
Oscar Nierstrasz

7. Liveness and Asynchrony

Client 1

request()

Host

returns future

Future
new()

set()

value()

returns value

start()



> Asynchronous invocations

> Simple Relays


—Direct invocations

—Thread-based messages

—Command-based messages


> Tail calls

> Early replies

> Futures

> JUC (java.util.concurrent)

Roadmap

2



> Asynchronous invocations

> Simple Relays


—Direct invocations

—Thread-based messages

—Command-based messages


> Tail calls

> Early replies

> Futures

> JUC (java.util.concurrent)

Roadmap

3



4

Pattern: Asynchronous Invocations

Intent: Avoid waiting for a request to be serviced by 
decoupling sending from receiving.


Applicability
> When a host object can distribute services amongst 

multiple helper objects.

> When an object does not immediately need the result of 

an invocation to continue doing useful work.

> When invocations that are logically asynchronous, 

regardless of whether they are coded using threads. 

> During refactoring, when classes and methods are split in 

order to increase concurrency and reduce liveness 
problems.



Asynchronous Invocations — template

5

abstract class AbstractHost implements Host {
public void service() {

pre();					 // code to run before invocation
invokeHelper();	 // the invocation
during();				 // code to run in parallel
post();					 // code to run after completion

}
...
}

// A host provides a 
service
public interface Host {
public void service();

}

Asynchrony

Asynchronous invocation typically looks like this:



We will see many variants of this basic pattern. The helper may 
run in its own thread. There may or may not be a need to obtain a 
result from the helper.



Asynchronous Invocations — design steps

Consider the following issues:
Does the Host need results back 
from the Helper?

Not if, e.g., the Helper returns results 
directly to the Host’s caller!

Can the Host process new requests 
while the Helper is running?

Might depend on the kind of 
request ...

Can the Host do something while 
the Helper is running?

i.e., in the during() code

Does the Host need to synchronize 
pre-invocation processing?

i.e., if service() is guarded or if 
pre() updates the Host’s state

Does the Host need to synchronize 
post-invocation processing?

i.e., if post() updates the Host’s 
state

Does post-invocation processing 
only depend on the Helper’s result?

... or does the host have to wait for 
other conditions?

Is the same Helper always used? Is a new one generated to help with 
each new service request? 6



> Asynchronous invocations

> Simple Relays


—Direct invocations

—Thread-based messages

—Command-based messages


> Tail calls

> Early replies

> Futures

> JUC (java.util.concurrent)

Roadmap

7



Simple Relays — three variants

A relay method obtains all its functionality by delegating to 
the helper, without any pre(), during(), or post() 
actions.


> Direct invocations:
—Invoke the Helper directly, but without synchronization


> Thread-based messages:
—Create a new thread to invoke the Helper


> Command-based messages:
—Pass the request to another object that will run it

8Relays are commonly seen in Adaptors.



> Asynchronous invocations

> Simple Relays


—Direct invocations

—Thread-based messages

—Command-based messages


> Tail calls

> Early replies

> Futures

> JUC (java.util.concurrent)

Roadmap

9



Variant: Direct invocations

10

public class HostDirectRelay implements Host {
// NB: helper is also immutable, so unsynchronized
protected final Helper helper = new CountingHelper();

public void service() {	 // unsynchronized!
invokeHelper();							 // stateless method

}

protected void invokeHelper() {
helper.help();								 // unsynchronized!

}
} Asynchrony

Asynchrony is achieved by 
avoiding synchronization.

The Host is free to accept other requests, 
while the Host’s caller must wait for the reply.



In this pattern there is no pre, post or during code, so it may 
seem as though there is no asynchrony. Indeed, there is none 
within the current service, but the point is that other clients may 
call the same service asynchronously (since there is no need for 
synchronization).

In all the other examples we will see asynchrony within the 
running service.



Direct invocations ...

11

public class HostDirectRelaySyncHelper implements Host {
protected Helper helper;
public void service() { invokeHelper(); }
protected void invokeHelper() {

helper().help();		 // partially unsynchronized!
}
protected synchronized Helper helper() {

return helper;
}
public synchronized void setHelper(String name) {

helper = new NamedHelper(name);
}

}

If helper is mutable, it can be protected with an accessor:



> Asynchronous invocations

> Simple Relays


—Direct invocations

—Thread-based messages

—Command-based messages


> Tail calls

> Early replies

> Futures

> JUC (java.util.concurrent)

Roadmap

12



Variant: Thread-based messages

13

public class HostWithHelperThread implements Host {
...
protected void invokeHelper() {

new Thread() {
public void run() {

helper.help();
}

}.start();
}
...

}

The invocation can be performed within a new thread:



14

Thread-based messages ...

The cost of evaluating Helper.help() should outweigh the 
overhead of creating a thread!

> If the Helper is a daemon (loops endlessly)

> If the Helper does I/O
> Possibly, if multiple helper methods are invoked

Typical application: web servers



Here there is clearly asynchrony within the running service as a 
new thread is spawned to run the helper. Creating a new thread 
imposes a certain overhead, however, so the task of the helper 
must be important enough to compensate for the overhead.

A daemon is an kind of server thread that runs continuously, for 
example, performing a service, responding to requests, or 
monitoring events.

Input/output is almost always much slower than simple 
computation, so it can make sense to wrap any i/o activity into a 
helper (e.g., writing to a file, waiting for user input, requesting 
input from a network device).

A web server is a good example. For each HHTP request, a server 
thread may be spawned to handle the request, thus freeing up the 
server to handle another request.



Thread-per-message Gateways

15

public class FileIO {
public void writeBytes(String file, byte[] data) {

new Thread (new FileWriter(file, data)).start();
}
public void readBytes(...) { ... }

}
class FileWriter implements Runnable {

private String nm_;				 // hold arguments 
private byte[] d_;
public FileWriter(String name, byte[] data) { ... }
public void run() { ... } // write to file ... 

}

The Host may construct a new Helper to service each request.



In this example, writing output to a file is performed by a 
dedicated “FileWriter” object within a new thread.

NB: This is skeleton code only, not a running example. Obviously 
there is an assumption here that no synchronization is needed to 
access the file (unique file names, no file readers). An example 
could be that of writing log files named after unique timestamps.



> Asynchronous invocations

> Simple Relays


—Direct invocations

—Thread-based messages

—Command-based messages


> Tail calls

> Early replies

> Futures

> JUC (java.util.concurrent)

Roadmap

16



17

Variant: Command-based messages

The Host can also put a Command object in a queue for 
another object that will invoke the Helper:


Command-based forms are especially useful for:

> scheduling of helpers (i.e., by pool of threads)

> undo and replay capabilities

> transporting messages over networks

public class HostEventQueue implements Host {
…	 protected void invokeHelper() {

EventQueue.invokeLater(new Runnable() {
public void run() { helper.help(); }

}); }
}



In our web server example, it may be a bad idea to create an 
unbounded number of helper threads for each incoming request. A 
way to address this is to use a fixed pool of threads. Requests are 
turned into Command objects that are queued and served by the 
first available helper thread.

Command objects are also used in scenarios where commands 
may be explicitly undone or even replayed, for example, editing 
commands in a textual or graphical editor.



> Asynchronous invocations

> Simple Relays


—Direct invocations

—Thread-based messages

—Command-based messages


> Tail calls

> Early replies

> Futures

> JUC (java.util.concurrent)

Roadmap

18



Tail calls

19

public class TailCallSubject extends Observable {
protected Observer observer = new Observer() { ... };
protected double state;
public void updateState(double d) {		 // unsynchronized
doUpdate(d); 																	 // partially synchronized
sendNotification();													 // unsynchronized

}
protected synchronized void doUpdate(double d) {
state = d;

}
protected void sendNotification() {
observer.update(this, state);

}
}

Asynchrony

Applies when the helper method is the last statement of a 
service. Only pre() code is synchronized.

NB: The host is immediately 
available to accept new requests



Here the helper task is to notify an observer. The actual update 
(i.e., the pre action) is synchronized, but the notification is not.

There is no during action and no post action.

Here, as in the case of the simple relay, asynchrony is with 
respect to new incoming requests that can be served even as the 
observer is being notified. 



Tail calls with new threads

20

public synchronized void updateState(double d) { 
state = d;
new Thread() {
public void run() {
observer.update(TailCallSubject.this, state);

}
}.start();

}

Alternatively, the tail call may be made in a separate thread: 



This solution would allow the original caller to proceed 
immediately, without waiting for the helper to complete. In the 
case of a single notification, this is unlikely to bring much gain, 
but if there is a long list of hundreds of observers, it might make a 
small difference.



> Asynchronous invocations

> Simple Relays


—Direct invocations

—Thread-based messages

—Command-based messages


> Tail calls

> Early replies

> Futures

> JUC (java.util.concurrent)

Roadmap

21



Early Reply

22

Early reply allows a host to perform useful activities after 
returning a result to the client:

Client 1

request()

Host

Host retains 
synchronization!

Early reply is a built-in feature in some programming languages.
It can be easily simulated when it is not a built-in feature.



In a typical scenario, the host must perform some cleanup activity 
after computing and returning the result to the client. The client 
and the cleanup thread may then proceed concurrently.



Simulating Early Reply

23

A one-slot buffer is a simple abstraction that can be used to 
implement many higher-level concurrency abstractions ...

Client

request()

Host

Slot Helper
new()

new()

start()

get() put()

The Helper 
continues after 
producing the 
result

A one-slot buffer can be used to pick up the reply from a helper thread:



The difficulty here is that the host must somehow wait for the 
helper to compute the return result, but without blocking on a call 
to the helper (which would be purely synchronous). Instead the 
host waits on the one-slot buffer to be filled with the reply result 
from the helper. Once the helper deposits the result, it is free to 
continue with its cleanup action.

The advantage of this solution is that the client is entirely 
unaware of the interaction protocol between the host and the 
helper.



24

Early Reply in Java

public class EarlyReplyDemo { ...
public Object service() {				 // unsynchronized

final Slot reply = new Slot();
final EarlyReplyDemo host = this;
new Thread() {								 // Helper

public void run() {
synchronized (host) {

reply.put(host.compute());
host.cleanup();				 // retain lock

} }
}.start();
return reply.get(); 					 // early reply

} ... 
} Asynchrony



> Asynchronous invocations

> Simple Relays


—Direct invocations

—Thread-based messages

—Command-based messages


> Tail calls

> Early replies

> Futures

> JUC (java.util.concurrent)

Roadmap

25



Futures

26

Client 1

request()

Host

returns future

Future
new()

set()

value()

returns value

start()

Futures allow a client to continue in parallel with a host 
until the future value is needed:



Futures differ from early replies in that they allow the client to 
carry out other work while the host computes the requested 
“future value”.

A future is like a “ticket” for work that is being carried out. When 
you need the result, you “cash in the ticket”. If the future has 
already been computed, then you immediately obtain its value, 
otherwise you then wait until it is ready.

In the scenario diagram, a Future is similar to a one-slot buffer, 
except that its value is only set once, and getting the value does 
not consume it.



A Future Class

27

abstract class Future<Result,Argument> {
private Result result;						 // initially null
public Future(final Argument arg) {

new Thread() {
public void run() { setResult(computeResult(arg)); }

}.start();
}
abstract protected Result computeResult(Argument arg);
public synchronized void setResult(Result val) {

result = val;
notifyAll();
return;

}
public synchronized Result result() {

while (result == null) {
try { wait(); }
catch (InterruptedException e) { }

}
return result;

}
} Asynchrony



There are many possible ways to implement futures. In this 
version, Future is an abstract class with an abstract 
computeResult method that must be defined in a subclass. 
When the future is instantiated, a new thread is created to 
compute the result. The result method waits to return the 
requested result until is has been successfully deposited by the 
computeResult method.



Using Futures in Java

28

Future<Integer,Integer> f = new Future<Integer,Integer>(n) {
protected synchronized Integer computeResult(Integer n) {

return fibonacci(n);
}
// slow, naive algorithm to force long compute times ;-)
public int fibonacci(int n) {

if (n<2) { return 1; }
else { return fibonacci(n-1) + fibonacci(n-2); }

}
};
int val = f.result();

Without special language support, the client must 
explicitly request a result() from the future object.



Here a concrete subclass of Future is defined as an anonymous 
inner class.

Here we see the key drawback of futures when they are not 
defined as a language feature: the client of the future needs to be 
aware of the future and must explicitly request the result when it 
is needed. With early replies, on the other hand, clients need take 
no special action, and may be completely unaware of the use of 
early replies by the host.



> Asynchronous invocations

> Simple Relays


—Direct invocations

—Thread-based messages

—Command-based messages


> Tail calls

> Early replies

> Futures

> JUC (java.util.concurrent)

Roadmap

29



30

java.util.concurrent

Executors
—Executor
—ExecutorService
—ScheduledExecutorService
—Callable
—Future
—ScheduledFuture
—Delayed
—CompletionService
—ThreadPoolExecutor
—ScheduledThreadPoolExecutor
—AbstractExecutorService
—Executors
—FutureTask
—ExecutorCompletionService

Queues
—BlockingQueue
—ConcurrentLinkedQueue
—LinkedBlockingQueue
—ArrayBlockingQueue
—SynchronousQueue
—PriorityBlockingQueue
—DelayQueue

Concurrent Collections
—ConcurrentMap
—ConcurrentHashMap
—CopyOnWriteArray{List,Set}

Synchronizers
—CountDownLatch
—Semaphore
—Exchanger
—CyclicBarrier

Locks: java.util.concurrent.locks
—Lock
—Condition
—ReadWriteLock
—AbstractQueuedSynchronizer
—LockSupport
—ReentrantLock
—ReentrantReadWriteLock

Atomics: java.util.concurrent.atomic
—Atomic[Type]
—Atomic[Type]Array
—Atomic[Type]FieldUpdater
—Atomic{Markable,Stampable}Reference

© 2005 Bowbeer, Goetz, Holmes, Lea and Peierls



java.util.concurrent is a library of concurrency 
abstractions that can significantly reduce the complexity of 
programming concurrent applications. It includes many 
abstractions that we have already seen.

Here we will only provide a very general overview.



31
© 2005 Bowbeer, Goetz, Holmes, Lea and Peierls

Key Functional Groups

> Executors, Thread pools and Futures

—Execution frameworks for asynchronous tasking


> Concurrent Collections: 

—Queues, blocking queues, concurrent hash map, …

—Data structures designed for concurrent environments


> Locks and Conditions

—More flexible synchronization control

—Read/write locks


> Synchronizers: Semaphore, Latch, Barrier

—Ready made tools for thread coordination


> Atomic variables

—The key to writing lock-free algorithms



32
© 2005 Bowbeer, Goetz, Holmes, Lea and Peierls

The Executor Framework

> Framework for asynchronous task execution

> Standardize asynchronous invocation


—Framework to execute Runnable and Callable tasks

– Runnable: void run()
– Callable<V>: V call() throws Exception

> Separate submission from execution policy

—Use anExecutor.execute(aRunnable)
—Not new Thread(aRunnable).start()

> Cancellation and shutdown support

> Usually created via Executors factory class


—Configures flexible ThreadPoolExecutor
—Customize shutdown methods, before/after hooks, saturation 

policies, queuing



The Executor framework provides a higher-level way to manage 
concurrent tasks than directly using threads. In addition to the 
Runnable interface, it also introduces the Callable interface, 
which can return a result.

Instead of directly creating threads, a programmer will ask an 
“executor” to run tasks.



33
© 2005 Bowbeer, Goetz, Holmes, Lea and Peierls

Executor

> Decouple submission policy from task execution


> Code which submits a task doesn't have to know in what 
thread the task will run

—Could run in the calling thread, in a thread pool, in a single 

background thread (or even in another JVM!)

—Executor implementation determines execution policy


– Execution policy controls resource utilization, overload behavior, thread 
usage, logging, security, etc


– Calling code need not know the execution policy

public interface Executor { 
void execute(Runnable command);

}



34

ExecutorService

> Adds lifecycle management
> ExecutorService supports both graceful and immediate shutdown

public interface ExecutorService extends Executor {
void shutdown();
List<Runnable> shutdownNow();
boolean isShutdown();
boolean isTerminated();
boolean awaitTermination(long timeout, TimeUnit unit);
// ...

}

>Useful utility methods too
—<T> T invokeAny(Collection<Callable<T>> tasks)

–Executes the given tasks returning the result of one that completed successfully (if 
any)

—Others involving Future objects

© 2005 Bowbeer, Goetz, Holmes, Lea and Peierls



35

FutureTask

public FutureTask<Integer> service (final int n) {
FutureTask<Integer> future =

new FutureTask<Integer> (
new Callable<Integer>() {

public Integer call() {
return new Integer(fibonacci(n));

}
});

new Thread(future).start(); 	// or use an Executor
return future;

} Asynchrony

JUC provides a generic implementation 
of Futures, parameterized by Callable 
or Runnable services.



Whereas the Future class shown earlier required a subclass to 
define the abstract computeResult method, a FutureTask 
object is parameterized by a Callable object. The basic idea, 
however, is the same. A client still needs to explicitly request the 
future result when it is needed.



36
© 2005 Bowbeer, Goetz, Holmes, Lea and Peierls

Creating Executors

> Sample Executor implementations from Executors

> newSingleThreadExecutor


—A pool of one, working from an unbounded queue

> newFixedThreadPool(int N)


—A fixed pool of N, working from an unbounded queue

> newCachedThreadPool


—A variable size pool that grows as needed and shrinks when idle

> newScheduledThreadPool

—Pool for executing tasks after a given delay, or periodically



37

Locks and Synchronizers

> java.util.concurrent provides generally useful 
implementations

—ReentrantLock, ReentrantReadWriteLock
—Semaphore, CountDownLatch, Barrier, Exchanger
—Should meet the needs of most users in most situations


– Some customization possible in some cases by subclassing

> Otherwise AbstractQueuedSynchronizer can be 

used to build custom locks and synchronizers

—Within limitations: int state and FIFO queuing


> Otherwise build from scratch

—Atomics

—Queues

—LockSupport for thread parking/unparking

© 2005 Bowbeer, Goetz, Holmes, Lea and Peierls



38

What you should know!

> What general form does an asynchronous invocation 
take?

> When should you consider using asynchronous 
invocations?

> In what sense can a direct invocation be “asynchronous”?
> Why (and how) would you use inner classes to implement 

asynchrony?
> What is “early reply”, and when would you use it?
> What are “futures”, and when would you use them?
> How can you implement futures and early replies in 

Java?



39

Can you answer these questions?

> Why might you want to increase concurrency on a single-
processor machine?

> Why are servers commonly structured as thread-per-
message gateways?

> Which of the concurrency abstractions we have 
discussed till now can be implemented using one-slot-
buffers as the only synchronized objects?

> When are futures better than early replies? Vice versa?



Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)


You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material for any purpose, even commercially.


The licensor cannot revoke these freedoms as long as you follow the license terms.


Under the following terms:


Attribution — You must give appropriate credit, provide a link to the license, and indicate if 
changes were made. You may do so in any reasonable manner, but not in any way that 
suggests the licensor endorses you or your use. 


 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your 
contributions under the same license as the original. 


No additional restrictions — You may not apply legal terms or technological measures that legally 
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

