
Introduction to Software Engineering
(ESE : Einführung in SE)!

1. Introduction — The Software Lifecycle!

Prof. O. Nierstrasz!
Herbstsemester 2010!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.2	

Selected material courtesy of Prof. Serge Demeyer, U. Antwerp!

ESE — Introduction!

Lecturer! Prof. Oscar Nierstrasz!
scg.unibe.ch/oscar!

Assistants! Erwann Wernli!
Oskar Truffer, Simon Baumann!

Lectures! Engehaldenstrasse 8, 001,!
Wednesdays @ 13h15-15h00!

Exercises! Engehaldenstrasse 8, 001!
Wednesdays @ 15h00-16h00!

WWW! scg.unibe.ch/teaching/ese!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.3	

Roadmap!

>  Course Overview!
>  What is Software Engineering?!
>  The Iterative Development Lifecycle!
>  Software Development Activities!
>  Methods and Methodologies!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.4	

Roadmap!

>  Course Overview!
>  What is Software Engineering?!
>  The Iterative Development Lifecycle!
>  Software Development Activities!
>  Methods and Methodologies!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.5	

Principle Texts!

>  Software Engineering. Ian Sommerville. Addison-Wesley
Pub Co; ISBN: 020139815X, 7th edition, 2004!

>  Software Engineering: A Practioner's Approach. Roger S.
Pressman. McGraw Hill Text; ISBN: 0072496681; 5th
edition, 2001!

>  Using UML: Software Engineering with Objects and
Components. Perdita Stevens and Rob J. Pooley.
Addison-Wesley Pub Co; ISBN: 0201648601; 1st edition,
1999!

>  Designing Object-Oriented Software. Rebecca Wirfs-
Brock and Brian Wilkerson and Lauren Wiener. Prentice
Hall PTR; ISBN: 0136298257; 1990!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.6	

Recommended Literature!

>  eXtreme Programming Explained: Embrace Change. Kent Beck. Addison-
Wesley Pub Co; ISBN: 0201616416; 1st edition (October 5, 1999) !

>  The CRC Card Book. David Bellin and Susan Suchman Simone. Addison-
Wesley Pub Co; ISBN: 0201895358; 1st edition (June 4, 1997) !

>  The Mythical Man-Month: Essays on Software Engineering. Frederick P.
Brooks. Addison-Wesley Pub Co; ISBN: 0201835959; 2nd edition (August 2,
1995) !

>  Agile Software Development. Alistair Cockburn. Addison-Wesley Pub Co;
ISBN: 0201699699; 1st edition (December 15, 2001) !

>  Peopleware: Productive Projects and Teams. Tom Demarco and Timothy R.
Lister. Dorset House; ISBN: 0932633439; 2nd edition (February 1, 1999) !

>  Succeeding with Objects: Decision Frameworks for Project Management.
Adele Goldberg and Kenneth S. Rubin. Addison-Wesley Pub Co; ISBN:
0201628783; 1st edition (May 1995) !

>  A Discipline for Software Engineering. Watts S. Humphrey. Addison-Wesley
Pub Co; ISBN: 0201546108; 1st edition (December 31, 1994)!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.7	

Course schedule!

Week! Date! Lesson!
1! 22-Sep-10! Introduction — The Software Lifecycle!
2! 29-Sep-10! Requirements Collection!
3! 06-Oct-10! The Planning Game!
4! 13-Oct-10! Responsibility-Driven Design!
5! 20-Oct-10! Software Validation!
6! 27-Oct-10! Modeling Objects and Classes!
7! 03-Nov-10! Modeling Behaviour!
8! 10-Nov-10! User Interface Design!
9! 17-Nov-10! Project Management!

10! 24-Nov-10! Software Architecture!
11! 01-Dec-10! Software Quality!
12! 08-Dec-10! Software Metrics!
13! 15-Dec-10! Software Evolution!
14! 22-Dec-10! Guest lecture — SE in practice!
15! 13-Jan-11! Final Exam — ExWi A6 @ 10h00-12h00!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.8	

Roadmap!

>  Course Overview!
>  What is Software Engineering?!
>  The Iterative Development Lifecycle!
>  Software Development Activities!
>  Methods and Methodologies!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.9	

Why Software Engineering?!

A naive view: !
! !Problem Specification ! ! Final Program!

But ...!
— Where did the specification come from?!
— How do you know the specification corresponds to the userʼs

needs?!
— How did you decide how to structure your program?!
— How do you know the program actually meets the specification?!
— How do you know your program will always work correctly?!
— What do you do if the usersʼ needs change?!
— How do you divide tasks up if you have more than a one-person

team?!

coding!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.10	

What is Software Engineering? (I)!

Some Definitions and Issues!

“state of the art of developing quality software on time
and within budget”!

>  Trade-off between perfection and physical constraints!
— SE has to deal with real-world issues!

>  State of the art!!
— Community decides on “best practice” + life-long education!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.11	

What is Software Engineering? (II)!

“multi-person construction of multi-version software”!
— Parnas!

>  Team-work!
—  Scale issue (“program well” is not enough) + Communication

Issue!
>  Successful software systems must evolve or perish!

—  Change is the norm, not the exception!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.12	

What is Software Engineering? (III)!

“software engineering is different from other engineering
disciplines” !

— Sommerville !

>  Not constrained by physical laws!
— limit = human mind!

>  It is constrained by political forces!
— balancing stake-holders!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.13	

Roadmap!

>  Course Overview!
>  What is Software Engineering?!
>  The Iterative Development Lifecycle!
>  Software Development Activities!
>  Methods and Methodologies!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.14	

Software Development Activities!

Requirements
Collection! Establish customerʼs needs!

Analysis! Model and specify the requirements (“what”)!

Design! Model and specify a solution (“how”)!

Implementation! Construct a solution in software!

Testing! Validate the solution against the
requirements!

Maintenance! Repair defects and adapt the solution to new
requirements!

NB: these are ongoing activities, not sequential phases!	

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.15	

The Classical Software Lifecycle!

The classical
software lifecycle
models the software
development as a
step-by-step
“waterfall” between
the various
development phases.!

The waterfall model is unrealistic for many reasons:!
•  requirements must be frozen too early in the life-cycle!
•  requirements are validated too late!

Design!
Implementation!

Testing!
Maintenance!

Analysis!
Requirements!

Collection!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.16	

Problems with the Waterfall Lifecycle!

1.  “Real projects rarely follow the sequential flow that the model
proposes. Iteration always occurs and creates problems in the
application of the paradigm”!

2.  “It is often difficult for the customer to state all requirements
explicitly. The classic life cycle requires this and has difficulty
accommodating the natural uncertainty that exists at the beginning
of many projects.”!

3.  “The customer must have patience. A working version of the
program(s) will not be available until late in the project timespan. A
major blunder, if undetected until the working program is reviewed,
can be disastrous.”!

— Pressman, SE, p. 26!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.17	

Iterative Development!

In practice, development is always iterative, and all
activities progress in parallel.!

Requirements !
Collection!

Testing!

Design!

Analysis!
Validation through prototyping!

Testing based on requirements!

Testing throughout implementation!
Maintenance through iteration!

Design through refactoring!

If the waterfall
model is pure
fiction, why is it still
the dominant
software process?	

Implementation!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.18	

Iterative Development!

Plan to iterate your analysis, design and implementation.!

—  You wonʼt get it right the first time, so integrate, validate and test
as frequently as possible.!

!“You should use iterative development only on projects that you
want to succeed.”!

—  Martin Fowler, UML Distilled!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.19	

Incremental Development!

Plan to incrementally develop (i.e., prototype) the system.!
—  If possible, always have a running version of the system, even if

most functionality is yet to be implemented.!
—  Integrate new functionality as soon as possible.!
—  Validate incremental versions against user requirements.!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.20	

The Unified Process!

Requirements!

Analysis!

Design!

Implementation!

Test!

How do you plan the number of iterations? !
How do you decide on completion?!

Inception! Elaboration! Construction! Transition!

Iter.!
#1! Iter.!

#2! ...! ...! Iter.!
#n-1! Iter.!

#n!...! ...!...! ...!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.21	

Boehmʼs Spiral Lifecycle!

evolving system!

initial requirements!

first prototype!
alpha demo!

go, no-go decision!completion!

Planning =! determination !
of objectives, alternatives !
and constraints!

Risk Analysis =! Analysis of !
alternatives and identification/!
resolution of risks!

Customer Evaluation =!
Assessment of the !
results of engineering!

Engineering =!
Development of the !
next level product!

Risk =! something that !
will delay project or !
increase its cost!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.22	

Roadmap!

>  Course Overview!
>  What is Software Engineering?!
>  The Iterative Development Lifecycle!
>  Software Development Activities!
>  Methods and Methodologies!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.23	

Requirements Collection!

User requirements are often expressed informally:!
—  features!
—  usage scenarios!

Although requirements may be documented in written form,
they may be incomplete, ambiguous, or even incorrect.!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.24	

Changing requirements!

Requirements will change!!
— inadequately captured or expressed in the first place!
— user and business needs may change during the project!

Validation is needed throughout the software lifecycle, not
only when the “final system” is delivered!!
— build constant feedback into your project plan!
— plan for change!
— early prototyping [e.g., UI] can help clarify requirements!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.25	

Requirements Analysis and Specification!

Analysis is the process of specifying what a system will do. !

— The intention is to provide a clear understanding of what the
system is about and what its underlying concepts are. !

The result of analysis is a specification document.!

Does the requirements
specification correspond to
the usersʼ actual needs?	

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.26	

Object-Oriented Analysis!

An object-oriented analysis results in models of the system
which describe:!

>  classes of objects that exist in the system!
— responsibilities of those classes!

>  relationships between those classes!
>  use cases and scenarios describing!

— operations that can be performed on the system!
— allowable sequences of those operations!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.27	

Prototyping (I)!

A prototype is a software program developed to test,
explore or validate a hypothesis, i.e. to reduce risks.!

An exploratory prototype, also known as a throwaway
prototype, is intended to validate requirements or explore
design choices.!
— UI prototype — validate user requirements!
— rapid prototype — validate functional requirements!
— experimental prototype — validate technical feasibility!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.28	

Prototyping (II)!

An evolutionary prototype is intended to evolve in steps into
a finished product.!

>  iteratively “grow” the application, redesigning and
refactoring along the way!

First do it,!
then do it right,!
then do it fast.	

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.29	

Design!

Design is the process of specifying how the specified
system behaviour will be realized from software
components. The results are architecture and detailed
design documents.!
Object-oriented design delivers models that describe:!
— how system operations are implemented by interacting objects!
— how classes refer to one another and how they are related by

inheritance!
— attributes and operations associated to classes!

Design is an iterative process,
proceeding in parallel with
implementation!!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.30	

Conwayʼs Law!

—  “Organizations that design systems are constrained
to produce designs that are copies of the
communication structures of these organizations”!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.31	

Implementation and Testing!

Implementation is the activity of constructing a software
solution to the customerʼs requirements.!

Testing is the process of validating that the solution meets
the requirements.!

— The result of implementation and testing is a fully documented
and validated solution.!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.32	

Design, Implementation and Testing!

Design, implementation and testing are iterative activities!
— The implementation does not “implement the design”, but rather

the design document documents the implementation!!

>  System tests reflect the requirements specification!
>  Testing and implementation go hand-in-hand!

— Ideally, test case specification precedes design and
implementation!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.33	

Maintenance!

Maintenance is the process of changing a system after it
has been deployed.!

>  Corrective maintenance: identifying and repairing defects!
>  Adaptive maintenance: adapting the existing solution to

new platforms!
>  Perfective maintenance: implementing new requirements!

In a spiral lifecycle, everything after
the delivery and deployment of the
first prototype can be considered

“maintenance”!	

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.34	

Maintenance activities!

“Maintenance” entails:!
>  configuration and version management!
>  reengineering (redesigning and refactoring)!
>  updating all analysis, design and user documentation!

Repeatable,
automated tests
enable evolution
and refactoring	

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.35	

Efficiency
Improvements

4%
Documentation

6%

Hardware
Changes

6%

Routine
Debugging

9%

Emergency
Fixes
12%

Changes in
Data Formats

17%

Other
3%

Changes in
User

Requirements
43%

Maintenance costs!

“Maintenance” typically
accounts for 70% of
software costs!!

Means: most
project costs

concern continued
development after

deployment	

– Lientz 1979!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.36	

Roadmap!

>  Course Overview!
>  What is Software Engineering?!
>  The Iterative Development Lifecycle!
>  Software Development Activities!
>  Methods and Methodologies!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.37	

Methods and Methodologies!

Principle = general statement describing desirable properties!
Method = general guidelines governing some activity!
Technique = more technical and mechanical than method!
Methodology = package of methods and techniques packaged!

Principle!
Methods and Techniques!

Methodologies!
Tools!

— Ghezzi et al. 1991!

Object-Oriented Methods: a brief history!

>  First generation:!
—  Adaptation of existing notations (ER diagrams, state diagrams ...):

Booch, OMT, Shlaer and Mellor, ...!
—  Specialized design techniques:!

–  CRC cards; responsibility-driven design; design by contract!
>  Second generation:!

—  Fusion: Booch + OMT + CRC + formal methods!
>  Third generation:!

—  Unified Modeling Language:!
–  uniform notation: Booch + OMT + Use Cases + ...!
–  various UML-based methods (e.g. Catalysis)!

>  Agile methods:!
—  Extreme Programming!
—  Test-Driven Development!
—  Scrum …!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.38!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.39	

What you should know!!

>  How does Software Engineering differ from
programming?!

>  Why is the “waterfall” model unrealistic?!
>  What is the difference between analysis and design?!
>  Why plan to iterate? Why develop incrementally?!
>  Why is programming only a small part of the cost of a

“real” software project?!
>  What are the key advantages and disadvantages of

object-oriented methods?!

© Oscar Nierstrasz!

ESE — Introduction!

ESE 1.40	

Can you answer these questions?!

>  What is the appeal of the “waterfall” model?!
>  Why do requirements change?!
>  How can you validate that an analysis model captures

usersʼ real needs?!
>  When does analysis stop and design start?!
>  When can implementation start?!
>  What are good examples of Conwayʼs Law in action?!

License!

© Oscar Nierstrasz!

ESE — Introduction!

Attribution-ShareAlike 3.0 Unported!
You are free:!

to Share — to copy, distribute and transmit the work!
to Remix — to adapt the work!

Under the following conditions:!
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).!
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.!

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.!

Any of the above conditions can be waived if you get permission from the copyright holder.!
Nothing in this license impairs or restricts the author's moral rights.!

http://creativecommons.org/licenses/by-sa/3.0/

