose “state” is dynamically computed needs no 

synchronization!

“Hardening”
—object becomes immutable after a mutable phase
—expose to concurrent threads only after hardening
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Immutable classes — design steps

> Declare a class with instance variables that are never 
changed after construction.

class Relay { // helper for some Server class
private final Server server_;
Relay(Server s) { // blank finals must be 

server_ = s; // initialized in all 
} // constructors
void doIt() { 

server_.doIt();
}

}



Most of the patterns are illustrated by running examples in the 
accompanying examples repository. This is one of few “toy” 
examples without an running example. 
The Relay is immutable because it simply delegates requests to 
a server, and the server identity cannot be changed.
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Design steps ...

> Especially if the class represents an immutable data 
abstraction (such as String), consider overriding 
Object.equals and Object.hashCode.

> Consider writing methods that generate new objects of 
this class. (e.g., color manipulation)

> Consider declaring the class as final. 

> If only some variables are immutable, use synchronization 
or other techniques for the methods that are not stateless. 



Immutable objects are often used to represent abstract “values”. If 
these values can be compared, then you should implement the 
appropriate equals method. In Java, as in in most object-oriented 
languages, when you implement equals you should always 
reimplement the hashCode method, so that values can be used 
reliably as keys in a dictionary. 
Note that these points are only suggestions, not rules. For 
example, declaring a class as final ensures that its immutability 
won't be invalidated by subclasses, but it also impedes 
extensibility.



Example — immutable complex numbers
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public class Complex {
    private final int x, y;
    public Complex(int x, int y) { this.x = x; this.y = y; }
    public Object plus(Complex other) {
        return new Complex(this.x+other.x, this.y+other.y);
    }
    public Object times(Complex other) {
        return new Complex(this.x*other.x - this.y*other.y,
            this.x*other.y + other.x*this.y);
    }
    public boolean equals(Object o) {
        if (o instanceof Complex) {
            Complex other = (Complex) o;
            return (this.x == other.x) && (this.y == other.y);
        }
        return false;
    }
...
}

ComplexComplex numbers never change state, 
so are thread-safe by design



This example illustrates the main points. Instance variables are 
final. Public methods return new instances of this class. We 
override equals (and hashCode). 
We do not declare the class as final, so it is possible to extend the 
class, though this might break immutability. 
Recall, source code of all examples is available from the course 
examples git repo: 
git clone git://scg.unibe.ch/lectures-cp-examples
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Pattern: Fully Synchronized Objects

Intent: Maintain consistency by fully synchronizing all 
public methods. At most one method will run at any point 
in time.

Applicability
> You want to eliminate all possible read/write and write/

write conflicts, regardless of the context in which it the 
object is used. 

> All methods can run to completion without waits, retries, 
or infinite loops.



In this pattern, all public methods are mutually exclusive, and 
make no use of wait or notify.
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Full Synchronization in Java — design steps

> Declare all (public) methods as synchronized
—Do not allow any direct access to state (i.e, no public instance 

variables; no methods that return references to instance variables).
—Constructors cannot be marked as synchronized in Java — use 

a synchronized block in case a constructor passes this to 
multiple threads.

—Methods that access static variables must either do so via static 
synchronized methods or within blocks of the form 
synchronized(getClass()) { ... }.

> Ensure that every public method leaves the object in a 
consistent state, even if it exits via an exception.



Be very careful if the constructor passes the pseudo-variable 
this to an external method before construction is complete. This 
can be very evil. 
Note that static variables belong to the class, and not to the object. 
To ensure that access is synchronized, you can use a 
synchronized block that uses the result of getClass() as a 
lock. (All accessors must use the same lock!)
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Design steps ...

> State-dependent actions must rely on balking:
—Return failure (i.e., exception) to client if preconditions fail
—If the precondition does not depend on state (e.g., just on the 

arguments), then check outside synchronized code
—Provide public accessor methods so that clients can check 

conditions before making a request

> Keep methods short so they can atomically run to 
completion.



Normally you should apply this pattern only when all operations 
can always run to completion without waiting for a 
synchronization condition. 
If this is not possible, then the only solution is to “balk”, i.e., to 
give up. 
Since this means client requests may fail, you should provide an 
interface that allows clients to check the condition themselves 
before requesting service.
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Example: a BalkingBoundedCounter

public class BalkingBoundedCounter implements BalkingCounter {
    protected long count = BoundedCounter.MIN;     // from MIN to MAX
    public synchronized long value() { return count; }
    public synchronized void inc() throws BalkingException {
        if (count >= BoundedCounter.MAX) {
            throw new BalkingException("cannot increment");;
        }
        else {
            ++count;
        }
        checkInvariant();
    }
    public synchronized void dec() throws BalkingException {
        ...
    }
} Counter

NB: Client may need to busy-wait

What safety problems could arise if 
this class were not fully synchronized?



We will see a number of different implementation of 
BoundedCounter objects, each illustrating a different design 
pattern for synchronization. 
What safety problems could arise if this class were not fully 
synchronized? 
(Ask yourself what possible race conditions would exist.)
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BusyWaitingClient

public class BalkingBoundedCounterTest {
...
public abstract class BusyWaitingClient extends Thread {

BusyWaitingClient() { this.start(); }
public void run() {

boolean succeeded = false;
while (!succeeded) {

try {
action();
succeeded = true;

} catch (BalkingException e) {
Thread.yield();

}
}

}
abstract void action() throws BalkingException;

}
}

Busy-wait loop could starve



The problem with a balking design is that clients are forced to 
busy-wait if a request fails. In such a design there is no guarantee 
that the client will eventually succeed.



Example: an ExpandableArray
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public class ExpandableArray<Value> {
    protected Value[] data;  // the elements
    protected int size;      // the number of slots used
    static final int DEFAULT_SIZE = 10;
    public ExpandableArray(int initialSize) {
        data = new Array(initialSize);        // reserve some space
        size = 0;
    }
...
    public synchronized Value at(int i) throws NoSuchElementException {
        if (i < 0 || i >= size ) {
            throw new NoSuchElementException();
        } else {
            return data[i];
        }
    }
...

ExpandableArray
All public operations 
are synchronized



The challenge here will be how to support atomic operations over 
the entire array.
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Example ...

...
    public synchronized void append(Value x) {   // add at end
        if (size >= data.length) {               // need a bigger array
            Object[] olddata = data;             // so increase ~50%
            data = new Array(3 * (size + 1) / 2);
            System.arraycopy(olddata, 0, data, 0, olddata.length);
        }
        data[size++] = x;
    }
    public synchronized void removeLast() throws NoSuchElementException        

{
        if (size == 0) {
            throw new NoSuchElementException();
        } else {
            data[--size] = null;
        }
 }

}



public interface Mutator<Value> {
    public Value update(Value x);
}
public class BatchArray<Value> extends ExpandableArray<Value> {
    public BatchArray(int initialSize) { super(initialSize); }
    public BatchArray() { super(); }
    public synchronized void updateAll(Mutator<Value> p) {
        for (int i = 0; i < size; ++i) {
            data[i] = p.update(data[i]);
        }
    }
}

Bundling Atomicity
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> Consider adding synchronized methods that perform 
sequences of actions as a single atomic action

What possible liveness 
problems does this introduce?



 In this solution, the ExpandableArray passes its all elements to a 
Mutator object within a synchronized updateAll method. This 
guarantees that all updates will occur within a single critical 
section. 
What could go wrong here?
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Testing atomicity

public class BatchArrayTest {
    private BatchArray<Integer> ba;
    private Thread t1, t2;
    private static final int ARRAYSIZE = 20;
    
    public BatchArrayTest() {
        ba = new BatchArray<Integer>();
        for (int i = 1; i <= ARRAYSIZE; ++i) {
            ba.append(new Integer(i));     // all values different
        }
        t1 = mutatorThread(1,ba);
        t2 = mutatorThread(2,ba);
    }

    private Thread mutatorThread(final int id, final BatchArray<Integer> ba) {
        return new Thread() {
            public void run() {
                ba.updateAll(new Mutator () {
                    public Object update(Object x) {
                        Thread.yield();    // yielding has no effect
                        randomSleep();     // makes no difference
                        return id;         // set all values to my id
                    } }); } };
    }

Each mutator thread tries to set 
all array values to its unique id



These Mutator objects just set all elements of the array to a single 
value. To test whether updateAll is truly atomic, we introduce 
a Thread.yield() and a random sleep. Since the yield 
occurs within a synchronized updateAll method, the lock is 
not released, and atomicity is ensured. (A lock is only released 
with a wait, not a yield.)
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@Test
    public void testNoInterference() {
        t1.start();
        t2.start();
        try {
            t1.join();
            t2.join();
        } catch (InterruptedException e) {
            System.err.println("Couldn't join mutator threads!");
            e.printStackTrace();
        }
        for (int i=0; i<ba.size(); i++) {
            assertEquals(ba.at(1), ba.at(i));
        }
    }

Testing atomicity

If we remove synchronization from 
BatchArray, the test may fail.

We test that the array contains 
one set of unique values.



This method tests that updateAll is truly atomic by checking 
that all values in the array are the same, i.e., that the two mutators 
did not somehow interleave.
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Pattern: Partial Synchronization

Intent: Reduce overhead by synchronizing only within 
“critical sections”.

Applicability
> When objects have both mutable and immutable instance 

variables.
> When methods can be split into a “critical section” that 

deals with mutable state and a part that does not.



This pattern relaxes full synchronization by reducing the scope of 
the critical sections. The caveat is that you must reason very 
carefully about which code belongs in a critical section or you 
may endanger safety. Don't apply this pattern unless you are sure 
of what you are doing and you are certain it is needed (i.e., to 
improve liveness).
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Partial Synchronization — design steps

> Fully synchronize all methods
> Remove synchronization for

—accessors to atomic or immutable values
—methods that access mutable state through a single other, already 

synchronized method
> Replace method synchronization by block synchronization 

for methods where access to mutable state is restricted to 
a single, critical section



The strategy here is to start with a fully synchronized design, and 
then gradually introduce partial synchronization where it is safe 
to do so. This is wiser than starting with an unsynchronized (and 
unsafe) design and gradually introducing critical sections. 
Note that access to immutable values is always safe, so no 
synchronization is needed there. 
When replacing method synchronization by block 
synchronization, take care to introduce a single synchronized 
block. If the object is in an inconsistent state between two 
synchronized blocks, you risk violating the class invariant and 
another synchronized public method may incorrectly start in 
between.
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Example: LinkedCells

public class LinkedCell {
    protected double value;          // NB:doubles are not atomic!
    protected final LinkedCell next; // fixed

    public LinkedCell (double value, LinkedCell next) {
        this.value = value;
        this.next  = next;
    }
    public synchronized double value() {
        return value;
    }
    public synchronized void setValue(double v) {
        value = v;
    }
    public LinkedCell next() {        // not synched!
        return next;                  // next is immutable
    } LinkedCell



In Java, updating an integer value is guaranteed to be atomic, but 
updating a double is not. In these example we therefore use 
doubles to properly motivate the need for synchronized access. 
Note that the next variable is immutable in this linked list 
example. The accessor therefore does not need to be 
synchronized.



Example ...

    public double sum() {          // add up all element values
        double v = value();        // get via synchronized accessor 
        if (next() != null) {
            v += next().sum();
        }
        return v;
    }
    public boolean includes(double x) {    // search for x
        synchronized(this) {               // synch to access value
            if (value == x) {
                return true;
            }
        }
        if (next() == null) {
            return false;
        } else {
            return next().includes(x);
        }
    }
}

26



Interestingly the sum method does not need to be synchronized at 
all. The linked list is traversed using immutable links that need no 
synchronized access. The values themselves are mutable, but they 
are read using a synchronized accessor. 
The includes method recursively searches the linked list for a 
specific value. Each cell tests if it holds the searched for value, 
and if not, delegates to the next cell. The only mutable value 
accessed is the value variable, so only here do we need a 
synchronized block. 
Can we get rid of the synchronized block here too by using the 
synchronized accessor method instead of directly reading the 
value variable?
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Pattern: Containment

Intent: Achieve safety by avoiding shared variables. 
Unsynchronized objects are “contained” inside other 
objects that have at most one thread active at a time.

Applicability
> There is no need for shared access to the embedded 

objects. 
> The embedded objects can be conceptualized as 

exclusively held resources.



This is an important pattern to recognize. Even in a highly 
concurrent application, certain objects may only be manipulated 
within a given thread at a time. Such objects are “owned” by or 
“contained” within another object. As long as the outer object is 
synchronized, then the contained objects do not need to be. 
As we shall see shortly, things get a little trickier when the 
contained objects may move from one container to another.
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Applicability (2)

> Embedded objects must be structured as islands — 
communication-closed sets of objects reachable only from 
a single unique reference. 
—They cannot contain methods that reveal their identities to other 

objects.

> You are willing to hand-check designs for compliance. 

> You can deal with or avoid indefinite postponements or 
deadlocks in cases where host objects must transiently 
acquire multiple resources.



You must take care that references to contained objects not leak 
outside their containers. If they do, all bets are off! 
Aside: the same holds true for “private” instance variables in 
plain Java applications. If a reference to a private variable 
leaks out, it can be accessed and manipulated from outside. 
The last point concerns designs in which owned objects may be 
transferred from one container to another. If containers have to 
incrementally acquire resources, this can lead to liveness 
problems (upcoming lecture).



30

Contained Objects — Design steps

> Define the interface for the outer host object. 
—The host could be, e.g., an Adaptor, or a Proxy, that provides 

synchronized access to an existing, unsynchronized class

> Ensure that the host is fully synchronized, or is in turn a 
contained object.
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Design steps (2)

> Define instances variables that are unique references to 
the contained objects.
—Make sure that these references cannot leak outside the host!
—Establish policies and implementations that ensure that acquired 

references are really unique!
—Consider methods to duplicate or clone contained objects, to 

ensure that copies are unique



A particular danger arises when contained objects represent 
values that may be returned to clients. In this case, either you 
must make sure that ownership is transferred (see next slide), or 
that a copy is returned instead.
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Managed Ownership

> Model contained objects as physical resources
1.If you have one, then you can do something that you couldn't do 

otherwise
2.If you have one, then no one else has it
3.If you give one to someone else, then you no longer have it
4.If you destroy one, then no one will ever have it

> If contained objects can be passed among hosts, define a 
transfer protocol
—Hosts should be able to acquire, give, take, exchange and forget 

resources
—Consider using a dedicated class to manage transfer



A minimal transfer protocol class
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public class ResourceVariable<Resource> {
    protected Resource resource;
    public ResourceVariable(Resource resource) 
    {
        this.resource = resource;
    }

    public synchronized Resource exchange(Resource newResource) 
    {
        Resource oldResource = resource; 
        resource = newResource; 
        return oldResource;
    }
}

Ownership

A simple buffer for transferring objects between threads:

Usage: var = rv.exchange(var);



Without synchronization we can provoke a race condition. 
Consider possible interleavings of two threads invoking 
exchange at the same time ...
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Transactional Memory
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 // Insert a node into a doubly-linked list atomically
 atomic {
     if (node_count == MAX_SIZE)
         abort;
     newNode->prev = node;
     newNode->next = node->next;
     node->next->prev = newNode;
     node->next = newNode;
     node_count++;
 }

Intent: Move the management of the synchronization from the 
programmer to the runtime by only specifying what pieces of 
code must happen atomically.



Revisiting the Account Example
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> Alternative to lock-based synchronization
—Simpler than synchronization
—You don’t lock on a particular object; just say atomic

> Transaction = piece of code that executes R/W to shared 
memory
—Inspired from database transactions 
—ACI semantics (but D from databases)

– Atomicity
– Consistency
– Isolation

37

Transactional Memory (contd.)



There exist numerous implementations of software transactional 
memory for Java. 
See: 

https://en.wikipedia.org/wiki/Software_transactional_memory#Java



Transactional Memory (contd.)

> Threads are optimistic
—write to a memory location without worrying about other threads
—keep log of changes
—make the changes permanent with a commit if no conflicts 

> Can be either SW, HW, or SW + HW
—Hardware

– Instructions: start transaction, end transaction, rollback
– A rollback would undo all the loads and stores from the beginning of the 

transaction 
– Problem: HW has a hard time with long transactions...

—Software
– slow
– easier to experiment with algorithms, approaches

38



Transactional Memory (contd.)

> Applicability
—When your job mix allows it: situations where there are frequent 

reads and infrequent writes
—Otherwise, overhead of rollback and of keeping logs too large
—When you do not have side effects in transactions

39



An interesting perspective
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> Analogy between TM and GC (http://homes.cs.washington.edu/~djg/papers/
analogy_oopsla07.pdf)

– system takes care of it without the programmer ever knowing or caring 
about

– in some cases manual management will be more performant than the 
automated version

http://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf
http://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf
http://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf
http://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf
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What you should know!

> Why are immutable classes inherently safe?
> Why doesn’t a “relay” need to be synchronized?
> What is “balking”? When should a method balk?
> When is partial synchronization better than full 

synchronization?
> How does containment avoid the need for 

synchronization?
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Can you answer these questions?

> When is it all right to declare only some methods as 
synchronized?

> When is an inner class better than an explicitly named 
class?

> What could happen if any of the ExpandableArray 
methods were not synchronized?

> What liveness problems can full synchronization 
introduce?

> Why is it a bad idea to have two separate critical sections 
in a single method?

> Does it matter if a contained object is synchronized or 
not?
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