
Introduction to Software Engineering!

2. Requirements Collection!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.2	

Roadmap!

>  The Requirements Engineering Process!
>  Use Cases!
>  Functional and non-functional requirements!
>  Evolutionary and throw-away prototyping!
>  Requirements checking and reviews!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.3	

Sources!

>  Software Engineering, I. Sommerville, 7th Edn., 2004.!
>  Software Engineering — A Practitionerʼs Approach, R.

Pressman, Mc-Graw Hill, 5th Edn., 2001.!
>  Objects, Components and Frameworks with UML, D.

D'Souza, A. Wills, Addison-Wesley, 1999!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.4	

Roadmap!

>  The Requirements Engineering Process!
>  Use Cases!
>  Functional and non-functional requirements!
>  Evolutionary and throw-away prototyping!
>  Requirements checking and reviews!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.5	

Kommission:

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8
8:00 - 9:00
9:00 - 10:00
10:00 - 11:00
11:00 - 12:00
12:00 - 13:00
13:00 - 14:00
14:00 - 15:00
15:00 - 16:00
16:00 - 17:00
17:00 - 18:00

Bemerkungen: Unterschrift:

Zeitschema

Jan 2002 Feb 2002

Bitte ankreuzen wo Sie keinenfalls mitmachen können, und senden Sie das ausgefüllte Formular bis ___________ ans Dekanat zurück.

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.6	

Electronic Time Schedule!

“So, basically we need a form for the time schedule that can be
distributed by eMail, a place (html) where I can deposit these forms
after they have been filled out, and an algorithm that calculates a few
possible meeting times, possibly setting priorities to certain persons of
each committee (since there will always be some time schedule
overlaps). It would also be great if there were a way of checking
whether everybody of the relevant committee has really sent their time
schedule back and at the same time listing all the ones who have failed
to do so. An automatic invitation letter for the committee meeting to all
the persons involved, generated through this program, would be even a
further asset.”"

How can we transform this description into a requirements specification?"

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.7	

The Requirements Engineering Process!

© Ian Sommerville 2000!

Feasibility
Study!

Requirements
elicitation and

analysis!

Requirements
specification!

Requirements
validation!

Feasibility
report! System

models!

User and system
requirements!

Requirements
document!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.8	

Requirements Engineering Activities!

Feasibility study! Determine if the user needs can be satisfied
with the available technology and budget.!

Requirements
analysis!

Find out what system stakeholders require
from the system.!

Requirements
definition!

Define the requirements in a form
understandable to the customer.!

Requirements
specification!

Define the requirements in detail. (Written as
a contract between client and contractor.)!

“Requirements are for users; specifications
are for analysts and developers.”!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.9	

Requirements Analysis!

Sometimes called requirements elicitation or requirements
discovery!

Technical staff work with customers to determine !
>  the application domain, !
>  the services that the system should provide and!
>  the systemʼs operational constraints.!

Involves various stakeholders:!
>  e.g., end-users, managers, engineers involved in

maintenance, domain experts, trade unions, etc.!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.10	

Problems of Requirements Analysis!

Various problems typically arise:!

— Stakeholders donʼt know what they really want!
— Stakeholders express requirements in their own terms!
— Different stakeholders may have conflicting requirements"
— Organisational and political factors may influence the system

requirements!
— The requirements change during the analysis process.!
— New stakeholders may emerge.!

ESE — Requirements Collection!

How the Customer
explained it!

How the Project
Leader understood it!

How the Analyst
designed it!

What the Customer
really needed!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.12	

Requirements evolution!

>  Requirements always evolve as a better understanding
of user needs is developed and as the organisationʼs
objectives change!

>  It is essential to plan for change in the requirements as
the system is being developed and used!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.13	

The Requirements Analysis Process!

© Ian Sommerville 2000!

Domain
understanding!

Requirements
validation!

Prioritization!

Conflict
resolution!

Requirements
collection!

Classification!

Requirements
definition and
specification!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.14	

Roadmap!

>  The Requirements Engineering Process!
>  Use Cases!
>  Functional and non-functional requirements!
>  Evolutionary and throw-away prototyping!
>  Requirements checking and reviews!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.15	

Use Cases and Scenarios!

A use case is the specification of a sequence of actions,
including variants, that a system (or other entity) can
perform, interacting with actors of the system”.!

— e.g., buy a DVD through the internet!

A scenario is a particular trace of action occurrences,
starting from a known initial state.!

— e.g., connect to myDVD.com, go to the “search” page!
...!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.16	

Use Cases and Viewpoints ...!

Stakeholders represent different problem viewpoints.!
— Interview as many different kinds of stakeholders as possible/

necessary!
— Translate requirements into use cases or “stories” about the

desired system involving a fixed set of actors (users and system
objects)!

— For each use case, capture both typical and exceptional usage
scenarios!

Users tend to think about systems in terms of “features”.!
— You must get them to tell you stories involving those features.!
— Use cases and scenarios can tell you if the requirements are

complete and consistent!!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.17	

Unified Modeling Language!

Class Diagrams! visualize logical structure of system!
in terms of classes, objects and relationships!

Use Case Diagrams! show external actors and use cases they
participate in!

Sequence Diagrams! visualize temporal message ordering of a
concrete scenario of a use case!

Collaboration
(Communication)

Diagrams!

visualize relationships of objects exchanging
messages in a concrete scenario"

State Diagrams! specify the abstract states of an object and
the transitions between the states!

UML is the industry standard for documenting OO models"

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.18	

Use Case Diagrams!

More on this
later …"

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.19	

Sequence Diagrams!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.20	

Writing Requirements Definitions!

Requirements definitions usually consist of natural language,
supplemented by (e.g., UML) diagrams and tables.!

Three types of problems can arise:"
— Lack of clarity: It is hard to write documents that are both precise and

easy-to-read.!
— Requirements confusion: Functional and non-functional requirements

tend to be intertwined.!
— Requirements amalgamation: Several different requirements may be

expressed together.!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.21	

Roadmap!

>  The Requirements Engineering Process!
>  Use Cases!
>  Functional and non-functional requirements!
>  Evolutionary and throw-away prototyping!
>  Requirements checking and reviews!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.22	

Functional and Non-functional Requirements!

Functional requirements describe system services or
functions!
— Compute sales tax on a purchase!
— Update the database on the server ...!

Non-functional requirements are constraints on the system
or the development process!

"Non-functional requirements may be more critical than functional
requirements."
"If these are not met, the system is useless!"

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.23	

Non-functional Requirements!

Product
requirements:!

specify that the delivered product must behave
in a particular way !
e.g. execution speed, reliability, etc."

Organisational
requirements:!

are a consequence of organisational policies
and procedures !
e.g. process standards used, implementation
requirements, etc."

External
requirements:!

arise from factors which are external to the
system and its development process !
e.g. interoperability requirements, legislative
requirements, etc."

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.24	

Types of Non-functional Requirements!

© Ian Sommerville 2000!

Non-functional
requirements!

Product!
requirements!

Organizational!
requirements!

External!
requirements!

Efficiency!
requirements!

Reliability!
requirements!

Portability!
requirements!

Interoperability!
requirements!

Ethical!
requirements!

Usability!
requirements!

Performance!
requirements!

Space!
requirements!

Delivery!
requirements!

Implementation!
requirements!

Standards!
requirements!

Legislative!
requirements!

Privacy!
requirements!

Safety!
requirements!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.25	

Examples of Non-functional
Requirements!

Product
requirement!

It shall be possible for all necessary communication
between the APSE and the user to be expressed in
the standard Ada character set."

Organisational
requirement!

The system development process and deliverable
documents shall conform to the process and
deliverables defined in XYZCo-SP-STAN-95."

External
requirement!

The system shall provide facilities that allow any
user to check if personal data is maintained on the
system. A procedure must be defined and supported
in the software that will allow users to inspect
personal data and to correct any errors in that data.!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.26	

Requirements Verifiability!

Requirements must be written so that they can be
objectively verified.!

Imprecise:!
—  The system should be easy to use by experienced controllers

and should be organised in such a way that user errors are
minimised."
"Terms like “easy to use” and “errors shall be minimised” are
useless as specifications."

Verifiable:!
—  Experienced controllers should be able to use all the system

functions after a total of two hours training. After this training,
the average number of errors made by experienced users
should not exceed two per day.!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.27	

Precise Requirements Measures (I)!

Property! Measure!

Speed"
Processed transactions/second  
User/Event response time  
Screen refresh time!

Size" K Bytes; Number of RAM chips!

Ease of use"
Training time  
Rate of errors made by trained users 
Number of help frames!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.28	

Precise Requirements Measures (II)!

Property! Measure!

Reliability"
Mean time to failure  
Probability of unavailability!
Rate of failure occurrence!

Robustness"
Time to restart after failure  
Percentage of events causing failure  
Probability of data corruption on failure!

Portability" Percentage of target dependent statements 
Number of target systems!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.29	

Roadmap!

>  The Requirements Engineering Process!
>  Use Cases!
>  Functional and non-functional requirements!
>  Evolutionary and throw-away prototyping!
>  Requirements checking and reviews!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.30	

Prototyping Objectives!

The objective of evolutionary prototyping is to deliver a
working system to end-users. !

— Development starts with the requirements that are best
understood.!

The objective of throw-away prototyping is to validate or
derive the system requirements.!

— Prototyping starts with that requirements that are poorly
understood.!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.31	

Evolutionary Prototyping!

>  Must be used for systems where the specification cannot
be developed in advance.!
— e.g., AI systems and user interface systems"

>  Based on techniques which allow rapid system iterations.!
— e.g., executable specification languages, VHL languages, 4GLs,

component toolkits"
>  Verification is impossible as there is no specification. !

— Validation means demonstrating the adequacy of the system."

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.32	

Throw-away Prototyping!

>  Used to reduce requirements risk!
— The prototype is developed from an initial specification, delivered

for experiment then discarded"

>  The throw-away prototype should not be considered as a
final system!
— Some system characteristics may have been left out !
— (e.g., platform requirements may be ignored)!
— There is no specification for long-term maintenance!
— The system will be poorly structured and difficult to maintain!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.33	

Roadmap!

>  The Requirements Engineering Process!
>  Use Cases!
>  Functional and non-functional requirements!
>  Evolutionary and throw-away prototyping!
>  Requirements checking and reviews!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.34	

Requirements Checking!

Validity! Does the system provide the functions
which best support the customerʼs needs?!

Consistency! Are there any requirements conflicts?!

Completeness! Are all functions required by the customer
included?!

Realism! Can the requirements be implemented
given available budget and technology?!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.35	

Requirements Reviews!

>  Regular reviews should be held while the requirements
definition is being formulated!

>  Both client and contractor staff should be involved in
reviews!

>  Reviews may be formal (with completed documents) or
informal. !
—  Good communications between developers, customers and

users can resolve problems at an early stage!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.36	

Review checks!

Verifiability! Is the requirement realistically testable?!

Comprehensibility! Is the requirement properly understood?!

Traceability! Is the origin of the requirement clearly
stated?!

Adaptability!
Can the requirement be changed without
a large impact on other requirements?!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.37	

Sample Requirements Review Checklist!

>  Does the (software) product have a succinct name, and a clearly described
purpose?!

>  Are the characteristics of users and of typical usage mentioned?  
(No user categories missing.)!

>  Are all external interfaces of the software explicitly mentioned?  
(No interfaces missing.)!

>  Does each specific requirement have a unique identifier ?!
>  Is each requirement atomic and simply formulated ?  

(Typically a single sentence. Composite requirements must be split.)!
>  Are requirements organized into coherent groups ?  

(If necessary, hierarchical; not more than about ten per group.)!
>  Is each requirement prioritized ?  

(Is the meaning of the priority levels clear?)!
>  Are all unstable requirements marked as such?  

(TBC=`To Be Confirmed', TBD=`To Be Defined')!

http://wwwis.win.tue.nl/2M390/rev_req.html!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.38	

Sample Requirements Review Checklist!

>  Is each requirement verifiable (in a provisional acceptance test)?  
(Measurable: where possible, quantify; capacity, performance, accuracy)!

>  Are the requirements consistent ? (Non-conflicting.)!
>  Are the requirements sufficiently precise and unambiguous ?  

(Which interfaces are involved, who has the initiative, who supplies what
data, no passive voice.)!

>  Are the requirements complete? Can everything not explicitly constrained
indeed be viewed as developer freedom? Is a product that satisfies every
requirement indeed acceptable? (No requirements missing.)!

>  Are the requirements understandable to those who will need to work with
them later?!

>  Are the requirements realizable within budget?!
>  Do the requirements express actual customer needs (in the language of the

problem domain), rather than solutions (in developer jargon)?!

http://wwwis.win.tue.nl/2M390/rev_req.html!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.39	

Traceability!

To protect against changes you should be able to trace back from every
system component to the original requirement that caused its
presence!

C1" C2" …" …" Cm"
req1" x!
req2" x!
…" x!
…" x!

reqn" x! x!

• A software process
should help you keep
this virtual table up-
to-date!

• Simple techniques
may be quite
valuable (naming
conventions, ...)!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.40	

What you should know!!

>  What is the difference between requirements analysis
and specification?!

>  Why is it hard to define and specify requirements?!
>  What are use cases and scenarios?!
>  What is the difference between functional and non-

functional requirements?!
>  Whatʼs wrong with a requirement that says a product

should be “user-friendly”?!
>  Whatʼs the difference between evolutionary and throw-

away prototyping?!

© Oscar Nierstrasz!

ESE — Requirements Collection!

ESE 2.41	

Can you answer the following questions?!

>  Why isnʼt it enough to specify requirements as a set of
desired features?!

>  Which is better for specifying requirements: natural
language or diagrams?!

>  How would you prototype a user interface for a web-
based ordering system? !

>  Would it be an evolutionary or throw-away prototype? !
>  What would you expect to gain from the prototype?!
>  How would you check a requirement for “adaptability”?!

License!

© Oscar Nierstrasz!

ESE — Introduction!

Attribution-ShareAlike 3.0 Unported!
You are free:!

to Share — to copy, distribute and transmit the work!
to Remix — to adapt the work!

Under the following conditions:!
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).!
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.!

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.!

Any of the above conditions can be waived if you get permission from the copyright holder.!
Nothing in this license impairs or restricts the author's moral rights.!

http://creativecommons.org/licenses/by-sa/3.0/

