
Modeling Objects and Classes

Introduction to Software Engineering

Roadmap

2

> UML Overview

> Classes, attributes and operations

> UML Lines and Arrows

> Parameterized Classes, Interfaces and Utilities

> Objects, Associations

> Inheritance

> Constraints, Patterns and Contracts

3

Sources

> The Unified Modeling Language Reference Manual,
James Rumbaugh, Ivar Jacobson and Grady Booch,
Addison Wesley, 2005, 2nd edition.

> UML Distilled, Martin Fowler, Kendall Scott, Addison-
Wesley, Second Edition, 2003, 3rd edition.

The reference manual by the “three amigos” contains all the gritty
details.

Fowler’s highly recommended book, on the other hand, is much
shorter and contains much practical advice on how to apply
UML.

http://scgresources.unibe.ch/Literature/Books/Rumb05aUMLreference.pdf

http://scgresources.unibe.ch/Literature/Books/Fowl03a-UMLDistilled.pdf

NB: these links are not accessible outside the unibe.ch domain.

Roadmap

4

> UML Overview
> Classes, attributes and operations

> UML Lines and Arrows

> Parameterized Classes, Interfaces and Utilities

> Objects, Associations

> Inheritance

> Constraints, Patterns and Contracts

5

UML

What is UML?
> uniform notation: Booch + OMT + Use Cases (+ state charts)

— UML is not a method or process
— … The Unified Development Process is

Why a Graphical Modeling Language?
> Software projects are carried out in team
> Team members need to communicate

— ... sometimes even with the end users
> “One picture conveys a thousand words”

— the question is only which words
— Need for different views on the same software artifact

The UML is a collection of notations, originally based on work
by the “three amigos”, Grady Booch (who developed the Booch
notation), James Rumbaugh (who developed OMT with
colleagues at General Electric), and Ivar Jacobsen (who
developed the Use Case driven methodology). UML was a fusion
of these three notations, and later incorporated other diagramming
techniques.

https://en.wikipedia.org/wiki/Unified_Modeling_Language#Before_UML_1.x

It is important note that, before UML, literally hundreds of
different and incompatible object-oriented design notations were
developed. UML was an attempt to bring order to this chaos.

6

Why UML?

Why UML?
> Reduces risks by documenting assumptions

—domain models, requirements, architecture, design, implementation …
> Represents industry standard

—more tool support, more people understand your diagrams, less education
> Is reasonably well-defined

—... although there are interpretations and dialects
> Is open

—stereotypes, tags and constraints to extend basic constructs
—has a meta-meta-model for advanced extensions

7

UML History

> 1994: Grady Booch (Booch method) + James Rumbaugh
(OMT) at Rational

> 1994: Ivar Jacobson (OOSE, use cases) joined Rational

—“The three amigos”

> 1996: Rational formed a consortium to support UML

> 1997: UML1.0 submitted to OMG by consortium

> 1997: UML 1.1 accepted as OMG standard

—However, OMG names it UML1.0

> 1998-…: Revisions UML1.2 - 1.5

> 2005: Major revision to UML2.0, includes OCL

UML Distilled© 2000 Addison-Wesley

These two slides are only intended to give a quick overview of
the different kinds of notations supported by UML. We will look
at many (not all) of them in detail over two lectures.

© 2000 Addison-Wesley UML Distilled

Roadmap

10

> UML Overview

> Classes, attributes and operations
> UML Lines and Arrows

> Parameterized Classes, Interfaces and Utilities

> Objects, Associations

> Inheritance

> Constraints, Patterns and Contracts

11

Class Diagrams

“Class diagrams show generic
descriptions of possible
systems, and object diagrams
show particular instantiations
of systems and their
behaviour.”

Attributes and operations are
also collectively called
features.

Danger: class diagrams risk
turning into data models.
Be sure to focus on
behaviour

In the example diagrams (mostly from the UML reference
manual), what is shown in black is UML; what is shown in blue
are explanatory annotations (not UML).

Class diagrams only describe classes and their relationships.
Object diagrams (seen later) show instances.

Class diagrams can be used to describe:

• domain models: classes represents concepts from an application domain

• designs: classes represent software entities that will be implemented in some

programming language

• implementations: classes represent actual classes in a specific

implementation

Can you read the class diagram? What does it describe?

Stereotype
(what “kind” of class is it?)

+display ()
+hide ()
+create ()
-attachXWindow (xwin: Xwindow*)
...

+size: Area = (100, 100)
#visibility: Boolean = false
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindow*

«user interface»
Window

{ abstract }

underlined
attributes have

class scope

+ = “public”
= “protected”
- = “private”

An ellipsis signals that further entries are not shown

italic attributes
are abstract

User-defined properties
(e.g., readonly, owner = “Pingu”)

12

Visibility and Scope of Features

Don’t worry
about visibility
too early!

A class is depicted as a rectangle, with up to three compartments.
The top part givens the class name and (optional) «stereotype» (in
guillemets) and user properties.

The other two compartments are optional, and depict the
attributes of the class and its operations.

Generally in UML diagrams you can choose what you specify
depending on what you want to communicate. You are not
obliged to list all attributes and operations.

13

Attributes and Operations

Attributes are specified as:

name: type = initialValue { property string }

Operations are specified as:

name (param: type = defaultValue, ...) : resultType

You are also not obliged to indicate the visibility of features or
their types.

At a minimum you can just list their names.

Roadmap

14

> UML Overview

> Classes, attributes and operations

> UML Lines and Arrows
> Parameterized Classes, Interfaces and Utilities

> Objects, Associations

> Inheritance

> Constraints, Patterns and Contracts

15

UML Lines and Arrows

Constraint
(usually annotated)

Dependency
e.g., «requires»,
«imports» ...

Realization
e.g., class/template,
class/interface

Aggregation
i.e., “consists of”

Association
e.g., «uses»

Navigable
association
e.g., part-of

“Generalization”
i.e., specialization (!)
e.g., class/superclass,
concrete/abstract class

“Composition”
i.e., containment

UML is generally very consistent in terms of how its lines and
arrows are used across the different diagram notations. A solid
line represents some kind of relationship, while a dashed line
represents a constraint. Arrows generally start from a client (tail)
and point to a supplier (head). An “inheritance” arrow therefore
goes from the subclass (client) to its superclass (supplier of
inherited features) and not the other way around.

Lines and arrows may be annotated in various ways. In particular,
the endpoints may be labeled with names to indicate the role of
the entity at that end, and with cardinalities.

A simple dashed line represents a constraint (e.g., contains, owns)

A dashed arrow indicates a dependency (a special kind of
constraint) from a client to a supplier.

A dashed arrow with a solid head indicates a realization or
implementation: a class implements a type, an interface or a
generic class.

A solid line is a regular association relationship, usually
annotated.

A solid arrow indicates that the relationship can be navigated
(without necessarily specifying how). An arrow from A to B
means that, if you have an A, you can always get it its B.

A “generalization” arrows means that the client is subclass of its
supplier. The subclass specializes its superclass, or the superclass
generalizes its subclass. A Person (superclass) is more general
than an Employee (subclass).

Aggregation and composition are two kinds of “part of”
relationships, discussed later.

Roadmap

16

> UML Overview

> Classes, attributes and operations

> UML Lines and Arrows

> Parameterized Classes, Interfaces and Utilities
> Objects, Associations

> Inheritance

> Constraints, Patterns and Contracts

Parameterized Classes

17

Parameterized (aka “template” or “generic”) classes are
depicted with their parameters shown in a dashed box.

FArray appears to be a fixed array of a parameter type T. To
instantiate it both parameters T and k must be specified.

We see here two ways of specifying the parameters, either using
the dashed box, or with the embedded box T with the cardinality
k..k (indicating exactly k items).

We also see two ways of instantiating a parameterized class,
either as FArray<Point,3>, or as the class AddressList
with a realization arrow annotated with the binding of parameters
to values.

Interfaces

18

Interfaces, equivalent to abstract classes with no attributes, are
represented as classes with the stereotype «interface» or, alternatively,
with the “Lollipop-Notation”:

Here we see two ways of representing interfaces, on top with a
realization arrow from the class to the interface (represented as a
stereotypical class), or with the newer “lollipop” notation. The
latter is now the standard way to document Java interfaces.

Utilities

19

A utility is a grouping of global attributes and operations. It is represented
as a class with the stereotype «utility». Utilities may be parameterized.

NB: A utility’s attributes are already interpreted as being in class
scope, so it is redundant to underline them.
A “note” is a text comment associated with a view, and represented
as box with the top right corner folded over.

sin (angle : double) : double
cos (angle : double) : double
random () : double

randomSeed : long = 0
pi : long = 3.14158265358979

«utility»
MathPack

return sin (angle + pi/2.0);

Roadmap

20

> UML Overview

> Classes, attributes and operations

> UML Lines and Arrows

> Parameterized Classes, Interfaces and Utilities

> Objects, Associations
> Inheritance

> Constraints, Patterns and Contracts

Objects

21

Objects are shown as rectangles with their name and type underlined
in one compartment, and attribute values, optionally, in a second
compartment.

At least one of the name or the type must be present.

In UML, underlined names are either static (such as static
attributes or operations of a class, that can be accessed without
having an instance of that class), or they represent objects.

An object is referenced by its (role) name and its class, separated
by a colon, as in “triangle : Polygon” (the object
“triangle” is an instance of the class Polygon).

It is also possible to leave out either the name or the class, if it is
not relevant for the diagram. If the role name is missing, however,
then the class name must still be preceded by a colon.

The cycle icon represents an instance of a control class (i.e., an
“active object” that is constantly performing some action or
service).

Associations

22

Associations represent
structural relationships
between objects

—usually binary (but

may be ternary etc.)

—optional name and

direction
—(unique) role names

and multiplicities at
end-points

Multiplicity

23

0..1 Zero or one entity
1 Exactly one entity
* Any number of entities
1..* One or more entities
1..n One to n entities

And so on …

> The multiplicity of an association constrains how
many entities one may be associated with

—Examples:

24

Associations and Attributes

> Associations may be implemented as attributes

—But need not be …

...
+parent

Person

...

Person
parent

The first diagram states that parent is (and must be) an attribute of
Person.

The second diagram merely states that there is a parent
relationship between persons, and that one may navigate from a
Person to that person’s parent, but it says nothing about how
that relationship is represented. It could be an attribute of
Person, it could be stored in a third object, or it could be
computed from other attributes.

Aggregation and Composition

25

Aggregation is denoted by a diamond and indicates a part-
whole dependency:

A hollow diamond indicates a reference; a solid diamond an
implementation (i.e., ownership).

Aggregation: parts may
be shared.
Composition: one part
belongs to one whole.

There are two part-whole relationships in UML. Aggregation
simply states that one object may contain others, but this
relationship may be temporal or even shared. Composition, on the
other hand, indicated an existential dependency: the part cannot
exist without its whole.

In the example a Polygon has several sides, but these may be
shared with other polygons. A GraphicsBundle on the other hand
is unique to a Polygon and is not shared.

For most purposes the distinction is not critical. Unless you need
to make a special point about the existence of parts depending on
the whole, stick to aggregation.

https://en.wikipedia.org/wiki/Object_composition#UML_notation

Association Classes

26

An association may be an instance of an association class:

In many cases the association class only stores attributes,
and its name can be left out.

Sometimes associations between classes may entail additional
information or constraints. In such cases the association can be
modeled as belonging to an association class.

Qualified Associations

27

A qualified association uses a special qualifier value to
identify the object at the other end of the association.

NB: Qualifiers are part of the association, not the class

Roadmap

28

> UML Overview

> Classes, attributes and operations

> UML Lines and Arrows

> Parameterized Classes, Interfaces and Utilities

> Objects, Associations

> Inheritance
> Constraints, Patterns and Contracts

Generalization

29

A superclass generalizes its subclass.

The subclass specializes its superclass.

Generalization and specialization are dual concepts. A superclass
is more general than its subclasses, and encompasses all its
subclasses. Every MailOrder is an Order, so Order is more
general. On the other hand, subclasses specialize their
superclasses. A MailOrder is a special kind of Order, as is a
BoxOfficeOrder.

Of course we can use UML’s notion of generalisation to model
inheritance in OO languages, but we can also use it as a more
general modeling tool that has nothing to do with inheritance.
(An Employee in the real world does not “inherit” anything
from Person, though it is a more specialized role.)

30

What is Inheritance For?

> New software often builds on old software by imitation,
refinement or combination.

> Similarly, classes may be extensions, specializations or
combinations of existing classes.

31

Generalization expresses ...

Conceptual hierarchy:
> conceptually related classes can be organized into a

specialization hierarchy

—people, employees, managers

—geometric objects ...

Polymorphism:

> objects of distinct, but related classes may be uniformly treated by

clients

—array of geometric objects

Software reuse:

> related classes may share interfaces, data structures or

behaviour

—geometric objects ...

This slide is review from the Inheritance lecture in P2:

http://scg.unibe.ch/teaching/p2

Inheritance is used for three different purposes, and these reflect
also the different way generalization is used as a modeling tool in
UML:

1.We can use classes to model domain concepts, some of which are more
general than others

2.We can design software classes into a type hierarchy where more refined
types can be polymorphically substituted for more general ones

3.We can inherit implementation from superclasses, achieving a form of
software reuse

32

The different faces of inheritance

Rectangle

Square

Square

Rectangle

Rectangle

Figure

Square

Is-a Polymorphism Reuse

Usually these three uses of inheritance coincide, but they may
not.

• A Square is a specialized form of Rectangle (every Square is a
Rectangle, where the height and width are equal).

•Rectangles and Squares can be used wherever we expect a geometric
Figure

• A Rectangle can inherit its width from a Square, and add a new
height attribute

Exercise: turn this into a UML class diagram …

33

The Faculty of Science of the University of Bern
forms various committees to make decisions on
various issues throughout the year (budgets, hiring of
professors, teaching evaluations, etc.).

Each committee is composed of Faculty members
(i.e., professors), assistants, and also some students.
The chair of a committee is always a Faculty member.

Committees meet on various dates and may deliver
reports to the Dean or to the Faculty.

Committee members can be contacted by email or
phone.

Exercise: turn this into a UML class diagram.

Figure out what are the domain concepts that should be modeled
as classes. (Perhaps not everything is important.)

What are the relationships between the classes? Are the
relationships inheritance (is-kind-of), composition (part-of) or
simple associations? Are the associations navigable?

Is every concept a first-class concept, or are some things simple
attributes of classes?

Compare your solutions with others and discuss.

Roadmap

34

> UML Overview

> Classes, attributes and operations

> UML Lines and Arrows

> Parameterized Classes, Interfaces and Utilities

> Objects, Associations

> Inheritance

> Constraints, Patterns and Contracts

35

OCL — Object Constraint Language

> Used to express queries and constraints over UML
diagrams

—Navigate associations:

– Person.boss.employer

—Select subsets:

– Company.employee->select(title=“Manager”)

—Boolean and arithmetic operators:

– Person.salary < Person.boss.salary

OCL is a standard of the Object Management Group, which is
also responsible for UML. All the standard documents can be
accessed online:

http://www.omg.org/spec/

Constraints

36

Constraints are restrictions on values attached to
classes or associations.

Constraints are indicated using dashed lines or arrows, and may
be annotated with an OCL expression or a natural language note
describing the constraint. Examples:

• The chair of a committee must be a member of that committee. This is a
simple OCL subset constraint over these two relations.

• A Company is an incorporated entity. Since these concepts are not modeled
in the diagram, we express this constraint in natural language.

• An employee and the employee's boss must work for the same company. We
express this in OCL by navigating the class diagram.

37

Design Patterns as Collaborations

A design pattern can be modeled as a dashed ellipse (here we
have the Observer pattern), with dashed lines linking roles
associated to the design pattern with the classes playing those
roles. In the example, the CallQueue is the subject being
observed, and the SlidingBarIcon is the handler observing
the subject.

We furthermore have an OCL constraint specifying that the
handler’s reading attribute should reflect the current length of the
queue.

Design by Contract in UML

38

Combine constraints with stereotypes:

NB: «invariant», «precondition», and «postcondition» are
predefined in UML.

Preconditions, postconditions, invariance and other assertions can
also be expressed as UML constraints, preferably in OCL or in
natural language.

Using the Notation

39

NB: The graphical notation
is only one part of the
analysis or design
document. For example, a
data dictionary cataloguing
and describing all names of
classes, roles, associations,
etc. must be maintained
throughout the project.

During Analysis:
—Capture classes visible to users
—Document attributes and responsibilities
—Identify associations and collaborations
—Identify conceptual hierarchies
—Capture all visible features

During Design:
—Specify contracts and operations
—Decompose complex objects
—Factor out common interfaces and functionalities

40

What you should know!

> How do you represent classes, objects and associations?

> How do you specify the visibility of attributes and

operations to clients?

> How is a utility different from a class? How is it similar?

> Why do we need both named associations and roles?

> Why is inheritance useful in analysis? In design?

> How are constraints specified?

41

Can you answer the following questions?

> Why would you want a feature to have class scope?

> Why don’t you need to show operations when depicting

an object?

> Why aren’t associations drawn with arrowheads?

> How is aggregation different from any other kind of

association?

> How are associations realized in an implementation

language?

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

