
Software Architecture
in Practice

Erwann Wernli (@wrnli)
System architect, SBB

Agenda

Your job as an architect

Architecture and organisation

Your toolbox

Your job as an architect

NFR Technologie

Modularisation

Architecture

Levels of architecture

● Enterprise

● Application

● Component

Modularisation

The system is decomposed in components

Each component has a lifecycle

Components provide and require interfaces

Two components connected form a dependency

Your job

● Group things that have the same lifecycle together

(“What change together goes together”)

● Expose interfaces that provide capabilities and hide

internal details

● Manage dependencies

● Manage cross-cutting concerns

● (!) Several decompositions that are possible!

Well-known principles

● Single-responsibility principle

● Separation of concerns

● Information hiding

● Cohesion/coupling

Examples

Enterprise ● Interfaces between IT domains
● Customer Information - Logistics

Application ● Interfaces between applications
● Shopping Cart App - Product Catalog app

Component ● Interfaces between classes
● e.g. Data access layer - Business Logic
● e.g. Layering

Technology

You realize software systems with various technologies

● Platform technologies, e.g. AWS EC2
● Application technologies, e.g Spring, HTTP
● Development technologies, e.g. IntelliJ, git, Jenkins

Technologies enable various architectural patterns:

● Eventual consistency vs. Strong consistency
● Synchronous vs Event-driven architecture
● …

Your job

● Define architectural patterns

● Select technologies for your architecture

● Balance “cost of ownership” vs “benefit”

● Balance standardisation vs specialisation of technologies

Examples

Enterprise ● Cloud providers, e.g. AWS vs Azure
● Central services, e.g. APIM, IAM
● Java vs C#

Application ● Synchronous vs Asynchronous API
● NoSQL vs Transactional DB
● SPA vs. Server-side Rendering
● Monitoring technology

Component ● Spring Webflux (reactive) vs Spring Function
● Caching

NFR

Every application has non-functional requirements,
sometimes implicitly:

● Performance
● Availability,
● Maintainability,
● …

Having 10 customers is not the same as 1 mio. Storing bank
transactions is not the same as storing to-do lists.

Your job

● Figure out how to decompose the system (modularity)

and use technologies to meet the NFRs.

● Balance NFR and costs of development / operations.

● Make the NFR and trade-off explicit

Examples

Enterprise ● Security strategy
● Multi-cloud strategy

Application ● 99.8 availability of application X
● Processing time of operation X < 50ms

Component ● Memory need of algorithm X

Fit for purpose

https://www.enterpriseintegrationpatterns.com/ramblings/86_isthisarchitecture.html

Fit for purpose
Architecture 1 Architecture 2

Modularity Webapp with product search and
shopping cart combined

Product search and shopping cart
as microfrontend

Technology LAMP (Linux/Apache/Mysql/PHP) Java, Spring, Postgres, Docker,
Kafka

NFR Everybody work in the same
codebase (Maintainability)

Single database for search and
shopping cart (Scalability)

Two codebases (Maintainability)

Read model for product search can
scale independently of write model
for shopping cart (Scalability)

Architecture and Teamwork

If development is collaborative, managing collective knowledge is a challenge.

Architecture tends to reflect the organisation (and not the way around)

https://en.wikipedia.org/wiki/Conway%27s_law

Knows
Component A

Knows
Component B

Your job

● Communicate the architecture

● Define guidelines

● Share knowledge

● Align people

● Decentralize decision making

● Co-evolve architecture and organisation

Who’s the architect?

https://architectelevator.com/transformation/agile_architecture/

Approaches to architecture

Retired: ivory tower architect

Tired: hands-on architect

Wired: architect as change agent

Static
Cost-optimization mentality

Dynamic
Business enabling mentality

Your toolbox

Tools

● Architecture styles

● Architecture patterns

● Architecture frameworks *

● Architecture templates **

● UML

● …

Methods

● Modell visually

● Use architecture viewpoints

● Domain-Driven Design

● Record architecture decisions

● Automate architecture checks***

● …

* e.g. AWS Well-architected Framework
** e.g. Arc42, 4+1
*** e.g. ArchUnit

https://aws.amazon.com/architecture/well-architected

Your My bookshelf

Inspired from : https://architectelevator.com/architecture/architect-bookshelf/

Enterprise

Application

Component

(and more)

Summary

● There are three main facets to architecture:

modularisation, technology, and NFR

● Architecture and organisation go hand-in-hand in a

modern organisation

● There’s a vast body of knowledge around architecture -

use it!

