
Introduction to Software Engineering!

4. Responsibility-Driven Design!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.2	

Roadmap!

>  Why use Responsibility-Driven Design?!
>  Finding Classes!
>  Class Selection Rationale!
>  CRC sessions!
>  Identifying Responsibilities!
>  Finding Collaborations!
>  Structuring Inheritance Hierarchies!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.3	

Source!

>  Designing Object-Oriented Software, R. Wirfs-Brock, B. Wilkerson,
L. Wiener, Prentice Hall, 1990.!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.4	

Roadmap!

>  Why use Responsibility-Driven Design?!
>  Finding Classes!
>  Class Selection Rationale!
>  CRC sessions!
>  Identifying Responsibilities!
>  Finding Collaborations!
>  Structuring Inheritance Hierarchies!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.5	

Functional Decomposition:!

—  Good in a “waterfall” approach: stable requirements and one
monolithic function!

However!
—  Naive: Modern systems perform more than one function!
—  Maintainability: system functions evolve ⇒ redesign affect

whole system!
—  Interoperability: interfacing with other system is difficult!

Why Responsibility-driven Design?!

Decompose according to the functions a
system is supposed to perform.!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.6	

Why Responsibility-driven Design?!

Object-Oriented Decomposition:!

—  Better for complex and evolving systems!
However!

—  How to find the objects?!

Decompose according to the objects a
system is supposed to manipulate.!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.7	

Iteration in Object-Oriented Design!

>  The result of the design process is not a final product:!
—  design decisions may be revisited, even after implementation!
—  design is not linear but iterative!

>  The design process is not algorithmic:!
—  a design method provides guidelines, not fixed rules!
—  “a good sense of style often helps produce clean, elegant

designs — designs that make a lot of sense from the
engineering standpoint”!

Responsibility-driven design is an
(analysis and) design technique that

works well in combination with various
methods and notations.!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.8	

Roadmap!

>  Why use Responsibility-Driven Design?!
>  Finding Classes!
>  Class Selection Rationale!
>  CRC sessions!
>  Identifying Responsibilities!
>  Finding Collaborations!
>  Structuring Inheritance Hierarchies!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.9	

The Initial Exploration!

1.  Find the classes in your system!

2.  Determine the responsibilities of each class!

3.  Determine how objects collaborate with each other to
fulfil their responsibilities!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.10	

The Detailed Analysis!

1.  Factor common responsibilities to build class
hierarchies!

2.  Streamline collaborations between objects!
—  Is message traffic heavy in parts of the system?!
—  Are there classes that collaborate with everybody?!
—  Are there classes that collaborate with nobody?!
—  Are there groups of classes that can be seen as subsystems?!

3.  Turn class responsibilities into fully specified signatures!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.11	

Finding Classes!

Start with requirements specification:!
!What are the goals of the system being designed, its
expected inputs and desired responses?!

1.  Look for noun phrases:!
—  separate into obvious classes, uncertain candidates, and

nonsense!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.12	

Finding Classes ...!

2.  Refine to a list of candidate classes. Some guidelines are:!

—  Model physical objects — e.g. disks, printers!
—  Model conceptual entities — e.g. windows, files!
—  Choose one word for one concept — what does it mean within the

system!
—  Be wary of adjectives — is it really a separate class?!
—  Be wary of missing or misleading subjects — rephrase in active voice!
—  Model categories of classes — delay modelling of inheritance!
—  Model interfaces to the system — e.g., user interface, program

interfaces!
—  Model attribute values, not attributes — e.g., Point vs. Centre!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.13	

Drawing Editor Requirements Specification!

The drawing editor is an interactive graphics editor.
With it, users can create and edit drawings composed of
lines, rectangles, ellipses and text.!

Tools control the mode of operation of the editor.
Exactly one tool is active at any given time.!

Two kinds of tools exist: the selection tool and creation
tools. When the selection tool is active, existing drawing
elements can be selected with the cursor. One or more
drawing elements can be selected and manipulated; if
several drawing elements are selected, they can be
manipulated as if they were a single element. Elements
that have been selected in this way are referred to as the
current selection. The current selection is indicated
visually by displaying the control points for the element.
Clicking on and dragging a control point modifies the
element with which the control point is associated.!

When a creation tool is active, the current selection is
empty. The cursor changes in different ways according to
the specific creation tool, and the user can create an
element of the selected kind. After the element is created,
the selection tool is made active and the newly created
element becomes the current selection.!

The text creation tool changes the shape of the cursor
to that of an I-beam. The position of the first character of
text is determined by where the user clicks the mouse!

button. The creation tool is no longer active when the user
clicks the mouse button outside the text element. The
control points for a text element are the four corners of the
region within which the text is formatted. Dragging the
control points changes this region. The other creation
tools allow the creation of lines, rectangles and ellipses.
They change the shape of the cursor to that of a crosshair.
The appropriate element starts to be created when the
mouse button is pressed, and is completed when the
mouse button is released. These two events create the
start point and the stop point.!
The line creation tool creates a line from the start point to
the stop point. These are the control points of a line.
Dragging a control point changes the end point.!
The rectangle creation tool creates a rectangle such that
these points are diagonally opposite corners. These points
and the other corners are the control points. Dragging a
control point changes the associated corner.!
The ellipse creation tool creates an ellipse fitting within the
rectangle defined by the two points described above. The
major radius is one half the width of the rectangle, and the
minor radius is one half the height of the rectangle. The
control points are at the corners of the bounding rectangle.
Dragging control points changes the associated corner.!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.14	

Drawing Editor: noun phrases!

The drawing editor is an interactive graphics editor. With it, users can create
and edit drawings composed of lines, rectangles, ellipses and text.!

Tools control the mode of operation of the editor. Exactly one tool is active at
any given time.!

Two kinds of tools exist: the selection tool and creation tools. When the
selection tool is active, existing drawing elements can be selected with the
cursor. One or more drawing elements can be selected and manipulated; if
several drawing elements are selected, they can be manipulated as if they were
a single element. Elements that have been selected in this way are referred to
as the current selection. The current selection is indicated visually by displaying
the control points for the element. Clicking on and dragging a control point
modifies the element with which the control point is associated.!

When a creation tool is active, the current selection is empty. The cursor
changes in different ways according to the specific creation tool, and the user
can create an element of the selected kind. After the element is created, the
selection tool is made active and the newly created element becomes the
current selection.!

…!

The text creation tool changes the shape of the cursor to that of an I-beam.
The position of the first character of text is determined by where the user
clicks the mouse button. The creation tool is no longer active when the user
clicks the mouse button outside the text element. The control points for a text
element are the four corners of the region within which the text is formatted.
Dragging the control points changes this region. The other creation tools
allow the creation of lines, rectangles and ellipses. They change the shape
of the cursor to that of a crosshair. The appropriate element starts to be
created when the mouse button is pressed, and is completed when the
mouse button is released. These two events create the start point and the
stop point.!

The line creation tool creates a line from the start point to the stop point.
These are the control points of a line. Dragging a control point changes the
end point.!

The rectangle creation tool creates a rectangle such that these points are
diagonally opposite corners. These points and the other corners are the
control points. Dragging a control point changes the associated corner.!

The ellipse creation tool creates an ellipse fitting within the rectangle
defined by the two points described above. The major radius is one half the
width of the rectangle, and the minor radius is one half the height of the
rectangle. The control points are at the corners of the bounding rectangle.
Dragging control points changes the associated corner.!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.16	

Roadmap!

>  Why use Responsibility-Driven Design?!
>  Finding Classes!
>  Class Selection Rationale!
>  CRC sessions!
>  Identifying Responsibilities!
>  Finding Collaborations!
>  Structuring Inheritance Hierarchies!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.17	

Class Selection Rationale!

Model physical objects:!
— mouse button [event or attribute]!

Model conceptual entities:!
— ellipse, line, rectangle!
— Drawing, Drawing Element!
— Tool, Creation Tool, Ellipse Creation Tool, Line Creation Tool,

Rectangle Creation Tool, Selection Tool, Text Creation Tool!
— text, Character!
— Current Selection!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.18	

Class Selection Rationale ...!

Choose one word for one concept:!
—  Drawing Editor ⇒ 

 editor, interactive graphics editor!
—  Drawing Element ⇒ element!
—  Text Element ⇒ text!
—  Ellipse Element, Line Element, Rectangle Element  

⇒ ellipse, line, rectangle!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.19	

Class Selection Rationale ...!

Be wary of adjectives:!
— Ellipse Creation Tool, Line Creation Tool, Rectangle Creation Tool,

Selection Tool, Text Creation Tool!
–  all have different requirements!

— bounding rectangle, rectangle, region ⇒ Rectangle!
–  common meaning, but different from Rectangle Element!

— Point ⇒ end point, start point, stop point !
— Control Point!

–  more than just a coordinate!
— corner ⇒ 

!associated corner, diagonally opposite corner!
–  no new behaviour!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.20	

Class Selection Rationale ...!

Be wary of sentences with missing or misleading subjects:!
—  “The current selection is indicated visually by displaying the control

points for the element.” !
–  by what? Assume Drawing Editor ...!

Model categories:!
— Tool, Creation Tool!

Model interfaces to the system: — no good candidates here ...!
— user — donʼt need to model user explicitly!
— cursor — cursor motion handled by operating system !

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.21	

Class Selection Rationale ...!

Model values of attributes, not attributes themselves:!
— height of the rectangle, width of the rectangle!
— major radius, minor radius !
— position — of first text character; probably Point attribute!
— mode of operation — attribute of Drawing Editor!
— shape of the cursor, I-beam, crosshair — attributes of Cursor!
— corner — attribute of Rectangle!
—  time — an implicit attribute of the system!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.22	

Candidate Classes!

Character! Line Element!
Control Point ! Point!
Creation Tool! Rectangle !
Current Selection! Rectangle Creation Tool!
Drawing! Rectangle Element!
Drawing Editor! Selection Tool!
Drawing Element! Text Creation Tool!
Ellipse Creation Tool! Text Element !
Ellipse Element! Tool!
Line Creation Tool!

Preliminary analysis yields the following candidates:!

Expect the list to evolve
as design progresses.!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.23	

Roadmap!

>  Why use Responsibility-Driven Design?!
>  Finding Classes!
>  Class Selection Rationale!
>  CRC sessions!
>  Identifying Responsibilities!
>  Finding Collaborations!
>  Structuring Inheritance Hierarchies!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.24	

CRC Cards!

Use CRC cards to record candidate classes:!

Record the candidate Class Name and superclass (if known)!
Record each Responsibility and the Collaborating classes!

— compact, easy to manipulate, easy to modify or discard!!
— easy to arrange, reorganize!
— easy to retrieve discarded classes!

Text Creation Tool subclass of Tool!
Editing Text! Text Element!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.25	

CRC Sessions!

CRC cards are not a specification of a design.!

They are a tool to explore possible designs.!
— Prepare a CRC card for each candidate class!
— Get a team of Developers to sit around a table and distribute the

cards to the team!
— The team walks through scenarios, playing the roles of the

classes.!

This exercise will uncover:!
— unneeded classes and responsibilities!
— missing classes and responsibilities!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.26	

Roadmap!

>  Why use Responsibility-Driven Design?!
>  Finding Classes!
>  Class Selection Rationale!
>  CRC sessions!
>  Identifying Responsibilities!
>  Finding Collaborations!
>  Structuring Inheritance Hierarchies!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.27	

Responsibilities!

What are responsibilities?!
— the knowledge an object maintains and provides!
— the actions it can perform!

Responsibilities represent the public services an object may
provide to clients (but not the way in which those
services may be implemented)!
— specify what an object does, not how it does it!
— donʼt describe the interface yet, only conceptual responsibilities!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.28	

Identifying Responsibilities!

>  Study the requirements specification:!
— highlight verbs and determine which represent responsibilities!
— perform a walk-though of the system!

–  explore as many scenarios as possible!
–  identify actions resulting from input to the system!

>  Study the candidate classes:!
— class names ⇒ roles ⇒ responsibilities!
— recorded purposes on class cards ⇒ responsibilities!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.29	

How to assign responsibility?!

Pelrineʼs Laws:!

>  “Don't do anything you can push off to someone else.”!

>  “Don't let anyone else play with you.”!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.30	

Assigning Responsibilities!

>  Evenly distribute system intelligence!
—  avoid procedural centralization of responsibilities!
—  keep responsibilities close to objects rather than their clients!

>  State responsibilities as generally as possible!
—  “draw yourself” vs. “draw a line/rectangle etc.”!
—  leads to sharing!

>  Keep behaviour together with any related information!
—  principle of encapsulation!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.31	

Assigning Responsibilities ...!

>  Keep information about one thing in one place!
—  if multiple objects need access to the same information!

1.  a new object may be introduced to manage the information, or!
2.  one object may be an obvious candidate, or!
3.  the multiple objects may need to be collapsed into a single one!

>  Share responsibilities among related objects!
—  break down complex responsibilities!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.32	

Relationships Between Classes!

Additional responsibilities can be uncovered by examining
relationships between classes, especially:!

>  The “Is-Kind-Of” Relationship:!
—  classes sharing a common attribute often share a common

superclass!
—  common superclasses suggest common responsibilities!

e.g., to create a new Drawing Element, a Creation Tool must:!
1.  accept user input! ! !implemented in subclass!
2.  determine location to place it !generic!
3.  instantiate the element ! !implemented in subclass!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.33	

Relationships Between Classes ...!

>  The “Is-Analogous-To” Relationship:!
— similarities between classes suggest as-yet-undiscovered

superclasses!

>  The “Is-Part-Of” Relationship:!
— distinguish (donʼt share) responsibilities of part and of whole!

Difficulties in assigning responsibilities suggest:!
— missing classes in design, or — e.g., Group Element !
— free choice between multiple classes!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.34	

Example Relationships!

>  Drawing element is-part-of Drawing!

>  Drawing Element has-knowledge-of Control Points!

>  Rectangle Tool is-kind-of Creation Tool!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.35	

Roadmap!

>  Why use Responsibility-Driven Design?!
>  Finding Classes!
>  Class Selection Rationale!
>  CRC sessions!
>  Identifying Responsibilities!
>  Finding Collaborations!
>  Structuring Inheritance Hierarchies!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.36	

Collaborations!

What are collaborations?!

>  collaborations are client requests to servers needed to
fulfil responsibilities!

>  collaborations reveal control and information flow and,
ultimately, subsystems!

>  collaborations can uncover missing responsibilities!
>  analysis of communication patterns can reveal

misassigned responsibilities!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.37	

Finding Collaborations!

For each responsibility:!
1.  Can the class fulfil the responsibility by itself?!
2.  If not, what does it need, and from what other class can it obtain what

it needs?!

For each class:!
1.  What does this class know?!
2.  What other classes need its information or results? Check for

collaborations.!
3.  Classes that do not interact with others should be discarded. (Check

carefully!)!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.38	

Listing Collaborations!

Drawing!

Knows which elements it contains!

Maintains order of elements! Drawing Element!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.39	

Roadmap!

>  Why use Responsibility-Driven Design?!
>  Finding Classes!
>  Class Selection Rationale!
>  CRC sessions!
>  Identifying Responsibilities!
>  Finding Collaborations!
>  Structuring Inheritance Hierarchies!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.40	

Finding Abstract Classes!

>  group related classes with common attributes!
>  introduce abstract superclasses to represent the group!
>  “categories” are good candidates for abstract classes!

Abstract classes factor out common behaviour shared by other classes!

Warning: beware of premature classification;
your hierarchy will evolve!!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.41	

Sharing Responsibilities!

Concrete classes may be both
instantiated and inherited from.!
Abstract classes may only be
inherited from.!

Note on class cards and on class
diagram.!

Venn Diagrams can be used to
visualize shared responsibilities.!
(Warning: not part of UML!)!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.42	

Multiple Inheritance!

Decide whether a class
will be instantiated to
determine if it is abstract
or concrete.!

Responsibilities of
subclasses are larger
than those of
superclasses.!
Intersections represent
common superclasses.!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.43	

Building Good Hierarchies!

Model a “kind-of” hierarchy:!
>  Subclasses should support all inherited responsibilities,

and possibly more!

Factor common responsibilities as high as possible:!
>  Classes that share common responsibilities should

inherit from a common abstract superclass; introduce
any that are missing!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.44	

Building Good Hierarchies …!

Make sure that abstract classes do not inherit from
concrete classes:!

>  Eliminate by introducing common abstract superclass:
abstract classes should support responsibilities in an
implementation-independent way!

Eliminate classes that do not add functionality:!
>  Classes should either add new responsibilities, or a

particular way of implementing inherited ones!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.45	

C assumes all the
responsibilities of

both A and B!

Building Kind-Of Hierarchies!

Correctly Formed Subclass Responsibilities:!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.46	

Building Kind-Of Hierarchies ...!

Incorrect Subclass/Superclass
Relationships!

>  G assumes only some of the
responsibilities inherited from E!

Revised Inheritance
Relationships!

>  Introduce abstract superclasses
to encapsulate common
responsibilities!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.47	

Refactoring Responsibilities!

Lines, Ellipses and
Rectangles are
responsible for
keeping track of the
width and colour of the
lines they are drawn
with.!
This suggests a
common superclass.!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.48	

Protocols!

A protocol is a set of signatures (i.e., an interface) to which
a class will respond.!

—  Generally, protocols are specified for public responsibilities!
—  Protocols for private responsibilities should be specified if they

will be used or implemented by subclasses!

1.  Construct protocols for each class!
2.  Write a design specification for each class and subsystem!
3.  Write a design specification for each contract!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.49	

What you should know!!

>  What criteria can you use to identify potential classes?!
>  How can CRC cards help during analysis and design?!
>  How can you identify abstract classes?!
>  What are class responsibilities, and how can you identify them?!
>  How can identification of responsibilities help in identifying classes?!
>  What are collaborations, and how do they relate to responsibilities?!
>  How can you identify abstract classes?!
>  What criteria can you use to design a good class hierarchy?!
>  How can refactoring responsibilities help to improve a class

hierarchy?!

© Oscar Nierstrasz!

ESE — Responsibility-Driven Design!

ESE 4.50	

Can you answer the following questions?!

>  When should an attribute be promoted to a class?!
>  Why is it useful to organize classes into a hierarchy?!
>  How can you tell if you have captured all the

responsibilities and collaborations?!
>  What use is multiple inheritance during design if your

programming language does not support it?!

License!

© Oscar Nierstrasz!

ESE — Introduction!

Attribution-ShareAlike 3.0 Unported!
You are free:!

to Share — to copy, distribute and transmit the work!
to Remix — to adapt the work!

Under the following conditions:!
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).!
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.!

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.!

Any of the above conditions can be waived if you get permission from the copyright holder.!
Nothing in this license impairs or restricts the author's moral rights.!

http://creativecommons.org/licenses/by-sa/3.0/

