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Liveness

> A liveness property asserts that something good 
eventually happens

> A progress property asserts that it is always the case that 
an action is eventually executed

> Progress is the opposite of starvation, the name given to 
a concurrent programming situation in which an action is 
never executed

4
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Liveness Problems

A program may be “safe”, yet suffer from various kinds of 
liveness problems:

Starvation: (AKA “indefinite postponement”)
> The system as a whole makes progress, but some individual 

processes don’t
Dormancy:
> A waiting process fails to be woken up
Premature termination:
> A process is killed before it should be
Deadlock:
> Two or more processes are blocked, each waiting for resources held 

by another



There are various kind of liveness problems. Deadlock is perhaps 
the most notorious, and we will look at it in some detail, but there 
are many other kinds. Starvation and dormancy are particularly 
evil.
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Progress properties — fair choice

Fair Choice: If a choice over a set of 
transitions is executed infinitely often, 
then every transition in the set will be 
executed infinitely often.

COIN = ( toss -> heads -> COIN
| toss -> tails -> COIN ).

If a coin were tossed an 
infinite number of times, we 
would expect that both heads 
and tails would each be 
chosen infinitely often.  
This assumes fair choice !



The notion of fair choice doesn’t say anything about the relative 
frequency or the probably of any given choice, just that all 
choices will be made infinitely often. In this case both heads and 
tails will come up infinitely often (even if we get 100 x as many 
heads as tails!).
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Safety vs. Liveness

Consider: property SAFE = ( heads -> SAFE
| tails -> SAFE ).

The safety properties of COIN are not very interesting.
How do we express what must happen?



Safety just tells us what may happen, not what must happen. We 
need a difference way of stating liveness properties.
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progress P = {a1,a2..an}

progress HEADS = {heads} 
progress TAILS = {tails}

No progress violations detected.

Progress properties

asserts that in an infinite execution of a 
target system, at least one of the 
actions a1,a2...an will be executed 
infinitely often.

1-coin.lts



A progress property consists of a set of transitions, at least one of 
which will be selected infinitely often in an infinite sequence of 
choices. 
Note that if we want both HEADS and TAILS to be fairly chosen, 
we need two progress properties, one for each of them.



Progress properties
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TWOCOIN = ( pick->COIN | pick->TRICK ),
TRICK = ( toss->heads->TRICK ),
COIN = ( toss->heads->COIN | toss->tails->COIN ).

Terminal sets

Suppose we have both a normal coin and a trick coin 



A terminal set is a set of mutually reachable states in the labeled 
transition system from which one cannot escape. In this system, 
after picking one of the two coins, one stays within one of the 
subgraphs COIN or TRICK.



Progress analysis
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0 1

progress HEADS = {heads}
progress TAILS = {tails}
progress HEADSorTAILS = {heads,tails}

Progress violation: TAILS
Trace to terminal set of states: pick
Actions in terminal set: {toss, heads}

A terminal set of states is one in which every state is mutually 
reachable but no transitions lead out of the set.

The terminal set {1, 2} violates progress property TAILS

2-twoCoin.lts



LTSA will perform model checking to verify the progress 
properties. It will either tell us that all specified properties hold, 
or it will provide a counter-example, i.e., a trace to a state that 
violates the given property. 
In this case it discovers that after a pick transition we may reach 
a terminal set including states (1) and (2) that violates the 
property TAILS (i.e., no tail transitions are possible any more).



Safety vs. Liveness
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property REPICK = ( pick -> toss -> REPICK ).

Trace to property violation in REPICK:
pick
toss
heads
toss

0 1

Consider:

How does this safety property expose the flaw in the system?
How would you fix the TWOCOIN to have this property pass?

2-twoCoin.lts



If you are allowed to pick the coin after each toss, the starvation 
problem goes away (though there is still a fairness issue). 
How can we fix the TWOCOIN system so this safety property 
passes?
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Deadlock

Four necessary and sufficient conditions for deadlock:
1. Serially reusable resources:

— the deadlocked processes share resources under mutual 
exclusion.

2. Incremental acquisition:
— processes hold on to acquired resources while waiting to obtain 

additional ones.
3. No pre-emption:

— once acquired by a process, resources cannot be pre-empted but 
only released voluntarily.

4. Wait-for cycle:
— a cycle of processes exists in which each process holds a 

resource which its successor in the cycle is waiting to acquire.



If any of these conditions is removed, deadlock cannot take place. 
Without mutual exclusion, resources are not locked, so there can 
be no deadlock. If resources are not obtained incrementally, then 
no process can hold onto resources while waiting for others. If a 
process can be pre-empted, deadlock can be broken. Finally, 
without a waits-for cycle, there is no deadlock in the first place. 
Approaches to resolving deadlock either try to detect and break 
deadlock by lifting one of these conditions, or they try to avoid 
deadlock by ensuring that certain conditions cannot arise.
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Waits-for cycle

A

B

CD

E

Has A awaits B

Has B awaits C

Has C awaits DHas D awaits E

Has E awaits A



A classical deadlock always has a “waits-for” cycle with at least 
two participants. Each one holds some resources waited for by 
another participant. No one will release the resources they already 
have, so they are all “deadlocked”.



Deadlock analysis - primitive processes
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Progress violation for actions: {north, south}
Trace to terminal set of states: north north
Actions in terminal set: {}

MOVE = ( north ->
( south -> MOVE

   | north -> STOP
          )
        ).

0 1

A deadlocked state is one with no outgoing transitions
In FSP: STOP process

3-move.lts



A deadlocked state in LTSA is a particular kind of terminal set 
with no outgoing transitions. Such a process (state) is also known 
as STOP.



16

The Dining Philosophers Problem

> Philosophers alternate 
between thinking and eating.

> A philosopher needs two forks 
to eat.

> No two philosophers may hold 
the same fork simultaneously.

> There must be no deadlock 
and no starvation.

> Want efficient behaviour 
under absence of contention.



The “dining philosophers” problem is a classical problem meant 
to illustrate many issues in concurrent programming. There are 
five philosophers sitting around a table, each of whom takes turns 
thinking and eating. On the table is a large bowl of noodles. 
Between each philosopher is a fork (or a chopstick). Each 
philosopher needs two forks (or chopsticks) to eat. 
A deadlock may arise if each philosopher succeeds in grabbing 
one fork, and then waits for his neighbour to release the other 
fork. 
There are numerous variants of the problem, for example in 
which the philosophers may get up and sit down, in order to eat 
or to think, leading to different solutions.
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Deadlocked diners

> A deadlock occurs if a 
waits-for cycle arises in 
which each philosopher 
grabs one fork and waits 
for the other.



Dining Philosophers, Safety and Liveness

Dining Philosophers illustrate many classical safety and liveness issues:
Mutual Exclusion Each fork can be used by one philosopher at a time

Condition synchronization A philosopher needs two forks to eat

Shared variable communication Philosophers share forks ...

Message-based communication ... or they can pass forks to each other

Busy-waiting A philosopher can poll for forks ...

Blocked waiting ... or can sleep till woken by a neighbour

Livelock All philosophers can grab the left fork and busy-wait for the 
right ...

Deadlock ... or grab the left one and wait (sleep) for the right

Starvation A philosopher may starve if the left and right neighbours are 
always faster at grabbing the forks

Race conditions Anomalous behaviour depends on timing
18
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Modeling Dining Philosophers

PHIL = ( sitdown
-> right.get -> left.get
-> eat -> left.put -> right.put
-> arise -> PHIL ).

FORK = ( get -> put -> FORK ).

||DINERS(N=5)=  forall [i:0..N-1] 
( phil[i]:PHIL || {phil[i].left,phil[((i-1)+N)%N].right}::FORK ).

0 1Is this system safe? Is it live?
4-DiningPhilosophers.lts



In this variant, philosophers get up from the table to think and sit 
down to eat. Note that each philosopher prepares to eat by first 
grabbing the right fork and then the left fork. 
What do safety and liveness mean for this system? 
Caveat: LTSA considers deadlock to be both an issue of liveness 
and safety. (It considers deadlock to be a kind of error state.)
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Dining Philosophers Analysis

Trace to terminal set of states:
phil.0.sitdown
phil.0.right.get
phil.1.sitdown
phil.1.right.get
phil.2.sitdown
phil.2.right.get
phil.3.sitdown
phil.3.right.get
phil.4.sitdown
phil.4.right.get

Actions in terminal set: {}

No further progress 
is possible due to 
the waits-for cycle



As always, LTSA reports a progress violation by presenting a 
trace that leads to the erroneous state. Here we clearly see that 
each philosopher has grabbed his right fork and no further 
progress is possible. 
How many different traces exist leading to a deadlock?
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Eliminating Deadlock

There are two fundamentally different approaches to 
eliminating deadlock.

Deadlock detection:
> Repeatedly check for waits-for cycles. When detected, 

choose a victim and force it to release its resources.
—Common in transactional systems; the victim should “roll-back” and 

try again

Deadlock avoidance:
> Design the system so that a waits-for cycle cannot 

possibly arise.



In both cases we try to break one of the four necessary conditions 
for deadlock. In the first case we break condition 3 by detecting 
deadlock and then breaking it. In the second case we avoid 
deadlock by ensuring that condition 4 cannot be reached? 
How could we solve the problem by breaking conditions 1 or 2?
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Dining Philosopher Solutions

There are many solutions offering varying degrees of 
liveness guarantees:

Break the cycle
> Number the forks. Philosophers grab the lowest 

numbered fork first.
> One philosopher grabs forks in the reverse order.

Philosophers queue to sit down
> allow no more than four at a time to sit down

0 1

5-DiningPhilosophersSol.lts

Do these solutions avoid deadlock?
What about starvation? Are they “fair”?
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Achieving Liveness

There are various strategies and techniques to ensure 
liveness:

> Start with safe design and selectively remove 
synchronization

> Start with live design and selectively add safety
> Adopt design patterns that limit the need for 

synchronization
> Adopt standard architectures that avoid cyclic 

dependencies



Pattern: Guarded Methods

25

Client 1

dec()

BoundedCounter Client 2

inc()wait()
notifyAll()

Intent: Temporarily suspend an incoming thread when an object 
is not in the right state to fulfil a request, and wait for the state 
to change rather than balking (raising an exception).



This is perhaps the most basic pattern that we will see. In this 
scenario a client invokes dec to decrement the bounded counter 
while it already is at its minimum value. Instead of balking, it 
checks the guard condition, detects that the counter is zero, and 
waits for the condition to change, thus releasing the mutual 
exclusion lock. Another thread invokes inc, incrementing the 
counter and thus changing the condition. It invokes notifyAll, 
waking all waiting threads, which may then proceed as soon as 
inc releases its lock.



Guarded Methods — applicability

> Clients can tolerate indefinite postponement. (Otherwise, 
use a balking design.)

> You can guarantee that the required states are eventually 
reached (via other requests), or if not, that it is acceptable 
to block forever. 

> You can arrange that notifications occur after all relevant 
state changes. (Otherwise consider a design based on a 
busy-wait spin loop.) 

> …

26



Guarded Methods — applicability …

…

> You can avoid or cope with liveness problems due to 
waiting threads retaining all synchronization locks.

> You can construct computable predicates describing the 
state in which actions will succeed. (Otherwise consider 
an optimistic design.)

> Conditions and actions are managed within a single 
object. (Otherwise consider a transactional form.)

27



Predicates may not be computable, for example, if they depend on 
external events.



Guarded Methods — design steps
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The basic recipe is to use wait in a conditional loop to block until it 
is safe to proceed, and use notifyAll to wake up blocked threads.

public synchronized Object service() {
while (wrong State) {

try { wait(); }
catch (InterruptedException e) { }

}
// fill request and change state ...
notifyAll();
return result;

}



Step: Separate interface from policy

29

Define interfaces for the methods, so that classes can implement 
guarded methods according to different policies.

public interface BoundedCounter {
public static final long MIN = 0; // min value
public static final long MAX = 10; // max value
public long value(); // inv’t: MIN <= value() <= MAX

// init: value() == MIN
public void inc(); // pre: value() < MAX
public void dec(); // pre: value() > MIN

} Counter



We will actually see many different versions of the 
BoundedCounter interface, implementing different 
synchronization policies.



Step: Check guard conditions

> Define a predicate that precisely describes the conditions 
under which actions may proceed. (This can be 
encapsulated as a helper method.)

> Precede the conditional actions with a guarded wait loop 
of the form:

> Optionally, encapsulate this code as a helper method. 
30

while (!condition) {
try { wait(); }
catch (InterruptedException ex) { ... } }



Step: Check guard conditions ...

> If there is only one possible condition to check in this 
class (and all plausible subclasses), and notifications are 
issued only when the condition is true, then there is no 
need to re-check the condition after returning from wait()

> Ensure that the object is in a consistent state (i.e., the 
class invariant holds) before entering any wait (since wait 
releases the synchronization lock). 
—The easiest way to do this is to perform the guards before taking 

any actions.

31



It is extremely rare in practice to see examples in which 
notification guarantees that the guard condition is true and will 
remain true. Optimizing the wait loop to a simple if test will not 
buy you much, and could lead to obscure bugs if the nature of the 
guard condition changes



Step: Handle interrupts

> Establish a policy to deal with InterruptedExceptions. 
Possibilities include::
—Ignore interrupts (i.e., an empty catch clause), which preserves 

safety at the possible expense of liveness. (Not recommended!)
—Terminate the current thread (stop). This preserves safety, though 

brutally! (Not recommended.)
—Exit the method, possibly raising an exception. This preserves 

liveness but may require the caller to take special action to 
preserve safety. (Easiest thing to do.)

—Cleanup and restart.
—Ask for user intervention before proceeding. 

32

Interrupts can be useful to signal that the guard can never become 
true because, for example, the collaborating threads have terminated.
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Step: Signal state changes

> Add notification code to each method of the class that 
changes state in any way that can affect the value of a 
guard condition. Some options are:
—use notifyAll to wake up all threads that are blocked in waits 

for the host object. 
—use notify to wake up only one thread (if any exist). This is best 

treated as an optimization where:
– all blocked threads are necessarily waiting for conditions signalled by the 

same notifications, 
– only one of them can be enabled by any given notification, and 
– it does not matter which one of them becomes enabled.

—You build your own special-purpose notification methods using 
notify and notifyAll. (For example, to selectively notify 
threads, or to provide certain fairness guarantees.)



Testing for safety violations
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public abstract class BoundedCounterAbstract
implements BoundedCounter {

protected long count = MIN;
private int errors = 0;

protected void checkInvariant() {
if (! (count >= BoundedCounter.MIN

&& count <= BoundedCounter.MAX) ) {
errors++;

}
}
public int errors() {

return errors;
}

} Counter

Common behaviour to help 
us test for safety violations



In all of our examples of implementations of the 
BoundedCounter interface, we run tests that exercise the 
interface and catch any violations of the invariant.



Basic synchronization
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public class BoundedCounterBasic
extends BoundedCounterAbstract { ...

public synchronized void inc() {
while (count >= MAX) {
try { wait(); }
catch(InterruptedException ex) { };

}
count ++;
notifyAll();
checkInvariant(); // record safety violations

}
...
}



Race conditions

36

public class BoundedCounterNoSyncBAD
extends BoundedCounterAbstract {

public void inc() {// missing synchronization
while (count >= MAX) {
Thread.yield();

}
Thread.yield(); // race condition here
count ++;
checkInvariant(); // possible safety violation

}
}

NB: wait() and notify() are invalid 
outside synchronized code!
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notify() vs. notifyAll()

Careless use of notify() may lead to race conditions.
A BC CB

dec
wait

wait
dec

inc

notify
inc

wait

notify

wait Now both A and C 
wait for nothing!



This scenario illustrates why issuing notify instead of 
notifyAll can lead to a race condition. 
A and B both attempt a decrement and wait. C increments twice, 
waking up B and then waiting. Now B decrements and notifies A. 
A and C are now left waiting. 
NB: It is always hard to create a test case that provoke a race 
condition. This is  another reason why model-checking is more 
useful than testing to ensure safety and liveness.



Step: Structure notifications
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Ensure that each wait is balanced by at least one notification. Options 
include:

Blanket 
Notifications

Place a notification at the end of every method that can cause any 
state change (i.e., assigns any instance variable). Simple and reliable, 
but may cause performance problems ...

Encapsulating 
Assignment

Encapsulate assignment to each variable mentioned in any guard 
condition in a helper method that performs the notification after 
updating the variable.

Tracking State
Only issue notifications for the particular state changes that could 
actually unblock waiting threads. May improve performance, at the cost 
of flexibility (i.e., subclassing becomes harder.)

Tracking State 
Variables

Maintain an instance variable that represents control state. Whenever 
the object changes state, invoke a helper method that re-evaluates the 
control state and will issue notifications if guard conditions are affected.

Delegating 
Notifications

Use helper objects to maintain aspects of state and have these helpers 
issue the notifications.



Encapsulating assignment
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Guards and assignments are encapsulated in helper methods:

public class BoundedCounterEncapsulatedAssigns
extends BoundedCounterAbstract {

...
public synchronized void inc() {

awaitIncrementable(); 
setCount(count + 1);

}
public synchronized void dec() {

awaitDecrementable();
setCount(count - 1);

}
...



...
protected synchronized void awaitIncrementable() {

while (count >= MAX)
try { wait(); }
catch(InterruptedException ex) {};

}
protected synchronized void awaitDecrementable() {

while (count <= MIN)
try { wait(); }
catch(InterruptedException ex) { };

}
protected synchronized void setCount(long newValue) {

count = newValue;
notifyAll();

}
}



Encapsulating guards and assignments has two main 
consequences: 

1. the code achieves a higher level of abstraction by hiding the 
synchronization policy; 

2. the guards and assignment helper methods can potentially be reused across 
multiple client methods. 

(In this example, just setCount is reused.)



Tracking State

The only transitions that can possibly affect waiting threads are those that 
step away from logical states top and bottom:

public class BoundedCounterTrackingState
extends BoundedCounterAbstract {

...
public synchronized void inc() {

while (count == MAX)
try { wait(); }
catch(InterruptedException ex) {};

if (count++ == MIN)
notifyAll(); // just left bottom state

}
...

} 41



This pattern may be useful when only certain state changes could 
possibly wake a waiting thread. In the case of the bounded 
counter, threads can only be waiting if the counter was either in 
the maximum or the minimum state. In all other circumstances, 
there cannot possibly be any waiting threads. 
As a consequence, we only need to issue a notifyAll when we 
leave either extreme state, i.e., when inc leaves the MIN state 
and when dec leaves the MAX state.



Tracking State Variables
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public class BoundedCounterStateVariables
extends BoundedCounterAbstract {

protected enum State { BOTTOM, MIDDLE, TOP };
protected State state = State.BOTTOM;

public synchronized void inc() { 
while (state == State.TOP) {// consult logical state

try { wait(); }
catch(InterruptedException ex) {};

}
++count; // modify actual state
checkState(); // sync logical state

} 
...



...
protected synchronized void checkState() {

State oldState = state;
if (count == MIN) { state = State.BOTTOM; }
else if (count == MAX) { state = State.TOP; }
else { state = State.MIDDLE; }

if (leftOldState(oldState)) { notifyAll(); }
}

private boolean leftOldState(State oldState) {
return state != oldState

&& ( oldState == State.TOP
|| oldState == State.BOTTOM);

}
}



This pattern is pretty similar to the previous one, except it 
abstracts away from the concrete states.
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Delegating notifications

public class NotifyingLong {
private long value;
private Object observer;
public NotifyingLong(Object o, long v) {

observer = o; value = v; 
}
public synchronized long value() { return value; }
public void setValue(long v) {

synchronized(this) { // NB: partial synchronization
value = v;

}
synchronized(observer) { 

observer.notifyAll(); // NB: must be synchronized!
}

}
}



In this pattern we have the variable holding the counter value 
itself issue the notifications. The design is slightly convoluted, as 
it separates the synchronized object from the observer that is 
notified. 
Note that we must synchronize with respect to the observer before 
issuing notifyAll, or else an 
IllegalMonitorException will be raised.



Delegating notifications ...
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Notification is delegated to the helper object:

public class BoundedCounterNotifyingLong
implements BoundedCounter {

private NotifyingLong count = new NotifyingLong(this, MIN);
public synchronized long value() { return count.value(); }
public synchronized void inc() { 

while (count.value() >= MAX) {
try { wait(); }
catch(InterruptedException ex) {};

}
count.setValue(count.value()+1); // issues notification

}
...

}



The observer in this case is the bounded counter. 
Note that threads wait with respect the bounder counter object(the 
observer), not the count variable. This explains why the count 
variable must issue notifyAll within a synchronized block on 
the observer, not itself, since threads are waiting on the observer.
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What you should know!

> What kinds of liveness problems can occur in concurrent 
programs?

> Why is progress a liveness rather than a safety issue?
> What is fair choice? Why do we need it?
> What is a terminal set of states?
> What are necessary and sufficient conditions for 

deadlock?
> How can you detect deadlock? How can you avoid it?
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Can you answer these questions?

> How would you manually check a progress property?
> What is the difference between starvation and deadlock?
> How would you manually detect a waits-for cycle?
> What is fairness?
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What you should know!

> When can you apply the Guarded Methods pattern?
> When should methods recheck guard conditions after 

waking from a wait()?
> Why should you usually prefer notifyAll() to notify()?
> When and where should you issue notification?
> Why must you re-establish the class invariant before 

calling wait()?
> What should you do when you receive an 

InterruptedException?
> What is the difference between tracking state and using 

state-tracking variables?
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Can you answer these questions?

> When are guarded methods better than balking?
> When should you use helper methods to implement 

guarded methods?
> What is the best way to structure guarded methods for a 

class if you would like it to be easy for others to define 
correctly functioning subclasses?

> When is the complexity of delegating notifications 
worthwhile?
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