
Modeling Behaviour

Introduction to Software Engineering

Roadmap

2

> Use Case Diagrams
> Sequence Diagrams
> Collaboration (Communication) Diagrams
> Activity Diagrams
> Statechart Diagrams

—Nested statecharts
—Concurrent substates

> Using UML

3

Source

> The Unified Modeling Language
Reference Manual, James
Rumbaugh, Ivar Jacobson and
Grady Booch, Addison Wesley,
2005, 2nd edition.

Roadmap

4

> Use Case Diagrams
> Sequence Diagrams
> Collaboration (Communication) Diagrams
> Activity Diagrams
> Statechart Diagrams

—Nested statecharts
—Concurrent substates

> Using UML

Use Case Diagrams

5

A use case is a generic
description of an entire
transaction involving
several actors.

A use case diagram
presents a set of use
cases (ellipses) and the
external actors that
interact with the system.
Dependencies and
associations between
use cases may be
indicated.

Use case diagrams are very basic. They only show (i) what is the
name of a use case; (ii) which actors participate in each use case;
and (iii) any relationships between use cases (for example,
generalization).

6

Using Use Case Diagrams

> “A use case is a snapshot of one aspect of your system.
The sum of all use cases is the external picture of your
system …”

— UML Distilled

> “As use cases appear, assess their impact on the domain
model.”
—Use cases can drive domain modeling by highlighting the important

concepts.

Roadmap

7

> Use Case Diagrams
> Sequence Diagrams
> Collaboration (Communication) Diagrams
> Activity Diagrams
> Statechart Diagrams

—Nested statecharts
—Concurrent substates

> Using UML

8

Scenarios

A scenario is an instance of a use case showing a typical
example of its execution.

Scenarios can be presented in UML using either sequence
diagrams or collaboration diagrams.

Note that a scenario only describes an example of a use
case, so conditionality cannot be expressed!

Sequence diagrams and collaboration diagrams are more or less
equivalent in expressive power (you can translate one to the
other), but they emphasize very different aspects, as we shall see.

Sequence Diagrams

9

A sequence diagram
depicts a scenario by
showing the interactions
among a set of objects
in temporal order.

Objects (not classes!)
are shown as vertical
bars. Events or
message dispatches
are shown as horizontal
(or slanted) arrows from
the sender to the
receiver.

Sequence diagrams show a sequence of events in temporal order,
from top to bottom. Each participating actor is given a timeline
(shown as a fat line when it is active). The top of each timeline shows
the object involved. Events are interactions between objects shown as
arrows annotated with the kind of interaction (event or message).
Read the diagram from top to bottom: A customer inserts a card into a
Kiosk machine, picks a date, obtains an offer for a choice of seats,
and selects a seat. The Kiosk then submits an order to a Server,
which charges a CreditService. The charge is authorized, the
Server returns the ok to the Kiosk, which prints the ticket for the
customer.
Note that a scenario always expresses a concrete sequence of events
without any conditionality. To express, for example, what happens if
the credit charge is not authorized we would need a separate scenario.

10

Activations

Avoid returns
in sequence
diagrams
unless they
add clarity.

In this sequence diagram we see several new features:
• The Order object does not exist at the start of the scenario but

is created by the caller. It is also destroyed at the end.
• The TicketDB and the Account objects are only active when

processing a message (timelines fat during processing).
• The interactions are not asynchronous messages but operation

invocations (methods) which return results (dashed arrows).
Note the different styles of arrows used.

11

Asynchrony and Constraints

In this scenario we also see timing constraints between
asynchronous events. The dial tone must start within 1 second of
the telephone receiver being lifted, and so on.
We also see an event with a duration (from d to d').

Exercise: turn this into a UML sequence diagram

12

Every committee is created at a Faculty meeting,
where its members and the Chair are proposed
and approved. The Chair makes a request to the
Faculty secretary to schedule a meeting. All
members are contacted and asked to fill out a
“doodle” of possible dates. The secretary picks a
date available to the Chair and a maximum of
members. The secretary books a meeting room
and informs all committee members of the
selected time and location.

Exercise: turn this into a UML sequence diagram ...
Be sure to describe just a single straight-line scenario, without
any conditional flow.
Ask yourself, “what are the participating objects?”, “what events
occur?”, “what is the flow of events?”

Roadmap

13

> Use Case Diagrams
> Sequence Diagrams
> Collaboration (Communication) Diagrams
> Activity Diagrams
> Statechart Diagrams

—Nested statecharts
—Concurrent substates

> Using UML

Collaboration Diagrams

14

Collaboration diagrams (called Communication diagrams in UML
2.0) depict scenarios as flows of messages between objects:

Communication diagrams show essentially the same information
as sequence diagrams (a scenario of events between interaction
objects), but display that information in a fundamentally different
way that emphasizes relationships between object rather than
time. The sequence of events is indicated by numbering the
messages. That way two dimensions (rather than just one) are
available to lay out the objects, but time is harder to grasp.

15

Message Labels

Messages from one object to another are labelled with text
strings showing the direction of message flow and
information indicating the message sequence.

1. Prior messages from other threads (e.g. “[A1.3, B6.7.1]”)
– only needed with concurrent flow of control

2. Dot-separated list of sequencing elements
– sequencing integer (e.g., “3.1.2” is invoked by “3.1” and follows

“3.1.1”)
– letter indicating concurrent threads (e.g., “1.2a” and “1.2b”)
– iteration indicator (e.g., “1.1*[i=1..n]”)
– conditional indicator (e.g., “2.3 [#items = 0]”)

3. Return value binding (e.g., “status :=”)
4. Message name

– event or operation name
5. Argument list

16

Nested Message Flows

In this scenario a user requests a redisplay of a graphical “Wire”
made up of Line objects. The Controller asks the wire to to
display itself (1) on the window, passed as a parameter. Each line
segment is iteratively displayed (1.1*) by obtaining the left and
right “bead” of each wire segment (1.1.1a and 1.1.1b). For each
segment a Line is created (1.1.2) and displayed (1.1.3) by
“linking” itself to the window (1.1.3.1).

Roadmap

17

> Use Case Diagrams
> Sequence Diagrams
> Collaboration (Communication) Diagrams
> Activity Diagrams
> Statechart Diagrams

—Nested statecharts
—Concurrent substates

> Using UML

18

Activity Diagrams

An activity diagram
models the control flow
(i.e., execution states) of
a computation or workflow

In other words: an
object-oriented flowchart

An activity diagram is similar to an old-fashioned flowchart,
except that it can model concurrency, which flowcharts do not.

https://en.wikipedia.org/wiki/Activity_diagram

19

Swimlanes and object flows

Activity diagrams can
express collaboration.

Swimlanes group
activities by
responsibilities.

Object flows depict
objects that are the
outputs or inputs of
activities.

Activity diagrams depict collaboration between objects places
into separate “swim lanes”. The resulting diagrams can express
coordination similar to the way that Petri nets do.
The horizontal bars in the example resemble “transitions” in Petri
net that wait for all inputs to be available before being triggered,
and may produce multiple outputs. In the example, a service
request triggers both payment and order placement activities.
Both payment must be received and the order must be filled
before the order can be delivered.
See also:

https://en.wikipedia.org/wiki/Petri_net

Roadmap

20

> Use Case Diagrams
> Sequence Diagrams
> Collaboration (Communication) Diagrams
> Activity Diagrams
> Statechart Diagrams

—Nested statecharts
—Concurrent substates

> Using UML

21

Statechart Diagrams

Statecharts were introduced by David Harel in 1987 as a more
compact visual formalism for representing state diagrams (finite
state machines). They have been subsequently incorporated into
the UML.
This particular statechart is identical to its equivalent state
diagram. There are three states — Available, Locked and Sold —
with transitions between them.

https://en.wikipedia.org/wiki/State_diagram#Harel_statechart

22

Statechart Diagram Notation

A Statechart Diagram describes the temporal evolution of an
object of a given class in response to interactions with other
objects inside or outside the system.

An event is a one-way (asynchronous) communication from
one object to another:
—atomic (non-interruptible)
—includes events from hardware and real-world objects e.g.,

message receipt, input event, elapsed time, ...
—notation: eventName(parameter: type, ...)
—may cause object to make a transition between states

23

Statechart Diagram Notation ...

A state is a period of time during which an object is
waiting for an event to occur:
—depicted as rounded box with (up to) three sections:

– name — optional
– state variables — name: type = value (valid only for that state)
– triggered operations — internal transitions and ongoing operations

—may be nested

State Box with Regions

24

The entry event occurs whenever a transition is made into this state,
and the exit operation is triggered when a transition is made out of this
state.
The help and character events cause internal transitions with no
change of state, so the entry and exit operations are not performed.

25

Transitions

A transition is an response to an external event received by
an object in a given state
—May invoke an operation, and cause the object to change state
—May send an event to an external object
—Transition syntax (each part is optional): 

event(arguments) [condition] 
/ ^target.sendEvent operation(arguments)

—External transitions label arcs between states
—Internal transitions are part of the triggered operations of a state

26

Operations and Activities

An operation is an atomic action invoked by a transition
—Entry and exit operations can be associated with states

An activity is an ongoing operation that takes place while
object is in a given state
—Modelled as “internal transitions” labelled with the pseudo-event do

Roadmap

27

> Use Case Diagrams
> Sequence Diagrams
> Collaboration (Communication) Diagrams
> Activity Diagrams
> Statechart Diagrams

—Nested statecharts
—Concurrent substates

> Using UML

28

Nested Statecharts

Here we see the advantage of nested statecharts over traditional
state diagrams. In a conventional state diagram we would require
a transition from each substate in the Active region back to Idle in
case the caller hangs up. Here we only need to indicate that
transitions once from the top-level Active state to Idle.
Within the Active region we enter the initial substate DialTone.
Note the distinction between ongoing activities within a state
(such a do/play dial tone) and atomic operations associated with
transitions (such as dial digit(n)).
Also note that the statechart stays in the terminal substates Invalid
or Busy until the caller hangs up.

Composite States

29

Composite states
may depicted either
as high-level or low-
level views.

“Stubbed transitions”
indicate the presence
of internal states:

Initial and terminal
substates are shown
as black spots and
“bulls-eyes”

30

Sending Events between Objects

In this example the RemoteControl statechart controls either the
VCR or the Television.
There are two separate ways to specify the interaction (both are
shown in the example, but only one is needed).
Either we specify an “send event” operation as party of a
transition (e.g., send television.togglePower), or we connect the
transition to the other statechart with a dashed arrow labeled by
the event that is signaled (togglePower).

Roadmap

31

> Use Case Diagrams
> Sequence Diagrams
> Collaboration (Communication) Diagrams
> Activity Diagrams
> Statechart Diagrams

—Nested statecharts
—Concurrent substates

> Using UML

32

Concurrent Substates

In addition to nested substates, concurrent substates can also
greatly reduce the complexity of state diagrams. When entering a
substate with multiple concurrent substates, we enter each
subchart simultaneously.
When we start to take a class, we concurrently enter three parallel
statecharts, one for the Lab, another for the Term Project and one
for the Final Test. We leave these subcharts only when they all
reach their final state (the bullseye), or an event occurs to
abnormally leave all three (fail).
Expressing this behaviour with a traditional state diagram would
require us to draw a state machine with one state for each possible
combination of substates.

33

Branching and Merging

Entering concurrent states:
Entering a state with concurrent substates means that each of the
substates is entered concurrently (one logical thread per substate).

Leaving concurrent states:
A labelled transition out of any of the substates terminates all of the
substates.
An unlabelled transition out of the overall state waits for all substates to
terminate.

Completing a Course

request
«Nachprüfung»

request
«Wiederholung»

register
(ePub)

Doing
Exercises

Incomplete

Completed
Exercises

Registered
for Exam

Take
Scheduled

Exam

Passed
Course

Failed
1st Exam

Registered
for Repeat

Exam

complete
exercises

Adjust final
grade

show up

pass

fail

don't
show up

insufficient
exercises

Take Repeat
Exam

show up

pass

Failed
Course

fail
don't show up

Abmeldung

Up to 14 days
before exam

Within 3 weeks
email Dozent

Not
Registered

request
«Nachprüfung»

timeout

timeout

Abmeldung

Is it correct?

I prepared this real example some years ago in an effort to
understand whether the regulations governing exams in the
Computer Science Institute at the University of Bern were
complete and consistent. The point is not so much whether the
diagram correctly interprets the regulations, but that it serves as a
basis for discussion and analysis.

Exercise: turn this into a UML statechart …

35

Committees may be formed for a fixed duration
(e.g., hiring a professor) or for an indeterminate
duration (e.g., finances). A committee is first
proposed, and then approved by the Faculty who
names its members. If a member or a chair retires
from a committee, the faculty should name its
replacements. Once a committee is formed, it may
meet at regular or irregular intervals. Once a
committee has fulfilled its task it is dissolved and
any decisions or reports are archived.

Exercise: turn this into a UML statechart …
What are the entities for which we want to capture states? What
are these states? What events trigger the transitions between
states? Are there nested states?

Roadmap

36

> Use Case Diagrams
> Sequence Diagrams
> Collaboration (Communication) Diagrams
> Activity Diagrams
> Statechart Diagrams

—Nested statecharts
—Concurrent substates

> Using UML

37

Perspectives

Three perspectives in drawing UML diagrams:

1. Conceptual
—Represent domain concepts

– Ignore software issues

2. Specification
—Focus on visible interfaces and behaviour

– Ignore internal implementation

3. Implementation
—Document implementation choices

– Most common, but least useful perspective(!)
— UML Distilled

38

Using the Notations

The diagrams introduced here complement class and object diagrams.

During Analysis:
—Use case, sequence and collaboration diagrams document use cases and their

scenarios during requirements specification

During Design:
—Sequence and collaboration diagrams can be used to document

implementation scenarios or refine use case scenarios
—State diagrams document internal behaviour of classes and must be validated

against the specified use cases

39

What you should know!

> What is the purpose of a use case diagram?
> Why do scenarios depict objects but not classes?
> How can timing constraints be expressed in scenarios?
> How do you specify and interpret message labels in a

scenario?
> How do you use nested state diagrams to model object

behaviour?
> What is the difference between “external” and “internal”

transitions?
> How can you model interaction between state diagrams

for several classes?

40

Can you answer the following questions?

> Can a sequence diagram always be translated to an
collaboration diagram?

> Or vice versa?
> Why are arrows depicted with the message labels rather

than with links?
> When should you use concurrent substates?

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

