
Oscar Nierstrasz

5. Liveness and Guarded Methods

Selected material © Magee and Kramer

> Liveness
—Progress Properties

> Deadlock
—The Dining Philosophers problem
—Detecting and avoiding deadlock

> Guarded Methods
—Checking guard conditions
—Handling interrupts
—Structuring notification

Roadmap

2

> Liveness
—Progress Properties

> Deadlock
—The Dining Philosophers problem
—Detecting and avoiding deadlock

> Guarded Methods
—Checking guard conditions
—Handling interrupts
—Structuring notification

Roadmap

3

Liveness

> A liveness property asserts that something good
eventually happens

> A progress property asserts that it is always the case that
an action is eventually executed

> Progress is the opposite of starvation, the name given to
a concurrent programming situation in which an action is
never executed

4

5

Liveness Problems

A program may be “safe”, yet suffer from various kinds of
liveness problems:

Starvation: (AKA “indefinite postponement”)
> The system as a whole makes progress, but some individual

processes don’t
Dormancy:
> A waiting process fails to be woken up
Premature termination:
> A process is killed before it should be
Deadlock:
> Two or more processes are blocked, each waiting for resources held

by another

There are various kind of liveness problems. Deadlock is perhaps
the most notorious, and we will look at it in some detail, but there
are many other kinds. Starvation and dormancy are particularly
evil.

6

Progress properties — fair choice

Fair Choice: If a choice over a set of
transitions is executed infinitely often,
then every transition in the set will be
executed infinitely often.

COIN = (toss -> heads -> COIN
| toss -> tails -> COIN).

If a coin were tossed an
infinite number of times, we
would expect that both heads
and tails would each be
chosen infinitely often.  
This assumes fair choice !

The notion of fair choice doesn’t say anything about the relative
frequency or the probably of any given choice, just that all
choices will be made infinitely often. In this case both heads and
tails will come up infinitely often (even if we get 100 x as many
heads as tails!).

7

Safety vs. Liveness

Consider: property SAFE = (heads -> SAFE
| tails -> SAFE).

The safety properties of COIN are not very interesting.
How do we express what must happen?

Safety just tells us what may happen, not what must happen. We
need a difference way of stating liveness properties.

8
0 1

progress P = {a1,a2..an}

progress HEADS = {heads}
progress TAILS = {tails}

No progress violations detected.

Progress properties

asserts that in an infinite execution of a
target system, at least one of the
actions a1,a2...an will be executed
infinitely often.

1-coin.lts

A progress property consists of a set of transitions, at least one of
which will be selected infinitely often in an infinite sequence of
choices.
Note that if we want both HEADS and TAILS to be fairly chosen,
we need two progress properties, one for each of them.

Progress properties

9

TWOCOIN = (pick->COIN | pick->TRICK),
TRICK = (toss->heads->TRICK),
COIN = (toss->heads->COIN | toss->tails->COIN).

Terminal sets

Suppose we have both a normal coin and a trick coin

A terminal set is a set of mutually reachable states in the labeled
transition system from which one cannot escape. In this system,
after picking one of the two coins, one stays within one of the
subgraphs COIN or TRICK.

Progress analysis

10

0 1

progress HEADS = {heads}
progress TAILS = {tails}
progress HEADSorTAILS = {heads,tails}

Progress violation: TAILS
Trace to terminal set of states: pick
Actions in terminal set: {toss, heads}

A terminal set of states is one in which every state is mutually
reachable but no transitions lead out of the set.

The terminal set {1, 2} violates progress property TAILS

2-twoCoin.lts

LTSA will perform model checking to verify the progress
properties. It will either tell us that all specified properties hold,
or it will provide a counter-example, i.e., a trace to a state that
violates the given property.
In this case it discovers that after a pick transition we may reach
a terminal set including states (1) and (2) that violates the
property TAILS (i.e., no tail transitions are possible any more).

Safety vs. Liveness

11

property REPICK = (pick -> toss -> REPICK).

Trace to property violation in REPICK:
pick
toss
heads
toss

0 1

Consider:

How does this safety property expose the flaw in the system?
How would you fix the TWOCOIN to have this property pass?

2-twoCoin.lts

If you are allowed to pick the coin after each toss, the starvation
problem goes away (though there is still a fairness issue).
How can we fix the TWOCOIN system so this safety property
passes?

> Liveness
—Progress Properties

> Deadlock
—The Dining Philosophers problem
—Detecting and avoiding deadlock

> Guarded Methods
—Checking guard conditions
—Handling interrupts
—Structuring notification

Roadmap

12

13

Deadlock

Four necessary and sufficient conditions for deadlock:
1. Serially reusable resources:

— the deadlocked processes share resources under mutual
exclusion.

2. Incremental acquisition:
— processes hold on to acquired resources while waiting to obtain

additional ones.
3. No pre-emption:

— once acquired by a process, resources cannot be pre-empted but
only released voluntarily.

4. Wait-for cycle:
— a cycle of processes exists in which each process holds a

resource which its successor in the cycle is waiting to acquire.

If any of these conditions is removed, deadlock cannot take place.
Without mutual exclusion, resources are not locked, so there can
be no deadlock. If resources are not obtained incrementally, then
no process can hold onto resources while waiting for others. If a
process can be pre-empted, deadlock can be broken. Finally,
without a waits-for cycle, there is no deadlock in the first place.
Approaches to resolving deadlock either try to detect and break
deadlock by lifting one of these conditions, or they try to avoid
deadlock by ensuring that certain conditions cannot arise.

14

Waits-for cycle

A

B

CD

E

Has A awaits B

Has B awaits C

Has C awaits DHas D awaits E

Has E awaits A

A classical deadlock always has a “waits-for” cycle with at least
two participants. Each one holds some resources waited for by
another participant. No one will release the resources they already
have, so they are all “deadlocked”.

Deadlock analysis - primitive processes

15

Progress violation for actions: {north, south}
Trace to terminal set of states: north north
Actions in terminal set: {}

MOVE = (north ->
(south -> MOVE

 | north -> STOP
)
).

0 1

A deadlocked state is one with no outgoing transitions
In FSP: STOP process

3-move.lts

A deadlocked state in LTSA is a particular kind of terminal set
with no outgoing transitions. Such a process (state) is also known
as STOP.

16

The Dining Philosophers Problem

> Philosophers alternate
between thinking and eating.

> A philosopher needs two forks
to eat.

> No two philosophers may hold
the same fork simultaneously.

> There must be no deadlock
and no starvation.

> Want efficient behaviour
under absence of contention.

The “dining philosophers” problem is a classical problem meant
to illustrate many issues in concurrent programming. There are
five philosophers sitting around a table, each of whom takes turns
thinking and eating. On the table is a large bowl of noodles.
Between each philosopher is a fork (or a chopstick). Each
philosopher needs two forks (or chopsticks) to eat.
A deadlock may arise if each philosopher succeeds in grabbing
one fork, and then waits for his neighbour to release the other
fork.
There are numerous variants of the problem, for example in
which the philosophers may get up and sit down, in order to eat
or to think, leading to different solutions.

17

Deadlocked diners

> A deadlock occurs if a
waits-for cycle arises in
which each philosopher
grabs one fork and waits
for the other.

Dining Philosophers, Safety and Liveness

Dining Philosophers illustrate many classical safety and liveness issues:
Mutual Exclusion Each fork can be used by one philosopher at a time

Condition synchronization A philosopher needs two forks to eat

Shared variable communication Philosophers share forks ...

Message-based communication ... or they can pass forks to each other

Busy-waiting A philosopher can poll for forks ...

Blocked waiting ... or can sleep till woken by a neighbour

Livelock All philosophers can grab the left fork and busy-wait for the
right ...

Deadlock ... or grab the left one and wait (sleep) for the right

Starvation A philosopher may starve if the left and right neighbours are
always faster at grabbing the forks

Race conditions Anomalous behaviour depends on timing
18

19

Modeling Dining Philosophers

PHIL = (sitdown
-> right.get -> left.get
-> eat -> left.put -> right.put
-> arise -> PHIL).

FORK = (get -> put -> FORK).

||DINERS(N=5)= forall [i:0..N-1]
(phil[i]:PHIL || {phil[i].left,phil[((i-1)+N)%N].right}::FORK).

0 1Is this system safe? Is it live?
4-DiningPhilosophers.lts

In this variant, philosophers get up from the table to think and sit
down to eat. Note that each philosopher prepares to eat by first
grabbing the right fork and then the left fork.
What do safety and liveness mean for this system?
Caveat: LTSA considers deadlock to be both an issue of liveness
and safety. (It considers deadlock to be a kind of error state.)

20

Dining Philosophers Analysis

Trace to terminal set of states:
phil.0.sitdown
phil.0.right.get
phil.1.sitdown
phil.1.right.get
phil.2.sitdown
phil.2.right.get
phil.3.sitdown
phil.3.right.get
phil.4.sitdown
phil.4.right.get

Actions in terminal set: {}

No further progress
is possible due to
the waits-for cycle

As always, LTSA reports a progress violation by presenting a
trace that leads to the erroneous state. Here we clearly see that
each philosopher has grabbed his right fork and no further
progress is possible.
How many different traces exist leading to a deadlock?

21

Eliminating Deadlock

There are two fundamentally different approaches to
eliminating deadlock.

Deadlock detection:
> Repeatedly check for waits-for cycles. When detected,

choose a victim and force it to release its resources.
—Common in transactional systems; the victim should “roll-back” and

try again

Deadlock avoidance:
> Design the system so that a waits-for cycle cannot

possibly arise.

In both cases we try to break one of the four necessary conditions
for deadlock. In the first case we break condition 3 by detecting
deadlock and then breaking it. In the second case we avoid
deadlock by ensuring that condition 4 cannot be reached?
How could we solve the problem by breaking conditions 1 or 2?

22

Dining Philosopher Solutions

There are many solutions offering varying degrees of
liveness guarantees:

Break the cycle
> Number the forks. Philosophers grab the lowest

numbered fork first.
> One philosopher grabs forks in the reverse order.

Philosophers queue to sit down
> allow no more than four at a time to sit down

0 1

5-DiningPhilosophersSol.lts

Do these solutions avoid deadlock?
What about starvation? Are they “fair”?

> Liveness
—Progress Properties

> Deadlock
—The Dining Philosophers problem
—Detecting and avoiding deadlock

> Guarded Methods
—Checking guard conditions
—Handling interrupts
—Structuring notification

Roadmap

23

24

Achieving Liveness

There are various strategies and techniques to ensure
liveness:

> Start with safe design and selectively remove
synchronization

> Start with live design and selectively add safety
> Adopt design patterns that limit the need for

synchronization
> Adopt standard architectures that avoid cyclic

dependencies

Pattern: Guarded Methods

25

Client 1

dec()

BoundedCounter Client 2

inc()wait()
notifyAll()

Intent: Temporarily suspend an incoming thread when an object
is not in the right state to fulfil a request, and wait for the state
to change rather than balking (raising an exception).

This is perhaps the most basic pattern that we will see. In this
scenario a client invokes dec to decrement the bounded counter
while it already is at its minimum value. Instead of balking, it
checks the guard condition, detects that the counter is zero, and
waits for the condition to change, thus releasing the mutual
exclusion lock. Another thread invokes inc, incrementing the
counter and thus changing the condition. It invokes notifyAll,
waking all waiting threads, which may then proceed as soon as
inc releases its lock.

Guarded Methods — applicability

> Clients can tolerate indefinite postponement. (Otherwise,
use a balking design.)

> You can guarantee that the required states are eventually
reached (via other requests), or if not, that it is acceptable
to block forever.

> You can arrange that notifications occur after all relevant
state changes. (Otherwise consider a design based on a
busy-wait spin loop.)

> …

26

Guarded Methods — applicability …

…

> You can avoid or cope with liveness problems due to
waiting threads retaining all synchronization locks.

> You can construct computable predicates describing the
state in which actions will succeed. (Otherwise consider
an optimistic design.)

> Conditions and actions are managed within a single
object. (Otherwise consider a transactional form.)

27

Predicates may not be computable, for example, if they depend on
external events.

Guarded Methods — design steps

28

The basic recipe is to use wait in a conditional loop to block until it
is safe to proceed, and use notifyAll to wake up blocked threads.

public synchronized Object service() {
while (wrong State) {

try { wait(); }
catch (InterruptedException e) { }

}
// fill request and change state ...
notifyAll();
return result;

}

Step: Separate interface from policy

29

Define interfaces for the methods, so that classes can implement
guarded methods according to different policies.

public interface BoundedCounter {
public static final long MIN = 0; // min value
public static final long MAX = 10; // max value
public long value(); // inv’t: MIN <= value() <= MAX

// init: value() == MIN
public void inc(); // pre: value() < MAX
public void dec(); // pre: value() > MIN

} Counter

We will actually see many different versions of the
BoundedCounter interface, implementing different
synchronization policies.

Step: Check guard conditions

> Define a predicate that precisely describes the conditions
under which actions may proceed. (This can be
encapsulated as a helper method.)

> Precede the conditional actions with a guarded wait loop
of the form:

> Optionally, encapsulate this code as a helper method.
30

while (!condition) {
try { wait(); }
catch (InterruptedException ex) { ... } }

Step: Check guard conditions ...

> If there is only one possible condition to check in this
class (and all plausible subclasses), and notifications are
issued only when the condition is true, then there is no
need to re-check the condition after returning from wait()

> Ensure that the object is in a consistent state (i.e., the
class invariant holds) before entering any wait (since wait
releases the synchronization lock).
—The easiest way to do this is to perform the guards before taking

any actions.

31

It is extremely rare in practice to see examples in which
notification guarantees that the guard condition is true and will
remain true. Optimizing the wait loop to a simple if test will not
buy you much, and could lead to obscure bugs if the nature of the
guard condition changes

Step: Handle interrupts

> Establish a policy to deal with InterruptedExceptions.
Possibilities include::
—Ignore interrupts (i.e., an empty catch clause), which preserves

safety at the possible expense of liveness. (Not recommended!)
—Terminate the current thread (stop). This preserves safety, though

brutally! (Not recommended.)
—Exit the method, possibly raising an exception. This preserves

liveness but may require the caller to take special action to
preserve safety. (Easiest thing to do.)

—Cleanup and restart.
—Ask for user intervention before proceeding.

32

Interrupts can be useful to signal that the guard can never become
true because, for example, the collaborating threads have terminated.

33

Step: Signal state changes

> Add notification code to each method of the class that
changes state in any way that can affect the value of a
guard condition. Some options are:
—use notifyAll to wake up all threads that are blocked in waits

for the host object.
—use notify to wake up only one thread (if any exist). This is best

treated as an optimization where:
– all blocked threads are necessarily waiting for conditions signalled by the

same notifications,
– only one of them can be enabled by any given notification, and
– it does not matter which one of them becomes enabled.

—You build your own special-purpose notification methods using
notify and notifyAll. (For example, to selectively notify
threads, or to provide certain fairness guarantees.)

Testing for safety violations

34

public abstract class BoundedCounterAbstract
implements BoundedCounter {

protected long count = MIN;
private int errors = 0;

protected void checkInvariant() {
if (! (count >= BoundedCounter.MIN

&& count <= BoundedCounter.MAX)) {
errors++;

}
}
public int errors() {

return errors;
}

} Counter

Common behaviour to help
us test for safety violations

In all of our examples of implementations of the
BoundedCounter interface, we run tests that exercise the
interface and catch any violations of the invariant.

Basic synchronization

35

public class BoundedCounterBasic
extends BoundedCounterAbstract { ...

public synchronized void inc() {
while (count >= MAX) {
try { wait(); }
catch(InterruptedException ex) { };

}
count ++;
notifyAll();
checkInvariant(); // record safety violations

}
...
}

Race conditions

36

public class BoundedCounterNoSyncBAD
extends BoundedCounterAbstract {

public void inc() {// missing synchronization
while (count >= MAX) {
Thread.yield();

}
Thread.yield(); // race condition here
count ++;
checkInvariant(); // possible safety violation

}
}

NB: wait() and notify() are invalid
outside synchronized code!

37

notify() vs. notifyAll()

Careless use of notify() may lead to race conditions.
A BC CB

dec
wait

wait
dec

inc

notify
inc

wait

notify

wait Now both A and C
wait for nothing!

This scenario illustrates why issuing notify instead of
notifyAll can lead to a race condition.
A and B both attempt a decrement and wait. C increments twice,
waking up B and then waiting. Now B decrements and notifies A.
A and C are now left waiting.
NB: It is always hard to create a test case that provoke a race
condition. This is another reason why model-checking is more
useful than testing to ensure safety and liveness.

Step: Structure notifications

38

Ensure that each wait is balanced by at least one notification. Options
include:

Blanket
Notifications

Place a notification at the end of every method that can cause any
state change (i.e., assigns any instance variable). Simple and reliable,
but may cause performance problems ...

Encapsulating
Assignment

Encapsulate assignment to each variable mentioned in any guard
condition in a helper method that performs the notification after
updating the variable.

Tracking State
Only issue notifications for the particular state changes that could
actually unblock waiting threads. May improve performance, at the cost
of flexibility (i.e., subclassing becomes harder.)

Tracking State
Variables

Maintain an instance variable that represents control state. Whenever
the object changes state, invoke a helper method that re-evaluates the
control state and will issue notifications if guard conditions are affected.

Delegating
Notifications

Use helper objects to maintain aspects of state and have these helpers
issue the notifications.

Encapsulating assignment

39

Guards and assignments are encapsulated in helper methods:

public class BoundedCounterEncapsulatedAssigns
extends BoundedCounterAbstract {

...
public synchronized void inc() {

awaitIncrementable();
setCount(count + 1);

}
public synchronized void dec() {

awaitDecrementable();
setCount(count - 1);

}
...

...
protected synchronized void awaitIncrementable() {

while (count >= MAX)
try { wait(); }
catch(InterruptedException ex) {};

}
protected synchronized void awaitDecrementable() {

while (count <= MIN)
try { wait(); }
catch(InterruptedException ex) { };

}
protected synchronized void setCount(long newValue) {

count = newValue;
notifyAll();

}
}

Encapsulating guards and assignments has two main
consequences:

1. the code achieves a higher level of abstraction by hiding the
synchronization policy;

2. the guards and assignment helper methods can potentially be reused across
multiple client methods.

(In this example, just setCount is reused.)

Tracking State

The only transitions that can possibly affect waiting threads are those that
step away from logical states top and bottom:

public class BoundedCounterTrackingState
extends BoundedCounterAbstract {

...
public synchronized void inc() {

while (count == MAX)
try { wait(); }
catch(InterruptedException ex) {};

if (count++ == MIN)
notifyAll(); // just left bottom state

}
...

} 41

This pattern may be useful when only certain state changes could
possibly wake a waiting thread. In the case of the bounded
counter, threads can only be waiting if the counter was either in
the maximum or the minimum state. In all other circumstances,
there cannot possibly be any waiting threads.
As a consequence, we only need to issue a notifyAll when we
leave either extreme state, i.e., when inc leaves the MIN state
and when dec leaves the MAX state.

Tracking State Variables

42

public class BoundedCounterStateVariables
extends BoundedCounterAbstract {

protected enum State { BOTTOM, MIDDLE, TOP };
protected State state = State.BOTTOM;

public synchronized void inc() {
while (state == State.TOP) {// consult logical state

try { wait(); }
catch(InterruptedException ex) {};

}
++count; // modify actual state
checkState(); // sync logical state

}
...

...
protected synchronized void checkState() {

State oldState = state;
if (count == MIN) { state = State.BOTTOM; }
else if (count == MAX) { state = State.TOP; }
else { state = State.MIDDLE; }

if (leftOldState(oldState)) { notifyAll(); }
}

private boolean leftOldState(State oldState) {
return state != oldState

&& (oldState == State.TOP
|| oldState == State.BOTTOM);

}
}

This pattern is pretty similar to the previous one, except it
abstracts away from the concrete states.

44

Delegating notifications

public class NotifyingLong {
private long value;
private Object observer;
public NotifyingLong(Object o, long v) {

observer = o; value = v;
}
public synchronized long value() { return value; }
public void setValue(long v) {

synchronized(this) { // NB: partial synchronization
value = v;

}
synchronized(observer) {

observer.notifyAll(); // NB: must be synchronized!
}

}
}

In this pattern we have the variable holding the counter value
itself issue the notifications. The design is slightly convoluted, as
it separates the synchronized object from the observer that is
notified.
Note that we must synchronize with respect to the observer before
issuing notifyAll, or else an
IllegalMonitorException will be raised.

Delegating notifications ...

45

Notification is delegated to the helper object:

public class BoundedCounterNotifyingLong
implements BoundedCounter {

private NotifyingLong count = new NotifyingLong(this, MIN);
public synchronized long value() { return count.value(); }
public synchronized void inc() {

while (count.value() >= MAX) {
try { wait(); }
catch(InterruptedException ex) {};

}
count.setValue(count.value()+1); // issues notification

}
...

}

The observer in this case is the bounded counter.
Note that threads wait with respect the bounder counter object(the
observer), not the count variable. This explains why the count
variable must issue notifyAll within a synchronized block on
the observer, not itself, since threads are waiting on the observer.

46

What you should know!

> What kinds of liveness problems can occur in concurrent
programs?

> Why is progress a liveness rather than a safety issue?
> What is fair choice? Why do we need it?
> What is a terminal set of states?
> What are necessary and sufficient conditions for

deadlock?
> How can you detect deadlock? How can you avoid it?

47

Can you answer these questions?

> How would you manually check a progress property?
> What is the difference between starvation and deadlock?
> How would you manually detect a waits-for cycle?
> What is fairness?

48

What you should know!

> When can you apply the Guarded Methods pattern?
> When should methods recheck guard conditions after

waking from a wait()?
> Why should you usually prefer notifyAll() to notify()?
> When and where should you issue notification?
> Why must you re-establish the class invariant before

calling wait()?
> What should you do when you receive an

InterruptedException?
> What is the difference between tracking state and using

state-tracking variables?

49

Can you answer these questions?

> When are guarded methods better than balking?
> When should you use helper methods to implement

guarded methods?
> What is the best way to structure guarded methods for a

class if you would like it to be easy for others to define
correctly functioning subclasses?

> When is the complexity of delegating notifications
worthwhile?

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

