https://www.menti.com/2h1p9xc4ad

S -- T Code: 2825 7782 .
— :' .

Software Testing

Manuel Oriol, Prof of Computer Science

https://www.menti.com/2h1p9xc4ad

Introduction

\WWhy do we test?

*Did you have to deal with testing in the past?

sit.org © Schaffhausen Institute of Technology 2021

Ariane 5

https://www.youtube.com/watch?v=PK ygulapgA

sit.org © Schaffhausen Institute of Technology 2021

https://www.youtube.com/watch?v=PK_yguLapgA

Ariane 5 The exception was due to a floating-
point error during a conversion from a 64-
bit floating-point value, representing the
flight’'s ““horizontal bias,” to a 16-bit
signed integer: In other words, the value
that was converted was greater than what
can be represented as a 16-bit signed inte-
ger. There was no explicit exception han-
dler to catch the exception, so it followed
the usual fate of uncaught exceptions and
crashed the entire software, hence the
onboard computers, hence the mission.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=562936

sit.org © Schaffhausen Institute of Technology 2021

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=562936

Quizz

https://www.menti.com/2h1p9xc4ad
Code: 2825 7782

sit.org © Schaffhausen Institute of Technology 2021

https://www.menti.com/2h1p9xc4ad

We have been trained to make

assumptions
—Ks =2 >0 false for x= 46341
(and many more int)
—ee———— false for
X=MAX_INT
—@Mﬂg;‘/ false for x=0 or
float x

— L) X x =y false for x=0 or int, float x

sit.org © Schaffhausen Institute of Technology 2021

Typically impossible to...

=Test all values (see model-checking)

= Know what to omit when testing

= Know how to interpret results

sit.org © Schaffhausen Institute of Technology 2021

An example

/*
* A simple method that increments an integer value
**/
int increment(int i){
return i+1;

}

Testing all values?
What not to test?
How to interpret results?

sit.org © Schaffhausen Institute of Technology 2021

In this case...

= Test all values? It is possible!

= Know what to omit when testing? e.g.
http://en.wikipedia.org/wiki/Pentium_FDIV bug

= Know how to interpret results?
increment(Integer.MAX_VALUE) ?7?

sit.org © Schaffhausen Institute of Technology 2021

http://en.wikipedia.org/wiki/Pentium_FDIV_bug

Remember this!

Program testing can be used to show
the presence of bugs, but never to
show their absence!

\"

Edsger W. Dijkstra

. .) Turing Award recipient, 1972
http://en.wikiquote.org/wiki/Edsger W. Dijkstra

Referencing:

Notes On Structured Programming, 1972,
at the end of section 3,

On The Reliability of Mechanisms.

Hn
e T sit.org © Schaffhausen Institute of Technology 2021

http://en.wikiquote.org/wiki/Edsger_W._Dijkstra

The usual trade-off

Quality & Deadlines &
Test Reputation

sit.org © Schaffhausen Institute of Technology 2021 11

Natural tendencies

» Testing is in the way to make deadlines
« Testing finds bugs that do not matter

« I have no time planned for the testing
« "Come on, our code is good!”

« “The code I write is throw-away”

sit.org © Schaffhausen Institute of Technology 2021

So why do we really test?

We try to find bugs...

... to fix them ...

... to improve the quality of the code!

sit.org © Schaffhausen Institute of Technology 2021

Testing saves time and finds bugs early

With system-level With system-level
testing without unit testing and unit
testing testing
70 bugs 1 bug

16 weeks debugging 50% less overall time
time
5%-30% of the time

writing tests
5%-20% running tests

Gail C. Murphy, Paul Townsend, and Pok Sze Wong. 1994. Experiences with
cluster and class testing. Commun. ACM 37, 9, 39-47

sit.org © Schaffhausen Institute of Technology 2021

So, should we just test, test, test?

= This would not solve the problem if testing is not planned and
strategically applied!

» Testing techniques are numerous and give a very large panel of
possibilities

= A software test engineer (or software tester) will know how to apply
most and be able to discover/adapt them to the software at hand.

sit.org © Schaffhausen Institute of Technology 2021

What makes a good tester?

= The will to spend time crashing
programs

= A strong commitment to drive the
code to the best level of compliance
with specifications

= The will to drive quality of the code up

= The will to understand how a program
works to find its limitations

= The will to use tools and techniques
that test programs

sit.org © Schaffhausen Institute of Technology 2021

= JEEE terminology:
« When a program exhibits an unexpected behaviour, it is a FAILURE
A failure is caused by a FAULT in the program

« A defect is caused by an ERROR or a MISTAKE made by a
programmer

Causes/ @ Causes/ @

Source: IEEE standard 610.1

sit.org © Schaffhausen Institute of Technology 2021

Outline

Types of testing
Testing scopes
Testing Processes
Testing Artifacts
Testing Metrics

A

sit.org © Schaffhausen Institute of Technology 2021

Part I: Types of Testing

sit.org © Schaffhausen Institute of Technology 2021 19

Categories of Testing

= Black-box/white-box/grey-box
= Static/dynamic testing

» Functional/non-functional

sit.org © Schaffhausen Institute of Technology 2021

Black-box/White-Box/Grey-Box

= Black-Box testing: does not consider implementation details, only
interfaces

= White-Box testing (glass-box, clear-box, transparent, structural): uses
the actual implementation of the program to devise tests

= Grey-Box: Mixes both of them... If the test engineer know some of the
internal of the program, it uses those to design some of the tests, the
rest uses black-box

sit.org © Schaffhausen Institute of Technology 2021

Dynamic/Static Testing

 Dynamic testing is when the environment
executes code, for example:
« Automated testing
« Unit tests

» Static testing does not require to execute the
program, for example:
« Walkthrough
* Reviews
» Inspections
« Static analysis

sit.org © Schaffhausen Institute of Technology 2021

Example of static Analysis tool: flndbugs

ndBugs - org.eclipse.equinox. p2.uifsrcforgfeclipse/equinoxfinternal/provisional/p2/ui/ResolutionResult. java - Eclipse SDK
idit Source Refactor Mavigate Search Project Run Window Help

- (-0 Q- E®™P P S & - (%8
xplorer w _ 0O x||org.eclipse.equinox.p2.ui/src/org/eclipse/equinox/internal/provisional /p2/ui/ResolutionResult.java v ¥
52 R | 3o E/f I Y| ResolutionResult

j org eclipse.equinox.p2.core (29) [dev.eclpse.org] : 47 3

3 # Class defines compareTo(...) and uses Object.equals() (3) | 45

4 Class doesn't override equals in superclass (1) 496 public void addStatus(IInstallableUnit iu, IStatus status) {

4 Class implements Cloneable but does not define or use clone 50 MultiStatus iuSuwmmaryStatus = (MultiStatus) iuToStatusMap.get |
34 equals() method does not check for null argument (1) 5 if {iuSunmaryStatus == null) {

34 Inconsistent synchronization (1) fﬁ inSumaryStatus = new MultiStatus(ProvUIActivator.PLUGIN T
3 # Inefficient use of keySet iterator instead of entrySet iterator (53 } else

3 # Method ignores exceptional return value {12) 54 iuSurmaryStatus.add (status) ;

1 # Method invokes inefficient new String{String) constructor (1) 55 3

3 #\ Method uses the same code for two branches (1) 56

3 # Mullcheck of value previously dereferenced (2) 576

private String getIUString(IInstallablelUnit iu) {
if (iu == null)

3 # private readResolve method not inherited by subclasses (1)
3 # Should be a static inner class {4)

9

¥ 59 return ProvUINessages.PlanStatusHelper Items;
i org.eclipse.equinox.p2.ui (74) v2 eclipse.org] 60 // Get the iu name in the default locale
1 # Ambiguous invocation of either an inherited or outer method (| A1 String name = THPranertwlltilas. et THPranertviin. TTnatallahlelin
3 #\ Class defines field that masks a superclass field (1) (<] Il |3
3 # Class doesn't override equals in superclass {1) Properties v .
J # Class names shouldn't shadow simple name of superclass (1) Elproperties| Bk problems
3 # Dead store to local variable (3)

#goead store ko juSummaryStatus | Bug: Dead store to iuSummaryStatus

#‘ Dead store to mon |

{3 Dead store to mon B> Bug: Dead store to uSummaryStatus
342 Method call passes null for nannull parameter (1) > Pattern id: DLS_DEAD_LOCAL_STORE, type: DLS, category: STYLE
738 Method might ignore exception (1) = - - -
3 # Possible null pointer dereference in method on exception path | This i . : al local iable. but the value i d di
] # Read of unwritten field (4) s mstruct{lon assgns a value tQ g op vaniable, but the value 15 not read or use Am any
e e subsequent instruction. Often, this indicates an error, because the value computed is never
1 # Unread field (7) used.
3 #\ Unused field {45)

Unusual equals method (2) 0| Note that Sun's javac compiler often generates dead stores for final local vanables. Because
-4 Unwritten Field (3) ‘ FindBugs is a bytecode-based tool, there is no easy way to ﬁffte thes [/fxe pOCSTb
3 # ‘Write to static field from instance method (1) | 5 i | u q S S O u rcefo rq e n et

B =

{8 Dead store to iuSummaryStatus \ 54M of 108M | I :

=itute of Technology 2021

http://findbugs.sourceforge.net

Other examples: Structure 101, Understand,
Klocwork

Structural over-complexity

o
o >
- ' L 00

&1 nd

-
-
=
<
-
-
L

0 nFat 100 Understand
SRR S @

) 41 (Lise freguency «= 8 || rumedng speed = 8)
reters -1

}
im -ln

p\n - luu L mm--m Ui n-—nq / (neminal_spand rpm /W00
flast s1ip « (Line froguendy - ruming speed * poles] / (u- Troguency):
nnn slig)

}

peblic flast getOperats rlﬂ.ﬂ sperating slip, Mator soter)
for (Nane¥late te o Sessienranageriiee get lastance|) .-n—om.umam (
A (namelate getvariesy| Thane () ogualslgnareCase [“Namplate Power=)) {
- « Comverter . conwer tToF lont (nasefLate. getValeet));
) oloe it (rasePlate. getVarfesel thame|) equalslgnoreCane! “Saneglate NolsadPower
weland_povar = Comverter comvertTof loat (nase®Late getvalenl)) ;
) olse AF (raserlote. getVarfesel hume | | ogualsignoreCise! "Sumeplate Linef regees|
sonisal Lise frequency = Comwerter. comwertTof [oat (raseflate. getValue());
) olse AF (nametlate. getvartesel thame| | ooual s IgnoreCane! “Sumeplate Speed™)) {
soninal_speed rpe « Conwerter comvertTof Laat (nameflate getvaluell);

e i e
Olumwwtm‘muommtmmum'
O (58 Arabyow Locall Equalty checks on foating pant Types houkd Be avosded

O 19 Acaiyse Locall Equalty checks on foating pont thypes Should be avosded

O » Local § s on 9 e
0

© Schaffhausen Institute of Technology 2021

Functional/non-functional Testing

* Functional testing tests that the program
provides a functionality (e.g. calculates a
result, doing something...)

* Non-Functional testing tests non-
functional properties (scalability, security,
“-ilities” in general)

sit.org © Schaffhausen Institute of Technology 2021

Examples

» Stress-testing the Apache web-server
 Testing code that has been outsourced
 Testing the code of a satellite

 Testing the code running a cell phone

 Testing Microsoft Word

sit.org © Schaffhausen Institute of Technology 2021 26

Part II: Testing Scope

sit.org © Schaffhausen Institute of Technology 2021 27

Testing Scopes

= Unit Testing

» Integration Testing
= System Testing

= Acceptance Testing

» Regression Testing

sit.org © Schaffhausen Institute of Technology 2021

Unit Testing
» Testing small parts of the programs

« Typically the unit tests have an
initialisation part and an assertion for
testing the value that should be returned

Program: Test:

int increment(int i){ @Test
public void test_1(){

return i+1;
) Test JMUIRLY

assertTrue(increment(j)==1);

}

sit.org © Schaffhausen Institute of Technology 2021

Integration Testing

 Typically grouping together all some units and testing them together
using a black-box approach

« Three main approaches:
* Big Bang: Put everything together then test

« Top-down: Modules tested from the entry points and integrated
progressively

« Bottom-up: Modules are progressively integrated and tested from
the most elementary ones.

sit.org © Schaffhausen Institute of Technology 2021

System Testing

» Tests integrated systems
 Tests functional and non-functional requirements

- Trying to understand even expected non-explicit
requirements

- Typically black-box testing

sit.org © Schaffhausen Institute of Technology 2021 31

Acceptance Testing

* Runs based on script

« Designed by domain experts (subject matter expert),
performed by potential users

* Main intent is not to discover failing scenarios, it is to
check that the product will work (and how well) in a
production environment

sit.org © Schaffhausen Institute of Technology 2021 32

Example of acceptance testing: A/B

Testing |
« To compare two alternatives of a product

and decide on the one to pick using a
metric of success

 50% of the traffic is version A and 50%
on version B.

- Example: o
T » Bem » 23%
50 % visitors conversion
see variation A Variatlon A
e > Baml » 11%
50 % visitors conversion
e tion B
Variation B

https://vwo.com/ab-testing/

© Schaffhausen Institute of Technology 2021

https://vwo.com/ab-testing/

Regression Testing

» The goal is to check that what used to work still does

 For example, test suites will be automatically executed
to check that scenarios are working

* The scope itself can vary

sit.org © Schaffhausen Institute of Technology 2021 34

Example (1/2)

/[Version O
int increment(int i){
return i+1;

}

@Test
public void test_1(){
intj=0;

assertTrue(increment(j)==1);

}

sit.org © Schaffhausen Institute of Technology 2021

Example (2/2)

[\Version 1
int increment(int i) throws Exception{
if (i<integer MAX VALUE)
return i+1;
else
throw new ArithmeticException();

}

@Test
public void test_1(){
intj=0;

assertTrue(increment(j)==1);

}

sit.org © Schaffhausen Institute of Technology 2021

Regression Testing Tool: Junit (from

Ecligge)

Java - Equations/src/uk/ac/york/modules/testing/TestEquation.java - Eclipse SDK - /Users/manueloriol/Documents/workspace -
@ D@30 [BHE |®] AR Ef EaCVs Reposit.. >
{# Package Explor | %® Types|gu JUnit 5% = 8 [J] YetiGUljava [J] YetiModuleGraph.java 1] TestEquationjava 2 18 = 0|\ =08
Finished after 3.005 seconds 1 » ‘;7" > (% » B uk.acyork.modules.testing P (® TestEguation » @ testMainArguments() : void "
4 4 e BE|Q v ”“E k k.modul i 8l &

.ac.york. . R
. package uk.ac.york.modules.testing; e
Runs: 4/4 B Errors: 0 B Failures: 2

v ‘Eg uk.ac.york.modules.testing.TestEquation [Runne
¢E] testMain (2.799 s)
Q:J testMainArguments (0.057 s)
&Jtestlncrement (0.000 s)
i‘_.jtestlncrementz (0.001 s)

e) <>

= Failure Trace ¢

J;junit.framework.AssenionrailedErrorA null

== at il 2 vinrlk madolac tactina TactEaniatian racrhis

=] Console 53

#import static org.junit.Assert.*;[]

wh

/t*
* This class represents...
*
* Manuel Oriol (manuel@cs.york.ac.uk)
* Feb 17, 2010
*
*/
public class TestEquation extends TestCase{
/**
N java.lang.Exception
*/
@BeforeClass
public static void setUpBeforeClass() throws Exception {
}
/#t
* java.lang.Exception
* /

X %

<terminated> TestEquation (3) [JUnit] /System/Library/Frameworks /JavaVM.framework/Versions/1.5.0/Home/bin/java (Feb 23, 2011 2:11:39 AM)

P811—32~23 92:11:54.857 java[15927:903] Can't open input server /Library/InputManagers/LCC Scroll Enhancer Loader

Options are:
FirstOrder: f(x) = ax+b
Second Order: f(x) =axA2+bx+c
Sinus: f(x) =a*(sin(b+x)Ac)+d
Fraction: f(x) =a/(x+b)

| B BE[E]E

B-r5-=0

Part III: Testing Processes

sit.org © Schaffhausen Institute of Technology 2021 38

Original waterfall model

Requirements

:

Design

H

Implementation

-

Testing?

Verification

’

Maintenance

Winston Royce, 1970, source: wikipedia, waterfall model

sit.org © Schaffhausen Institute of Technology 2021

Requirem_ents _______________ i~ Acceptance |\ _ _ _ _ _ _ _ _ _ _______ -l Acceptance
Analysis P, Test Design Testing
-
\ 7
\ ’
\ /
K >
System .-\ __________ ~ System \ System
Design ‘ 7 Test Design Testing
\ !
\ ’
\ ’/
E >
Architecture "\ ——eop Integration Integration
Design ,’ Test Design Testing
\ / .
\ / Testing
\ /
\ /
Y »
Unit i
Module $ Unit
Design Test Design Testing
X 7

\ ' /' Source: V-model, wikipedia

\
’
\---p' Coding -

hausen Institute of Technology 2021

Test-Driven Development

———————————————————— —Repeat- — — 4

Test
succeeds

K. Beck (2003), -

Source: Test-driven_development, wikipedia

sit.org © Schaffhausen Institute of Technology 2021

Extreme Programming

v
> 4 .) Planning/Feedback Loops &#emo
Baidie prograioieg Release Plan
Months
Iteration Plan
Weeks
Acceptance Test
Days
Stand Up Meeting
One Day
Pair Negotiation
HOUfS/
Unit Test
Minutes
Pair Programming
SW
Coprright 2001 J. Donovan Wells COde

http://www.extremeprogramming.org/introduction.html

sit.org © Schaffhausen Institute of Technology 2021

Integration testing or how to “trust but verify”

Tests are going to be run on each commit (preferred) or nightly and reported to
users

? Jenkins

Jenkins FASA ENABLE AUTO REFRESH
Back to Dashboard Pl‘o_]ect FASA
», Status Future Automation System Architecture main continuous integration server. Main targets.
= Changes Test Result Trend
RADAR Report 120
Workspace 100
RADAR Report Workspace 80
s £
3 60
o
Build History (trend) = i
Recent Changes
#635 Sep 5, 2014 4:47:40 AM =
#634 Sep 5, 2014 4:25:55 AM \ o
3 0 s)
.47 Latest Test Result (no failures) ot n ~ o o =
#633 Sep 4,2014 4:47:33 AM EN 8 LER ag@ E é g ggfd&hﬂma %p%gg
SRR FEEE R L EER R R e

#632 Sep 4, 2014 3:38:33 AM

#631 Sep 4, 2014 2:08:18 AM Permalinks
#630 Sep 3, 2014 10:45:52 AM

(just show failures) enlarge

Last build (#635), 13 days ago

Last stable build (#623), 1 mo 12 days ago
Last successful build (#623), 1 mo 12 days ago
Last failed build (#635), 13 days ago

Last unstable build (#438), 6 mo 15 days ago
Last unsuccessful build (#635), 13 days ago

#629 Sep 3, 2014 1:07:07 AM

#628 Sep 2, 2014 8:57:56 AM

L B A

#627 Sep 2, 2014 6:24:15 AM

#626 Sep 2, 2014 3:49:50 AM
#625 Sep 1, 2014 7:08:49 PM

#624 Sep 1. 2014 3:50:25 PM

Peccecococeocecceceed § B

Artifacts

Requirements Analysis § Requirements

Test Planning » Test Strategy Test PIap{Procec!ures
» Testbed Traceability Matrix
IR S ot Al oSt procedures Test scenarios
» Test cases

Test reporting
Test Result Analysis Faults prioritization

Test report

sit.org © Schaffhausen Institute of Technology 2021

Part IV: Testing Artifacts

sit.org © Schaffhausen Institute of Technology 2021 45

Test Case

« A test script that generally consists of a single
step to test a program.

» Typically a test case will have a test oracle to
decide whether is passes or fails

« Test cases generally include the following
indications:
- Id
» Description
» Related requirements
« Category
« Author
« Status (pass/fail)

sit.org © Schaffhausen Institute of Technology 2021

Example

=Id: test_1

= Description: a test to decide that checks “increment” with “0”
= Related Requirement: “increment” documentation

= Category: Functional, Unit

= Author: Manuel

= Status: Pass @Test
public void test_1(){
intj=0;

assertTrue(increment(j)==1);

}

sit.org © Schaffhausen Institute of Technology 2021

Test Oracle

« Typically a way of deciding whether a test case
passes or fail

* Includes:
« Documentation
 Requirements
« Assertions
« Other means of calculating the result

sit.org © Schaffhausen Institute of Technology 2021

Test Suite

« A test suite is a (potentially large) collection of test
cases

 Typically test cases can be grouped in categories

« The goal of a test suite is to permit be used for
checking that a new functionality does not break the
code, or that it provides what is needed

» Large test suites might not be testable all the time
(needed to test only a subset)

« Test suites quality is difficult to define (e.g. see
mutation testing)

sit.org © Schaffhausen Institute of Technology 2021

Test Data

= VValues used during testing to test some functionality
= Typically stored in separate files

= Difficult to generate a good set of test data: it is often reused

sit.org © Schaffhausen Institute of Technology 2021

Part V: Testing Metrics

sit.org © Schaffhausen Institute of Technology 2021 51

Coverage

The coverage is a measure of a percentage of a structure or a domain
that a program, a test case, a test suite exercises

sit.org © Schaffhausen Institute of Technology 2021

Coverages

« Function coverage
» Statement coverage
* Branch coverage

(also known as: Decision
coverage)

« Path coverage
- Condition coverage
« MCDC

sit.org © Schaffhausen Institute of Technology 2021

Function Coverage

= The percentage of functions that were called by the test case

Typically function coverage should be 100%

sit.org © Schaffhausen Institute of Technology 2021

Statement coverage

Percentage of statements that were executed

sit.org © Schaffhausen Institute of Technology 2021 55

Example

Coverage of the red path: a=1
86%
(6/7 statements) b:=a+?2
!
b>3

truy\f?lse

Result:=b

Result:=a

v
b:=a

b:

=d

sit.org

© Schaffhausen Institute of Technology 2021

Decision coverage

= Each time a program has a branching instruction (if, for, while...) this
create two branches.

= Decision coverage is the percentage of these branches that were
executed by a test suite.

sit.org © Schaffhausen Institute of Technology 2021

Example

!
Decision Coverage a:=1
of the red branches: b:=a+2
50% If (b>3)
true false

Result:=b Result:=a

b:=a

sit.org © Schaffhausen Institute of Technology 2021

Branch coverage

= Each time one has a branching instruction (if, for, while...) this create
two branches.

= Branch coverage is the percentage of the branches that were executed
by a test suite. i

if

sit.org © Schaffhausen Institute of Technology 2021

Example

}
Coverage of the red branches: a=1
75% b:=a+2
(3/4 branches) If (b>3)
true false

Result:=b Result:=a

b:=a

sit.org © Schaffhausen Institute of Technology 2021

Path Coverage

The percentage of different paths exercised by the
tests (put in relation with cyclomatic complexity)

sit.org © Schaffhausen Institute of Technology 2021 61

Example

}
Coverage of the red red path: a=1
50% b:=a+2
(1/2 paths) If (b>3)
true false

Result:=b Result:=a

b:=a

sit.org © Schaffhausen Institute of Technology 2021

Condition coverage

= Each time one has a branching instruction (if, for, while...) that
contains one or several conditions, each condition’s outcome (True or
False) is a possibility

= Condition coverage is the percentage of these possibilities that were
executed by a test suite.

if (a || b)

/1IN

100% obtained with (a,b) = (true, false) and (false,true)

sit.org © Schaffhausen Institute of Technology 2021

Modified Condition/Decision Coverage (MCDC)

= Consists of:
*« 100% branch coverage
« 100% condition coverage
« Each entry/exit point is exercised
« Each condition affects the behaviour independently

if (a || b)

AT N

DO-178B, Software Considerations in Airborne Systems and Equipment
Certification

sit.org © Schaffhausen Institute of Technology 2021

Tools to calculate the coverage:
Cobertura

. mp e e e
72 */
PaCRages O 73 public class ReportTask extends CommonMatchingTask
All 74 {
i 75
net.sourceforqe.coberturcv 76 8 arlvabe Gtcing detaFiie = mull}
net.sourceforge.coberturz 4 T private String format = "html";
net.sourceforge.coberturz ¥ 78 private File destDir;
()< » 79 private String srcDir;
80
TTIELSUUTCTTUTge. CoDT . 2
- 81 public ReportTask() {
o 82 8 super("net.sourceforge.cobertura.reporting.Main");
Classes 83 8 }
84
AntUtil (88%) 85 public void execute() throws BuildException {
CheckTask (0%) 86 8 CommandLineBuilder builder = null;
S s o , 87 try {
CommonMatchingTask (8 88 8 builder = new CommandLineBuilder();
ExcludeClasses (100%) 89 8 if (dataFile != null)
Ignore (100% 90 8 builder.addArg("--datafile", dataFile);
1 B(h) 0% 91 8 if (destDir != null)
lanoreBranches (0%) 92 8 builder.addArg("--destination", destDir.getAbsolutePath|
IncludeClasses (100%) 93 8 if (format l= null)
InstrumentTask (79%) 94 8 builder.addArg("--format", format);
95 8 if (srcDir = null)
MergeTask (0%) 96 4 builder.addArg(srcDir);
Regex (0%) N | 97
ReportTask (89%) $ 98 8 createArgumentsForFilesets(builder);
Y 99

http://cobertura.sourceforge.net/

sit.org © Schaffhausen Institute of Technology 2021

http://cobertura.sourceforge.net/

My recommendations

= \Write tests as a part of the coding activity
* Not at the end, not at the beginning, rather per unit
= \Write unit tests
» Use unit testing frameworks like JUnit
« Monitor decision coverage and try to get it close to 100%
= Write integration tests
* use scripts and specific tools like Selenium
= Run your tests continuously
« Use a continuous integration server like Jenkins
» Fix the bugs you find

sit.org © Schaffhausen Institute of Technology 2021

Conclusions

« Software testing is at the core of any quality
assurance mechanism currently used

« This presentation only gives a high level
understanding of the techniques used in testing
there is far more to learn

sit.org © Schaffhausen Institute of Technology 2021

Some terms used in software testing

5
2
"= boundary =
mutation,tesgariven = procedure , B
dynamicfunctionals € S£5, . £
= = i 5
- non-functional == S e s 208%?0“&
SA0 O so 2 Straceabil =
g =-;§ CoveragEm 2%[_)]‘3 k-box~ Statement ©
S (O O 2-=development data D So5E wcapturereplay
st "o .= . specfication-hased = ST EZ T FErey-nox
extreme = injection c_,programmlng = =5 »-2%= MDC
model-basedss GUIE 2L £ tocthed 83 22
agleS S EZEB walkthrough & =
38 5§28 ‘Sautomated
oracle® &£

sit.org © Schaffhausen Institute of Technology 2021

ST

Thank you!

sit.org © Schaffhausen Institute of Technology 2021

sit.org © Schaffhausen Institute of Technology 2021

Hn
S =l T sit.org © Schaffhausen Institute of Technology 2021

sit.org © Schaffhausen Institute of Technology 2021

sit.org © Schaffhausen Institute of Technology 2021

sit.org © Schaffhausen Institute of Technology 2021

sit.org © Schaffhausen Institute of Technology 2021

sit.org © Schaffhausen Institute of Technology 2021

sit.org © Schaffhausen Institute of Technology 2021

sit.org © Schaffhausen Institute of Technology 2021

