
Prof. O. Nierstrasz

Introduction to Software Engineering
(ESE : Einführung in SE)

Selected material courtesy of
Prof. Serge Demeyer, U. Antwerp

ESE — Introduction

Lecturers Prof. Oscar Nierstrasz

Assistants Nitish Patkar, Pascal Marc André, Marko Cirkovic, Marco De Liso

Lectures Engehaldenstrasse 8, 001,
Wednesdays @ 14h15-16h00

Exercises Engehaldenstrasse 8, 001
Wednesdays @ 16h00-17h00

WWW scg.unibe.ch/teaching/ese

2

http://scg.unibe.ch/teaching/ese

This is a note (a hidden slide). You will find some of these
scattered around the PDF versions of the slides.

NB: some links to copyrighted materials are only accessible
within the unibe.ch domain.

> Course Overview
> What is Software Engineering?
> The Iterative Development Lifecycle
> Software Development Activities
> Methods and Methodologies

Roadmap

4

> Course Overview
> What is Software Engineering?
> The Iterative Development Lifecycle
> Software Development Activities
> Methods and Methodologies

Roadmap

5

Principle Texts

> Software Engineering. Ian Sommerville. Addison-Wesley,
10th edition, 2015

> Software Engineering: A Practitioner's Approach. Roger S.
Pressman. McGraw Hill; 8th edition, 2003.

> Designing Object-Oriented Software. Rebecca Wirfs-
Brock and Brian Wilkerson and Lauren Wiener. Prentice
Hall; 1990

> UML Distilled. Martin Fowler. Addison-Wesley; 3rd edition,
1999

6

Sommerville’s book is the classic SE textbook, offering a good
overview of all aspects. It is not prescriptive, however, so does
not specific advice. Pressman offers a more personal view, based
on experience. Wirfs-Brock’s classic book offers good insights
into the principles of object-oriented design. Fowler’s short book
gives excellent advice on how to use UML effectively.

Recommended Literature

> eXtreme Programming Explained: Embrace Change. Kent Beck.
Addison-Wesley; 2nd edition, 2004

> The Mythical Man-Month: Essays on Software Engineering.
Frederick P. Brooks. Addison-Wesley; 2nd edition,1995

> Peopleware: Productive Projects and Teams. Tom Demarco and
Timothy R. Lister. Dorset House; 2nd edition, 1999

> The Psychology of Computer Programming. Gerald Weinberg.
Dorset House; Silver Anniversary Edition, 1998

7

Beck’s book gives a good introduction into the principles behind
extreme programming and agile development. Brooks’ classic
book explains how and why large projects can fail. Peopleware
explains how important the dynamics of interaction are to
successful SE projects. Weinberg’s classic was the first to study
human interaction in software projects, and introduces the notion
of “egoless programming” (which is arguably a key component of
agile methods today).

Course schedule (draft)

Week Date Lesson
1 22-Sep-21 Introduction: The Software Lifecycle
2 29-Sep-21 Requirements Collection
3 6-Oct-21 Guest lecture: Agile Methods (Pietari Kettunen)
4 13-Oct-21 Responsibility-Driven Design
5 20-Oct-21 Guest lecture: Project Management (Jan Hornwall)
6 27-Oct-21 Modeling Objects and Classes
7 3-Nov-21 Modeling Behaviour
8 10-Nov-21 Guest lecture: Software Testing (Manuel Oriol)
9 17-Nov-21 User Interface Design

10 24-Nov-21 Software Quality
11 1-Dec-21 Software Security (Reza Hazhirpasand)
12 8-Dec-21 Guest lecture: Software Metrics and Estimation (Simon Moser)

13 15-Dec-21 Software Architecture; Guest lecture: Software Architecture in
practice (Erwann Wernli)

14 22-Dec-21 Guest lecture: SE in practice (Peter Gfader)
15 13-Jan-22 Final Exam: ExWi A6 @ 10h00-12h00

8

> Course Overview
> What is Software Engineering?
> The Iterative Development Lifecycle
> Software Development Activities
> Methods and Methodologies

Roadmap

9

Why Software Engineering?

A naive view:
Problem Specification Final Program

But ...
—Where did the specification come from?
—How do you know the specification corresponds to the user’s

needs?
—How did you decide how to structure your program?
—How do you know the program actually meets the specification?
—How do you know your program will always work correctly?
—What do you do if the users’ needs change?
—How do you divide tasks up if you have more than a one-person

team?

coding

10

What is Software Engineering? (I)

Some Definitions and Issues

“state of the art of developing quality software on time
and within budget”

> Trade-off between perfection and physical constraints
—SE has to deal with real-world issues

> State of the art!
—Community decides on “best practice” + life-long education

11

Engineering as a discipline is concerned with best practices for
developing physical products within budget, on time, and
fulfilling certain quality requirements. Engineering is therefore
different from science. Engineering practices cover not only
technological aspects of the products being built, but also such
diverse aspects such as planning, process management, and
quality standards.
Software Engineering attempts to apply similar principles to the
production of software products, though software is inherently
not physical.

What is Software Engineering? (II)

“multi-person construction of multi-version software”
— Parnas

> Team-work
—Scale issue (“program well” is not enough) + Communication Issue

> Successful software systems must evolve or perish
—Change is the norm, not the exception

12

What is Software Engineering? (III)

“software engineering is different from other engineering
disciplines”

— Sommerville

> Not constrained by physical laws
—limit = human mind

> It is constrained by political forces
—balancing stake-holders

13

Sommerville emphasizes the fact that SE is different from other
kinds of Engineering since the product is not constrained by any
physical laws. As a simple example, software can be copied
essentially for free, which is not true for any other engineering
discipline.

> Course Overview
> What is Software Engineering?
> The Iterative Development Lifecycle
> Software Development Activities
> Methods and Methodologies

Roadmap

14

Software Development Activities

Requirements Collection Establish customer’s needs

Analysis Model and specify the requirements (“what”)

Design Model and specify a solution (“how”)

Implementation Construct a solution in software

Testing Validate the solution against the requirements

Maintenance Repair defects and adapt the solution to new
requirements

15

NB: these are ongoing activities, not sequential phases!

The Classical Software Lifecycle

The classical software
lifecycle models the
software development
as a step-by-step
“waterfall” between the
various development
phases.

The waterfall model is unrealistic for many reasons:
•requirements must be frozen too early in the life-cycle
•requirements are validated too late

Design
Implementation

Testing
Maintenance

Analysis

Requirements
Collection

16

The “waterfall model” has frequently been put forward as an ideal
design process, consisting of several sequential phases leading to
a final product. This model is known not to work in practice since
it does not accommodate sufficient feedback between the phases.
Interestingly, the waterfall model was first formally described in a
paper by Royce (1970) as an example of a naive process that does
not work. Curiously it was later adopted by many organisations as
an ideal model to strive for.

https://en.wikipedia.org/wiki/Waterfall_model

Problems with the Waterfall Lifecycle

1. “Real projects rarely follow the sequential flow that the model
proposes. Iteration always occurs and creates problems in the
application of the paradigm”

2. “It is often difficult for the customer to state all requirements explicitly.
The classic life cycle requires this and has difficulty accommodating
the natural uncertainty that exists at the beginning of many projects.”

3. “The customer must have patience. A working version of the
program(s) will not be available until late in the project timespan. A
major blunder, if undetected until the working program is reviewed,
can be disastrous.”

— Pressman, SE, p. 26

17

NB: Early prototyping helps to alleviate the 2nd and 3d problems.

Iterative Development

In practice, development is always iterative, and all
activities progress in parallel.

Requirements
Collection

Testing

Design

Analysis
Validation through prototyping

Testing based on requirements

Testing throughout implementation

Maintenance through iteration

Design through refactoring

Implementation

18

If the waterfall model
is pure fiction, why is
it still the dominant
software process?

New requirements can be introduced at any point in the project.
Implementation of prototypes may start before detailed design to
explore requirements. Testing typically starts as implementation
starts.
The reason waterfall is so popular is that managers like it: it gives
the illusion that a project is proceeding according to a precise
plan.

Boehm’s Spiral Lifecycle

evolving system

initial requirements

first prototype
alpha demo

go, no-go decisioncompletion

Planning = determination
of objectives, alternatives
and constraints

Risk Analysis = Analysis of
alternatives and identification/
resolution of risks

Customer Evaluation =
Assessment of the
results of engineering

Engineering =
Development of the
next level product

Risk = something that
will delay project or
increase its cost

19

In reality, software projects typically follow an iterative and
incremental spiral lifecycle. Each iteration consist of phases such
as planning, risk assessment, engineering, and customer
evaluation. With each iteration the system incrementally grows
and evolves.
The Spiral Model was described by Barry Boehm in this 1988
paper:

http://scgresources.unibe.ch/Literature/ESE/Boeh88a-SpiralModel.pdf

(NB: these downloads are only accessible within the unite
domain.)

Iterative Development

Plan to iterate your analysis, design and implementation.

—You won’t get it right the first time, so integrate, validate and test as
frequently as possible.

—“You should use iterative development only on projects that you want
to succeed.”

– Martin Fowler, UML Distilled (p 41)

20

Incremental Development

Plan to incrementally develop (i.e., prototype) the system.

—If possible, always have a running version of the system, even if
most functionality is yet to be implemented.

—Integrate new functionality as soon as possible.
—Validate incremental versions against user requirements.

21

The Unified Process

Requirements

Analysis

Design

Implementation

Test

Inception Elaboration Construction Transition

Iter.
#1

Iter.
#2

Iter.
#n-1

Iter.
#n...

22

How do you plan the number of iterations?
How do you decide on completion?

The Rational Unified Process is a framework for an iterative
development lifecycle proposed by Rational Software (the same
company that first proposed the Unified Modeling Language).
The figure illustrates how the different SE activities
(requirements collection etc.) continue to be carried out
throughout the lifecycle of a project.

https://en.wikipedia.org/wiki/Rational_Unified_Process

> Course Overview
> What is Software Engineering?
> The Iterative Development Lifecycle
> Software Development Activities
> Methods and Methodologies

Roadmap

23

Requirements Collection

User requirements are often
expressed informally:
—features
—usage scenarios

Although requirements may be
documented in written form,
they may be incomplete,
ambiguous, or even incorrect.

24

It is rare for a SE project to start with pre-defined requirements.
An important task is therefore to elicit the requirements from the
customer. As we shall see, the concepts of use cases and
scenarios are extremely useful to help bridge the gap between the
users domain and the technical domain.

Changing requirements

25

Validation is needed throughout
the software lifecycle, not only
when the “final system” is
delivered!
—build constant feedback into your

project plan
—plan for change
—early prototyping [e.g., UI] can help

clarify requirements

Requirements will change!
—inadequately captured or expressed in the first place
—user and business needs may change during the project

Requirements Analysis and Specification

Analysis is the process of specifying what a system will do.

—The intention is to provide a clear understanding of what the
system is about and what its underlying concepts are.

The result of analysis is a specification document.

26

Does the requirements
specification correspond to
the users’ actual needs?

Object-Oriented Analysis

An object-oriented analysis results in models of the system
which describe:

> classes of objects that exist in the system
—responsibilities of those classes

> relationships between those classes
> use cases and scenarios describing

—operations that can be performed on the system
—allowable sequences of those operations

27

In this course we will focus on object-oriented software
engineering methods. OO methods have proved to be extremely
successful in the construction of large, complex software systems.
One reason for this success is that OO offers developers various
tools to model domain concepts in code, thus making it easier to
bridge the gap between the application and the technical domains.

Prototyping (I)

A prototype is a software program developed to test,
explore or validate a hypothesis, i.e. to reduce risks.

An exploratory prototype, also known as a throwaway
prototype, is intended to validate requirements or explore
design choices.
—UI prototype — validate user requirements
—rapid prototype — validate functional requirements
—experimental prototype — validate technical feasibility

28

Prototyping (II)

An evolutionary prototype is intended to evolve in steps into
a finished product.

> iteratively “grow” the application, redesigning and
refactoring along the way

29

First do it,
then do it right,
then do it fast.

Design

Design is the process of specifying how the specified
system behaviour will be realized from software
components. The results are architecture and detailed
design documents.
Object-oriented design delivers models that describe:

—how system operations are implemented by interacting objects
—how classes refer to one another and how they are related by

inheritance
—attributes and operations associated to classes

30

Design is an iterative
process, proceeding in
parallel with implementation!

Conway’s Law

31

“Organizations that
design systems are
constrained to produce
designs that are copies
of the communication
structures of these
organizations”

Famously IBM in the 1960s was organized as a many-layered
hierarchy, and the software systems it produced also were
designed as many-layered hierarchies.
If your software team splits responsibilities in a certain way, you
can expect that the software will also be structured in the same
way.
“Conway’s Law” was described in this 1967 paper:

http://www.melconway.com/Home/Committees_Paper.html

Graphic from:
http://www.slideshare.net/RachelDavies/tech-talk-implicationsconwayslaw

Implementation and Testing

Implementation is the activity of constructing a software
solution to the customer’s requirements.

Testing is the process of validating that the solution meets
the requirements.

—The result of implementation and testing is a fully documented and
validated solution.

32

Design, Implementation and Testing

Design, implementation and testing are iterative activities
—The implementation does not “implement the design”, but rather the

design document documents the implementation!

> System tests reflect the requirements specification
> Testing and implementation go hand-in-hand

—Ideally, test case specification precedes design and implementation

33

Maintenance

Maintenance is the process of changing a system after it
has been deployed.

> Corrective maintenance: identifying and repairing defects
> Adaptive maintenance: adapting the existing solution to

new platforms
> Perfective maintenance: implementing new requirements

34

In a spiral lifecycle,
everything after the delivery
and deployment of the first
prototype can be considered
“maintenance”!

“Maintenance” is actually a terrible word to describe what
happens after deployment. Is suggests that at a certain point a
project is “done”, and then the only changes are bug fixes and
patches.

Maintenance activities

“Maintenance” entails:
> configuration and version management
> reengineering (redesigning and refactoring)
> updating all analysis, design and user documentation

35

Repeatable,
automated tests
enable evolution and
refactoring

Maintenance costs

“Maintenance” typically
accounts for 70% of
software costs!

– Lientz 1979

36

Means: most
project costs
concern continued
development after
deployment

So, in real projects most of the real development occurs after first
deployment. In other words, in most projects “maintenance” is
actually “continuous development”.
This is perhaps one of the most important points that
distinguishes “Software Engineering” from “programming”. SE
must cope with the fact that real software projects are long-lived,
and they evolve considerable over their lifetime.

> Course Overview
> What is Software Engineering?
> The Iterative Development Lifecycle
> Software Development Activities
> Methods and Methodologies

Roadmap

37

Methods and Methodologies

Principle = general statement describing desirable properties
Method = general guidelines governing some activity
Technique = more technical and mechanical than method
Methodology = package of methods and techniques packaged

Principle

Methods and Techniques

Methodologies

Tools

— Ghezzi et al. 1991

38

Object-Oriented Methods: a brief history

> First generation:
— Adaptation of existing notations (ER diagrams, state diagrams ...): Booch,

OMT, Shlaer and Mellor, ...
— Specialized design techniques:

– CRC cards; responsibility-driven design; design by contract
> Second generation:

— Fusion: Booch + OMT + CRC + formal methods
> Third generation:

— Unified Modeling Language:
– uniform notation: Booch + OMT + Use Cases + ...
– various UML-based methods (e.g. Catalysis)

> Agile methods:
— Extreme Programming
— Test-Driven Development
— Scrum …

39

What you should know!

> How does Software Engineering differ from
programming?

> Why is the “waterfall” model unrealistic?
> What is the difference between analysis and design?
> Why plan to iterate? Why develop incrementally?
> Why is programming only a small part of the cost of a

“real” software project?
> What are the key advantages and disadvantages of

object-oriented methods?

40

Can you answer these questions?

> What is the appeal of the “waterfall” model?
> Why do requirements change?
> How can you validate that an analysis model captures

users’ real needs?
> When does analysis stop and design start?
> When can implementation start?
> What are good examples of Conway’s Law in action?

41

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

