
Prof. O. Nierstrasz

Einführung in die Informatik

Programming Languages

Roadmap

2

> What is a programming language?
> Historical Highlights
> Conclusions

© Oscar Nierstrasz

Computational Thinking

3

Übersicht

Informatik

Theorie
(Automaten und formale

Sprachen, Berechenbarkeit,
Komplexität, Logik,

Algorithmen)

Praxis
(Programmiersprachen,

Betriebssysteme, Netzwerke
&Verteilte Systeme, Software
Engineering, Datenbanken,

Rechnerarchitektur)

Schnittstellen zur Aussenwelt
(Mensch-Maschine Schnittstelle, Computer-

vision, Computergrafik, Sensornetze,
Künstliche Intelligenz, Computerlinguistik)

Wirtschaftsinformatik

Anwendungs-
software

Wissenschaftliche
Anwendungen 

(Modellierung und Simulation,
Biologie, Physik, Chemie,

Sozialwissenschaften, etc.)

Informatikstudium Andere Studiengänge

Mathematik

Programmiersprachen

formale
Sprachen

Computerlinguistik

Modellierung

Software
Engineering

Roadmap

4

> What is a programming language?
> Historical Highlights
> Conclusions

Programming Languages, Paradigms and Technology

What is a language?

5

Language = a set of sequences of symbols
that we interpret to attribute meaning

Jack and Jill went up the hill …

Languages consist of sets of (spoken or written) phrases that have
meaning for us.
There are many natural languages, and all of them have similar
concepts: cases, tenses, nouns, verbs. The number of cases differ,
as well as the grammatical rules.
So is with programming languages: there are many, but there are
much fewer concepts that all of them employ and even fewer that
represent variation points.

Programming Languages, Paradigms and Technology

What is a formal language?

6

A Turing machine reads (and writes) a tape of 0s and 1s

The language it accepts is the set of
strings that leave it in an accepting state

The language of a Turing machine is the set of inputs that it
accepts.

• Q is a finite set of states (of the machine)
•∑ is a finite set of tape symbols
• i is an initial state (of the machine)
• _ is a blank symbol
• ∂ is a transition function (state and tape symbol → new state,

symbol to write, move left or right)
• A is set of accepting states (stop if we reach one of these states)

Input is a tape with a finite set of non-blank symbols.

Programming Languages, Paradigms and Technology

How can we describe formal languages?

7

expression → number
expression → expression + expression
expression → expression × expression
number → digit
number → digit number

Use a set of rules (α → β) to describe
the structure of the language

3 + 4 × 5

×

4 5

+

3
3 + 4 × × 5 error!

Rules are used to recognize a particular string of symbols as
having a particular structure. If the rules cannot recognize the
string, then it is not in the language.
Take for example, the grammar for mathematical expressions
presented on the slide. These rules will recognize “3 + 4 × 5” as a
valid string in the language of arithmetic expressions, but will
reject “3 + 4 × × 5”

Aside: Different constraints on the rules we have give us different
kinds of languages, known as the Chomsky hierarchy:
• type 0 grammars are unrestricted — they are equivalent to

Turing machines
• type 1 grammars are context sensitive: aAb → agb — equivalent

to linear-bounded non-deterministic Turing machines (!)
• type 2 grammars are context-free: A → g — equivalent to

pushdown automata
• type 3 grammars are regular: A → a or A → aB — equivalent

to finite state automata (or regular expressions)
https://en.wikipedia.org/wiki/Chomsky_hierarchy

Programming Languages, Paradigms and Technology

What is a Programming Language? (take 1)

8

.-…-…-….-
…---.---..-

l.-..-.-. .-…-…-
….-…---.---..-

l.-..-.-.

1236875975246542685687542865
4482654876578655123687597524
6542685687542865448265487657
8655123687597524654268568754

2865448265487657865…

A language to instruct a computer to compute “stuff” …

But how does the computer interpret language?

(1) A PL is simply a language for communicating instructions to
the computer.
It was not always like that: back in the day programmers used to
flip switches to program a computer. Nowadays however, we
write programs in “high-level languages”. These programs
eventually make the computer do stuff.
But how do we bridge the gap between the programs we write
and the computer executing?

Programming Languages, Paradigms and Technology

What is a Programming Language? (take 2)

9

.-…-…-….-
…---.---..-

l.-..-.-. .-…-…-
….-…---.---..-

l.-..-.-.

What the compiler will handle …
0100100101100
11001000111010
1011010000110
10101010010111
10011111000101
01000101011…

But what about the programmer?

parse
analyze

transform optimize generate

A PL comes with a compiler that translates the programs written
according to the rules down into the machine language.
Alternatively there may be an interpreter that directly interprets
the code without generating a machine executable.

Programming Languages, Paradigms and Technology

What is a Programming Language? (take 3)

10

Programming is
modeling

The take-home message is that programming is modeling.
Programs are executable models that are used to achieve some
effect in the real world. With a good design, the program code
reflects clearly the models as we want them to be.
Programming languages offer us a variety of different tools for
expressing executable models. If we pick the right tool, the job is
easier.

Roadmap

11

> What is a programming language?
> Historical Highlights
> Conclusions

12
Why so many?!

The graphic shows a small extract of the family tree of
programming languages:

http://visual.ly/mother-tongues-—-tracing-roots-computer-languages-through-ages

Thousands of PLs and dialects have been invented over the years,
and the number continues to grow.
Why are there so many programming languages?
A PL is a tool. Tools should fit the task at hand. Since tasks
change, new tools continue to be invented …

Programming Languages, Paradigms and Technology

What do programming languages have in
common?

13

Compute factorials
def fact(n)
 if n == 0
 1
 else
 n * fact(n-1)
 end
end

puts fact(ARGV[0].to_i)

comments

keywords

functions variables

control constructs

numbers, strings

expressions

statements

A fragment of Ruby code

All PLs have certain features in common. This Ruby fragment
shows many of the basic constructs.

Note that technically n is not just a variable but an argument to a
function. Also in Ruby, every statement is actually an expression,
returning a result.

Programming Languages, Paradigms and Technology

Expressive power

14

Formally, all programming languages are equivalent …

So what? …

Nearly all programming languages have the expressive power of
Turing machines (or, equivalently, the Lambda calculus).
But they are not equally good at expressing solutions to different
kinds of problems …

The term “Turing tarpit” itself comes from the 1982 paper
“Epigrams on Programming” by Alan Perlis:

Beware of the Turing tar-pit in which everything is possible but nothing of
interest is easy.

http://pu.inf.uni-tuebingen.de/users/klaeren/epigrams.html

“tar pit” = “Teergrube”

Programming Languages, Paradigms and Technology

Jacquard loom — 1801

15

Punch cards are invented

Holes in punched cards controlled the way the loom’s arm moved
to produce different decorative patterns.
The image to the right was generated on a Jacquard loom, by
using 24,000 punched cards to create.

Programming Languages, Paradigms and Technology

Babbage’s Analytical Engine — 1822

16

The first mechanical computer

Charles Babbage, english scientist, 1791-1871, was the first to
design a computing machine to solve polynomials: the Difference
Engine.

http://en.wikipedia.org/wiki/Charles_Babbage

Afterwards he designed the Analytical engine, the first computing
machine capable of general-purpose computations, not only
polynomials. The Analytical Engine is the reason for which he is
considered a pioneer of computing science.

Programming Languages, Paradigms and Technology

Turing machine — 1936

17

The first abstract model of a computer

Alan Turing, a British mathematician, wrote the article on the
Turing machine when he was 24.

http://en.wikipedia.org/wiki/Alan_Turing

A finite state machine reads and writes an infinite tape (with a
finite set of symbols). It is undecidable whether a given machine
and input will terminate.

Programming Languages, Paradigms and Technology

An incrementing TM (1)

18
Binary “1011” = Decimal “11”

If you see “1”,
write 0 and
move left

A Turing machine consists of a Finite State Automaton (FSA) and
a tape with a finite number of non-blank symbols. The FSA is
always positioned at location on the tape. Each execution step
consists of:

1.reading the current symbol
2.possibly writing a symbol at the current position
3.possibly moving left or right
4.possibly terminating (“halt” or “accept”)

This machine will add 1 to the binary number on the tape.
In the first step it will read 1, write 0, move left, and transition to
the initial (current) state.

Programming Languages, Paradigms and Technology

An incrementing TM (2)

19

Again, read 1, write 0, move left, transition to initial state.

Programming Languages, Paradigms and Technology

An incrementing TM (3)

20

If you see “0”,
write 1 and

halt

Read 0, write 1, transition to accepting state (H).

Programming Languages, Paradigms and Technology

An incrementing TM (4)

21
Binary “1100” = Decimal “12”

Programming Languages, Paradigms and Technology

ENIAC — 1946

22

Programming =
reconfiguring the
computer

The ENIAC was the first electronic general-purpose computer,
mostly used for ballistic computations in the military.
Once the program was written on paper, it took several people
several days to program the computer by setting switches and
plugging in cables!

https://en.wikipedia.org/wiki/ENIAC
https://www.youtube.com/watch?v=goi6NAHMKog

Programming Languages, Paradigms and Technology

1st generation: Machine code — 1944

23

Machine code is only
meant to be read by …
machines

The Harvard Mark 1 was programmed with machine code on
punched paper tape. The were no loops (iteration instructions).

https://en.wikipedia.org/wiki/Harvard_Mark_I
http://www.computerhistory.org/timeline/?category=cmptr

Machine code was really written only for the machine to
understand. And the computer does not understand much: it
merely understands whether a bit is on or not (i.e., whether there
is tension in a circuit or not).
Each instruction is usually very simple and does not do much.
The instruction in the example is adds two special regions of
memory.
In order to be able to be able to write machine code, one must
understand the architecture of the machine. And there are many
types of machines, with different numbers of registers, and
different instructions.

Programming Languages, Paradigms and Technology

Subroutines — 1949

The subroutine is one of the
key concepts of programming CODE

...

 mov r0, #1
 mov r1, #3
 mov r2, #-4
 bl do_something
 mov r1, r0
 bl printf
 mov r0, #0

In the code highlighted the BL instruction calls the do_something
subroutine. Before the introduction of the subroutine concept,
writing programs was much harder as one had to always keep
track exactly of the places where jump instructions had to be
executed.
David Wheeler is credited with the invention of the “closed
subroutine”. Dijkstra points to this as one of the most
fundamental contributions to PL design. Before subroutines sub-
calculations were implemented with Jump instructions and
conditionals.

http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/David_Wheeler_(computer_scientist)

Programming Languages, Paradigms and Technology

2nd generation: assembler — early 1950s

25

Assembly code introduces symbolic names (for humans!)

The EDSAC computer (Britain, 1949) was the first computer to
use an assembly language. Such languages introduce symbolic
names for variables, jump locations etc.

http://en.wikipedia.org/wiki/Assembly_language#Historical_perspective
http://en.wikipedia.org/wiki/Electronic_delay_storage_automatic_calculator

Programming Languages, Paradigms and Technology

3rd generation: FORTRAN — 1955

26

High-level languages are born

C AREA OF A TRIANGLE - HERON'S FORMULA
C INPUT - CARD READER UNIT 5, INTEGER INPUT
C OUTPUT - LINE PRINTER UNIT 6, REAL OUTPUT
C INPUT ERROR DISPAY ERROR OUTPUT CODE 1 IN JOB CONTROL LISTING
 INTEGER A,B,C
 READ(5,501) A,B,C
 501 FORMAT(3I5)
 IF(A.EQ.0 .OR. B.EQ.0 .OR. C.EQ.0) STOP 1
 S = (A + B + C) / 2.0
 AREA = SQRT(S * (S - A) * (S - B) * (S - C))
 WRITE(6,601) A,B,C,AREA
 601 FORMAT(4H A= ,I5,5H B= ,I5,5H C= ,I5,8H AREA= ,F10.2,12HSQUARE UNITS)
 STOP
 END

IF(A.EQ.0 .OR. B.EQ.0 .OR. C.EQ.0) STOP 1
S = (A + B + C) / 2.0
AREA = SQRT(S * (S - A) * (S - B) * (S - C))

FORTRAN = FORMULA TRANSLATOR

Most features common to programming languages are introduced.
User subroutines are introduced in FORTRAN II (1958).
Interestingly, FORTRAN was sold as a high-level language from
which efficient computer code would be generated. Nowadays we
thing of high level programs as being “the code”.

Programming Languages, Paradigms and Technology

ALGOL — 1958

27

begin
...

end

Block structure

<statement> ::= <unconditional statement>
| <conditional statement>
| <for statement>

...
BNF

Recursion

ALGOL introduced numerous important innovations, including:
• Backus-Naur form to formally specify the language grammar
• Recursion (FORTRAN had none)
• Block structure (as in all modern PLs)
Even though FORTRAN survives even today, and no one
programs on ALGOL anymore, ALGOL has been far more
influential, and its impact is recognizable in all PLs used today.

Programming Languages, Paradigms and Technology

Lisp — 1958

28

(defun factorial (n)
 (if (= n 1)
 1
 (* n (factorial (- n 1)))))

Programs as data
Garbage collection

Lisp introduced the notion of symbolic computation: everything
in Lisp is a list of data, some of which may also be lists.
Interestingly, Lisp programs are also represented as lists.
This makes it easy to implement a Lisp interpreter in Lisp itself.
Lisp is the mother of all interactive and dynamic languages.

Programming Languages, Paradigms and Technology

COBOL — 1959

29

modules

ADD YEARS TO AGE.
MULTIPLY PRICE BY
QUANTITY GIVING COST.
SUBTRACT DISCOUNT FROM
COST GIVING FINAL-COST.

A key motivation for Cobol was that it should be readable (for
managers) but ended it up just being verbose.
Even today, a large portion of business software is implemented
in Cobol. [How much? Who knows?]
Cobol’s main innovation was in supporting modular
programming.

Programming Languages, Paradigms and Technology

10 INPUT "What is your name: ", U$
20 PRINT "Hello "; U$
30 INPUT "How many stars do you want: ", N
40 S$ = ""
50 FOR I = 1 TO N
60 S$ = S$ + "*"
70 NEXT I
80 PRINT S$
90 INPUT "Do you want more stars? ", A$
100 IF LEN(A$) = 0 THEN GOTO 90
110 A$ = LEFT$(A$, 1)
120 IF A$ = "Y" OR A$ = "y" THEN GOTO 30
130 PRINT "Goodbye "; U$
140 END

BASIC — 1964

30

interactive programming
for the masses

Basic was an interactive language for non-scientists.
Although it was invented in the 1960s, it became especially
influential as a PL for hobbyists when the PC became popular in
the 1980s.

Programming Languages, Paradigms and Technology

JCL — 1964

31

//IS198CPY JOB (IS198T30500),'COPY JOB',CLASS=L,MSGCLASS=X
//COPY01 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=OLDFILE,DISP=SHR
//SYSUT2 DD DSN=NEWFILE,
// DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(40,5),RLSE),
// DCB=(LRECL=115,BLKSIZE=1150)
//SYSIN DD DUMMY

invented scripting for IBM 360

A scripting language instructs one or more “actors” to perform
some set of actions according to a “script.”
The language does not need to be computationally complete.
Expressive power is achieved by the fact that the actors have very
powerful actions they can perform.

JCL is arguably the first such scripting language, designed to
script the execution of batch jobs on a mainframe computer.
JCL was horribly complex – this verbose script just copies a file.

Programming Languages, Paradigms and Technology

Planner — 1969  
Prolog — 1972

32

man(socrates).
mortal(X) :- man(X).

Facts and rules

?- mortal(socrates).
Yes

Queries and inferences
?- mortal(elvis).
No

The logic programming paradigm is based on the notion that
knowledge can be expressed as a database of facts, and a set of
rules for inferring new facts. Given a logic program, you can
then pose a query to determine whether a given fact can be
deduced.
The inference engine will then try to deduce the desired result
(the “goal”), applying facts and rules, backtracking when it
reaches a dead end, and either concluding with a happy result, or
failure if the goal cannot be reached.
In this case, we cannot deduce that elvis is mortal, so we conclude
with failure.
Logic programming is good for search problems, where a
solution must be found in a large search space.

Programming Languages, Paradigms and Technology

Pascal — 1970

33

Supports structured programming

Successful with PCs

function gcd (a, b: integer) : result real;
 var x : integer;
begin
 if b= 0 then gcd := a
 else
 begin
 x := a;
 while (x >= b) do
 begin
 x := x - b
 end;
 gcd := gcd(b,x)
 end
end

begin

begin

end

end
end

begin

Pascal was designed by Niklaus Wirth at ETHZ as a teaching
language, but it really became popular in the 1980s as the
language for programming PCs. (TurboPascal was the cutting
edge implementation.)
Pascal promoted clean, structured programming.
Pascal’s type system was too restrictive, though, forcing the same
code to be rewritten to handle similar but different types.

Programming Languages, Paradigms and Technology

C — 1972

34

Good for portable systems programming

Bridging low- and high-level programming

#include <stdio.h>
//echo the command line arguments
int main (int argc, char* argv[]) {

int i;
for (i=1; i<argc; i++) {

printf("%s ", argv[i]);
}
printf("\n");
return 0;

}

char*

i++

C is a high-level imperative 3GL designed to be close to machine
code. It is heavily used as a “high-level assembler”.
Its main success has been in developing highly portable Unix and
Linux code.

Programming Languages, Paradigms and Technology

Smalltalk — 1972

35

5 factorial ! 120

Everything is an object

Everything happens by
sending messages

“Dynabook” vision

Integer»factorial
self = 0 ifTrue: [^ 1].
self > 0 ifTrue: [^ self * (self - 1) factorial].
self error: 'Not valid for negative integers'

self = 0 ifTrue: [^ 1]
self > 0 ifTrue: [^ self * (self - 1) factorial].

Object-oriented programming was originally invented in the early
1960s as an add-on to procedural languages for simulating real
world objects.
Smalltalk was the first language and system to use objects as the
foundation for programming. (In Smalltalk, everything is an
object.)

Programming Languages, Paradigms and Technology

Bourne shell — 1977

36

cat Notes.txt
| tr -c '[:alpha:]' '\012'
| sed '/^$/d’
| sort
| uniq –c
| sort –rn
| head -5

Scripting pipelines
of commands

14 programming
14 languages
 9 of
 7 for
 5 the

The Bourne Shell was designed as the original shell & scripting
language for Unix. You cannot really program in the shell; you
can only glue together Unix commands, each of which performs a
dedicated task.
The Unix commands themselves are typically programmed in C.
Interestingly, shell pipelines are concurrent programs, since each
filter in the chain runs as a separate Unix process. The O/S
handles all the concurrency control by managing the flow of data
between the processes.

Programming Languages, Paradigms and Technology

SQL— 1978

37

SELECT *
FROM Book
WHERE price > 100.00
ORDER BY title;

Domain-specific language for relational databases

SQL is not just a query language – it is also used for manipulating
and updating tables.
However it is not a full-blown programming language. It is
designed specifically for the domain of querying and
manipulating relational database tables.

Programming Languages, Paradigms and Technology

Miranda — 1985

38

fibs = 1 : 1 : fibsAfter 1 1
fibsAfter a b = (a+b) : fibsAfter b (a+b)

Lazy evaluation

take 10 fibs
! [1,1,2,3,5,8,13,21,34,55]

“Pure” functional programming

This example is written in Haskell, a successor to Miranda.
fibs is an infinite, lazy list. Values are only computed if and
when needed. Lazy evaluation has been highly influential in the
design of modern functional languages.
The technique is also used to great effect in mainstream
languages. For example, a complex user interface can be lazily
loaded to give the illusion of speed and responsiveness to the end
user (only actually load parts when you actually need them).

Programming Languages, Paradigms and Technology

Perl — 1987  
CGI — 1993

39

Text manipulation, then server-side web scripting

#!/usr/bin/perl -w
print "Content-type: text/html\n\n";
print <<'eof'
<html><head><title>Directory contents</title></head>
<body>
<h1>Directory contents</h1>
eof
;
@files = <*>;
foreach $file (@files) {

print '' . $file . "\n";
}
print "</body></html>\n";
__END__

@files = <*>;
foreach $file (@files) {

print '' . $file . "\n";
}

Perl is a text-manipulation language that doubles as a scripting
language. It supports many dedicated and efficient features for
reading, rewriting, and outputting text.
Perl really came into its own after 1993 when it started being used
for server-side scripts (CGI scripts).

Programming Languages, Paradigms and Technology

JavaScript — 1995  
AJAX — 2005

40

Client-side browser scripting

JavaScript on the other hand introduced client-side scripting. A
web page containing JavaScript code code can request the
browser to perform various actions.
It was not until relatively recently (ca. 2005) that its potential was
realized to make web pages truly interactive (e.g., Google maps),
with the help of Ajax and related technologies.

Roadmap

41

> What is a programming language?
> Historical Highlights
> Conclusions

Programming Languages, Paradigms and Technology

How do these languages differ?

42

Functional

Object-oriented
Logic

Imperative

These paradigms can be summarized as follows:
— Imperative: data + algorithms
— Functional: stateless; functions pass values to each other
— OOP: objects send messages to each other
— Logic: facts + rules → new facts

Programming Languages, Paradigms and Technology

Conclusions

43

Programming is modeling

Programming languages have always evolved to
bring programming closer to the users’ problems

We are still very early in the
history of programming

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

