
2. Requirements Collection

Introduction to Software Engineering

Mircea F. Lungu

Based on a lecture by Oscar Nierstrasz.

> The Requirements Engineering Process
> Functional and non-functional requirements
> Use Cases for Specification
> Evolutionary and throw-away prototyping
> Requirements checking and reviews

Roadmap

2

3

Sources

> Software Engineering, I. Sommerville, 7th Edn., 2004.
> Software Engineering — A Practitioner’s Approach, R.

Pressman, Mc-Graw Hill, 5th Edn., 2001.
> Objects, Components and Frameworks with UML, D.

D'Souza, A. Wills, Addison-Wesley, 1999

> The Requirements Engineering Process
> Functional and non-functional requirements
> Use Cases for Specification
> Evolutionary and throw-away prototyping
> Requirements checking and reviews

Roadmap

4

6

Electronic Time Schedule

“So, basically we need a form for the time schedule that can be
distributed by eMail, a place (html) where I can deposit these forms after
they have been filled out, and an algorithm that calculates a few possible
meeting times, possibly setting priorities to certain persons of each
committee (since there will always be some time schedule overlaps). It
would also be great if there were a way of checking whether everybody
of the relevant committee has really sent their time schedule back and at
the same time listing all the ones who have failed to do so. An automatic
invitation letter for the committee meeting to all the persons involved,
generated through this program, would be even a further asset.”

How can we transform this description into a requirements specification?

7

The Requirements Engineering Process

© Ian Sommerville 2000

Feasibility
Study

Requirements
elicitation and

analysis

Requirements
specification

Requirements
validation

Feasibility
report System

models

User and system
requirements

Requirements
document

8

Requirements Engineering Activities

Feasibility study
Determine if the user needs can be satisfied
with the available technology and budget.

Requirements
analysis

Find out what system stakeholders require
from the system.

Requirements
definition

Define the requirements in a form
understandable to the customer.

Requirements
specification

Define the requirements in detail. (Written as a
contract between client and contractor.)

“Requirements are for users; specifications
are for analysts and developers.”

9

Requirements Analysis

Sometimes called requirements elicitation or requirements
discovery

Technical staff work with customers to determine
> the application domain,
> the services that the system should provide and
> the system’s operational constraints.

Involves various stakeholders:
> e.g., end-users, managers, engineers involved in

maintenance, domain experts, trade unions, etc.

10

Problems of Requirements Analysis

Various problems typically arise:

—Stakeholders don’t know what they really want
—Stakeholders express requirements with implicit knowledge
—Different stakeholders may have conflicting requirements
—Organisational and political factors may influence the system

requirements
—The requirements change during the analysis process.
—New stakeholders may emerge.

How the Customer
explained it

How the Project Leader
understood it

How the Analyst
designed it

What the Customer
really needed

12

Requirements evolution

> Requirements always evolve as a better understanding of
user needs is developed and as the organisation’s
objectives change

> It is essential to plan for change in the requirements as
the system is being developed and used

13

The Requirements Analysis Process

© Ian Sommerville 2000

Domain
understanding

Requirements
validation

Prioritization

Conflict
resolution

Requirements
collection

Classification

Requirements
definition and
specification

> The Requirements Engineering Process
> Functional and non-functional requirements
> Use Cases for Specification
> Evolutionary and throw-away prototyping
> Requirements checking and reviews

Roadmap

14

15

Functional and Non-functional Requirements

Functional requirements describe system services or
functions
—Compute sales tax on a purchase
—Update the database on the server ...

Non-functional requirements are constraints on the system
or the development process

! Non-functional requirements may be more critical than functional
requirements.

! If these are not met, the system is useless!

16

Non-functional Requirements

Product
requirements:

specify that the delivered product must behave
in a particular way
e.g. execution speed, reliability, etc.

Organisational
requirements:

are a consequence of organisational policies
and procedures
e.g. process standards used, implementation
requirements, etc.

External
requirements:

arise from factors which are external to the
system and its development process
e.g. interoperability requirements, legislative
requirements, etc.

17

Types of Non-functional Requirements

© Ian Sommerville 2000

Non-functional
requirements

Product
requirements

Organizational
requirements

External
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

Interoperability
requirements

Ethical
requirements

Usability
requirements

Performance
requirements

Space
requirements

Delivery
requirements

Implementation
requirements

Standards
requirements

Legislative
requirements

Privacy
requirements

Safety
requirements

18

Examples of Non-functional Requirements

Product
requirement

It shall be possible for all necessary communication
between the APSE and the user to be expressed in the
standard Ada character set.

Organisational
requirement

The system development process and deliverable
documents shall conform to the process and
deliverables defined in XYZCo-SP-STAN-95.

External
requirement

The system shall provide facilities that allow any user to
check if personal data is maintained on the system. A
procedure must be defined and supported in the
software that will allow users to inspect personal data
and to correct any errors in that data.

19

Requirements Verifiability

Requirements must be written so that they can be
objectively verified.

Imprecise:
—The system should be easy to use by experienced controllers and

should be organised in such a way that user errors are minimised.
! Terms like “easy to use” and “errors shall be minimised” are

useless as specifications.
Verifiable:

—Experienced controllers should be able to use all the system
functions after a total of two hours training. After this training, the
average number of errors made by experienced users should not
exceed two per day.

20

Precise Requirements Measures (I)

Property Measure

Speed
Processed transactions/second
User/Event response time
Screen refresh time

Size K Bytes; Number of RAM chips

Ease of use
Training time
Rate of errors made by trained users
Number of help frames

21

Precise Requirements Measures (II)

Property Measure

Reliability
Mean time to failure
Probability of unavailability
Rate of failure occurrence

Robustness
Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

> The Requirements Engineering Process
> Functional and non-functional requirements
> Use Cases for Specification
> Evolutionary and throw-away prototyping
> Requirements checking and reviews

Roadmap

22

23

Use Cases and Viewpoints ...

Stakeholders represent different problem viewpoints.
—Interview as many different kinds of stakeholders as possible/

necessary
—Translate requirements into use cases about the desired system

involving a fixed set of actors (users and system objects)
—For each use case, capture both typical and exceptional usage

scenarios

Users tend to think about systems in terms of “features”.
—You must get them to tell you narratives involving those features.
—Use cases and scenarios can tell you if the requirements are

complete and consistent!

24

Use Cases and Scenarios

A use case is the specification of a sequence of actions,
including variants, that a system (or other entity) can
perform, interacting with actors of the system”.

A scenario is a particular trace of action occurrences,
starting from a known initial state.

25

Use Case Diagrams

26

Sequence Diagrams

27

Writing Requirements Definitions

Requirements definitions usually consist of natural language,
supplemented by (e.g., UML) diagrams and tables.

Three types of problems can arise:
—Lack of clarity: It is hard to write documents that are both precise and easy-to-

read.
—Requirements confusion: Functional and non-functional requirements tend to

be intertwined.
—Requirements amalgamation: Several different requirements may be

expressed together.

> The Requirements Engineering Process
> Functional and non-functional requirements
> Use Cases for Specification
> Evolutionary and throw-away prototyping
> Requirements checking and reviews

Roadmap

28

29

Prototyping Objectives

The objective of evolutionary prototyping is to deliver a
working system to end-users.

—Development starts with the requirements that are best understood.

The objective of throw-away prototyping is to validate or
derive the system requirements.

—Prototyping starts with that requirements that are poorly
understood.

30

Evolutionary Prototyping

> Must be used for systems where the specification cannot
be developed in advance.
—e.g., AI systems and user interface systems

> Based on techniques which allow rapid system iterations.
—e.g., executable specification languages, VHL languages, 4GLs,

component toolkits
> Verification is impossible as there is no specification.

—Validation means demonstrating the adequacy of the system.

31

Throw-away Prototyping

> Used to reduce requirements risk
—The prototype is developed from an initial specification, delivered

for experiment then discarded

> The throw-away prototype should not be considered as a
final system
—Some system characteristics may have been left out
—(e.g., platform requirements may be ignored)
—There is no specification for long-term maintenance
—The system will be poorly structured and difficult to maintain

> The Requirements Engineering Process
> Functional and non-functional requirements
> Use Cases for Specification
> Evolutionary and throw-away prototyping
> Requirements checking and reviews

Roadmap

32

33

Requirements Checking

Validity Does the system provide the functions
which best support the customer’s needs?

Consistency Are there any requirements conflicts?

Completeness Are all functions required by the customer
included?

Realism Can the requirements be implemented
given available budget and technology?

34

Requirements Reviews

> Regular reviews should be held while the requirements
definition is being formulated

> Both client and contractor staff should be involved in
reviews

> Reviews may be formal (with completed documents) or
informal.
—Good communications between developers, customers and users

can resolve problems at an early stage

35

Review checks

Verifiability Is the requirement realistically testable?

Comprehensibility Is the requirement properly understood?

Traceability Is the origin of the requirement clearly
stated?

Adaptability Can the requirement be changed without a
large impact on other requirements?

36

Sample Requirements Review Checklist

> Does the (software) product have a succinct name, and a clearly
described purpose?

> Are the characteristics of users and of typical usage mentioned?
(No user categories missing.)

> Are all external interfaces of the software explicitly mentioned?
(No interfaces missing.)

> Does each specific requirement have a unique identifier ?
> Is each requirement atomic and simply formulated ?

(Typically a single sentence. Composite requirements must be split.)
> Are requirements organized into coherent groups ?

(If necessary, hierarchical; not more than about ten per group.)
> Is each requirement prioritized ?

(Is the meaning of the priority levels clear?)
> Are all unstable requirements marked as such?

(TBC=`To Be Confirmed', TBD=`To Be Defined')

http://wwwis.win.tue.nl/2M390/rev_req.html

37

Sample Requirements Review Checklist

> Is each requirement verifiable (in a provisional acceptance test)?
(Measurable: where possible, quantify; capacity, performance,
accuracy)

> Are the requirements consistent ? (Non-conflicting.)
> Are the requirements sufficiently precise and unambiguous ?

(Which interfaces are involved, who has the initiative, who supplies
what data, no passive voice.)

> Are the requirements complete? Can everything not explicitly
constrained indeed be viewed as developer freedom? Is a product
that satisfies every requirement indeed acceptable? (No requirements
missing.)

> Are the requirements understandable to those who will need to work
with them later?

> Are the requirements realizable within budget?
> Do the requirements express actual customer needs (in the language

of the problem domain), rather than solutions (in developer jargon)?
http://wwwis.win.tue.nl/2M390/rev_req.html

38

Traceability

To protect against changes you should be able to trace back from every
system component to the original requirement that caused its
presence

C1 C2 … … Cm
req1 x
req2 x
… x
… x

reqn x x

A software process
should help you keep this
virtual table up-to-date

Simple techniques may
be quite valuable (naming
conventions, ...)

39

What you should know!

> What is the difference between requirements analysis
and specification?

> Why are the challenges to defining and specifying
requirements?

> What is the difference between functional and non-
functional requirements?

> What’s wrong with a requirement that says a product
should be “user-friendly”?

40

Can you answer the following questions?

> Why isn’t it enough to specify requirements as a set of
desired features?

> Which is better for specifying requirements: natural
language or formal languages?

> How would you prototype a user interface for a web-
based ordering system? Would it be an evolutionary or
throw-away prototype? What would you expect to gain
from the prototype?

> How would you validate a requirement for “adaptability”?

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

