
11. Software Quality

Introduction to Software Engineering

Mircea F. Lungu

Based on materials by Oscar Nierstrasz.

�3

What you will know…

> Can a correctly functioning piece of software still have
poor quality?"

> What’s the difference between an external and an internal
quality attribute?"

> And between a product and a process attribute?"
> Why should quality management be separate from

project management?"
> What are detection strategies

Software Quality

Introduction"
Hierarchical Quality Model"
Process Quality"
Code Quality"
Cohesion and Coupling*"
Testing (unit, functional, integration)*"

Software Metrics"
General Quality Evaluation"
Detection Strategies"

�4

Which one would you choose?

What’s the difference between the two?

The quality of materials.

The working conditions.

The service.

The quality process.

The precision. The mean time to failure.

Thinking about this… try to define Software Quality.

�6

Software Quality is conformance to…

explicitly
documented
development
standards

implicit characteristics
that are expected of
all professionally
developed software.

explicitly stated
functional and
performance
requirements

Quality assurance and quality control are often used in the manufacturing industry.

"
Pressman ch 17; Sommerville ch 30

"
I would add “implicit characteristics that are expected of that class of software”

Did we already talk about software quality?

�7

…

We have been talking about quality already.

- Usability is quality. of the Product.

- GOOD is quality. of the Software.
The only thing that remains is the process.

Steve McConnell, Code Complete

External Quality vs. Internal Quality

�8

A definition in Steve McConnell's Code Complete divides quality into two pieces: internal and external quality
characteristics. External quality characteristics are those parts of a product that face its users, where internal quality
characteristics are those that do not. Surely, every thing faces some users. So we could consider the internal ones o be
external to the developers.

�9

Quality is a struggle between…

—customer quality requirements (efficiency, reliability, etc.)"
—developer quality requirements (maintainability, reusability, etc.)"
—organisation quality requirements (standard conformance,

portfolio management)"
"

"

Can we define quality formally?

> Some quality requirements are hard to specify in an
unambiguous way"
—directly measurable qualities (e.g., errors/KLOC), "
—indirectly measurable qualities (e.g., usability).

�10

still vague… can we define it in a more concrete manner?

Software Quality

Introduction"
Hierarchical Quality Model"
Process Quality"
Code Quality"
Cohesion and Coupling*"
Testing (unit, functional, integration)*"

Software Metrics"
General Quality Evaluation"
Detection Strategies"

�11

�12

Hierarchical Quality Model

Software
Quality

...

Reliability

Understandability

Usability

Maintainability

Portability

may be further
refined into
sub-attributes

Quality attributes / factors

Define quality via hierarchical quality model, i.e. a number of quality attributes (a.k.a. quality factors, quality
aspects, ...)"
Choose quality attributes (and weights) depending on the project context

�13

Quality Attributes: External vs. Internal

> External. Derived from the
relationship between the
environment and the system (or the
process). (To derive, the system or
process must run) "
—e.g. Reliability, Robustness"

> Internal. Derived immediately from
the product or process description
(To derive, it is sufficient to have the
description)"
—Underlying assumption: internal quality

leads to external quality (cfr. metaphor
manufacturing lines)"

—e.g. Efficiency

�14

Correctness, Reliability, Robustness

1. Correctness"
> A system is correct if it behaves according to its specification"

—An absolute property (i.e., a system cannot be “almost correct”)"
—... in theory and practice undecidable"

"
2. Reliability"
> The user may rely on the system behaving properly"
> Reliability is the probability that the system will operate as expected over a

specified interval"
—A relative property (a system has a mean time between failure of 3 weeks)"

"
3. Robustness"
> A system is robust if it behaves reasonably even in circumstances that were

not specified"
> A vague property (once you specify the abnormal circumstances they

become part of the requirements)

�15

Efficiency, Usability

4. Efficiency (Performance)"
> Use of resources such as computing time, memory"

—Affects user-friendliness and scalability"
—Hardware technology changes fast!"
—First do it, then do it right, then do it fast"
"

> For process, resources are manpower, time and money"
—relates to the “productivity” of a process

�16

Efficiency, Usability ...

5. Usability (User Friendliness, Human Factors)"
"

> The degree to which the human users find the system
(process) both “easy to use” and useful"
—Depends a lot on the target audience (novices vs. experts)"
—Often a system has various kinds of users (end-users, operators,

installers)"
—Typically expressed in “amount of time to learn the system”

�17

Maintainability

> External product attributes (evolvability also applies to
process)"
"

6. Maintainability"
> How easy it is to change a system after its initial release"

—software entropy ⇒ maintainability gradually decreases over time

�18

Maintainability is often refined to…

Evolvability (Adaptability)"
> How much work is needed to adapt to changing requirements (both

system and process)"
"
Portability"
> How much work is needed to port to new environment or platforms"
"

Understandability"
> How easy it is to understand the system"

—internally: contributes to maintainability"
—externally: contributes to usability

Software Quality

Introduction"
Hierarchical Quality Model"
Process Quality"
Code Quality"
Cohesion and Coupling*"
Testing (unit, functional, integration)*"

Software Metrics"
General Quality Evaluation"
Detection Strategies"

�19

Process Quality

�20

Underlying assumption: a quality process leads to a quality product

How to evaluate your process?

�21

The Joel Test
1. Do you use source control?
2.Can you make a build in one step?
3.Do you make daily builds?
4.Do you have a bug database?
5.Do you fix bugs before writing new code?
6.Do you have an up-to-date schedule?
7.Do you have a spec?
8.Do programmers have quiet working conditions?
9.Do you use the best tools money can buy?
10.Do you have testers?
11.Do new candidates write code during their interview?
12.Do you do hallway usability testing?

http://www.joelonsoftware.com/articles/fog0000000043.html

ISO

ISO = International Organisation for Standardization"
> ISO main site: http://www.iso.ch/

�22

http://www.iso.ch/

�23

ISO 9000, 9001

ISO 9000 is an international set of standards for quality
management applicable to a range of organizations from
manufacturing to service industries."

"
ISO 9001 is a generic model of the quality process!
> Applicable to organizations whose business processes range

from design and development, to production, installation and
servicing;"

> ISO 9001 must be instantiated for each organisation "

http://en.wikipedia.org/wiki/ISO_9000 -- ISO 9001 page has a good Summary of ISO 9001:2008 in informal language!"
http://www.praxiom.com/iso-90003.htm!
Think about yourself. If somebody comes and asks you to estimate the effort for a new project it will be hard. The more you document the process, the higher the chance you’ll be able to give a correct
estimate upfront. ...

ISO 90003 (few of the points)

> The quality policy is a formal statement from management"
> The business makes decisions about the quality system based on recorded

data."
> The quality system is regularly audited and evaluated for conformance and

effectiveness."
> The business has created systems for communicating with customers about

product information, inquiries, contracts, orders, feedback, and complaints."
> The business regularly reviews performance through internal audits and

meetings. The business determines whether the quality system is working and
what improvements can be made. It has a documented procedure for internal
audits."

> The business deals with past problems and potential problems. It keeps
records of these activities and the resulting decisions, and monitors their
effectiveness."

> The business has documented procedures for dealing with actual and
potential nonconformances (problems involving suppliers, customers, or
internal problems).

�24

�25

Capability Maturity Model (CMM)

The SEI process maturity model classifies how well contractors manage
software processes

Level 1: Initial (Ad Hoc)
No effective QA procedures, quality is luck

Level 2: Repeatable
Formal QA procedures in place

Level 3: Defined
QA process is defined and institutionalized

Level 4: Managed
QA Process + quantitative data collection

Level 5: Optimizing
Improvement is fed back into QA process

Quality depends on
individual project

managers!

Quality depends on
individuals!

�26

The Quality Plan

A quality plan should:"
> set out desired product qualities and how these are

assessed "
—define the most significant quality attributes"

> define the quality assessment process"
—i.e., the controls used to ensure quality"

> set out which organisational standards should be applied"
—may define new standards, i.e., if new tools or methods are used

NB: Quality Management should
be separate from project
management to ensure

independence

�27

Software Quality Controls

1. Reviews"
—Inspections for defect removal (product)"
—Progress assessment reviews (product and process)"
—Quality reviews (product and standards)"
"

2. Automated Software Assessment"
—Measure software attributes and compare to standards (e.g., defect

rate, cohesion, etc.)

�28

Types of Quality Reviews

A quality review is carried out by a group of people who
carefully examine part or all of a software system and its
associated documentation."

"
> Reviews should be recorded and records maintained"

—Software or documents may be “signed off” at a review"
—Progress to the next development stage is thereby approved

Review meetings should:

typically involve 3-5 people

require a maximum of 2 hours advance preparation

last less than 2 hours

�29

Review Minutes

The review report should summarize:"
1. What was reviewed"
2. Who reviewed it?"
3. What were the findings and conclusions?"
"

The review should conclude whether the product is:"
1. Accepted without modification"
2. Provisionally accepted, subject to corrections (no follow-up review)"
3. Rejected, subject to corrections and follow-up review

�30

Sample Review Checklists (I)

Software Project Planning"
1. Is software scope unambiguously defined and bounded?"
2. Are resources adequate for scope?"
3. Have risks in all important categories been defined?"
4. Are tasks properly defined and sequenced?"
5. Is the basis for cost estimation reasonable?"
6. Have historical productivity and quality data been used?"
7. Is the schedule consistent?" " " " "
...

Pressman pp 570-574

�31

Sample Review Checklists (II)

Requirements Analysis"
1. Is information domain analysis complete, consistent and

accurate?"
2. Does the data model properly reflect data objects, attributes

and relationships?"
3. Are all requirements traceable to system level?"
4. Has prototyping been conducted for the user/customer?"
5. Are requirements consistent with schedule, resources and

budget?"
...

�32

Sample Review Checklists (III)

Design"
1. Has modularity been achieved?"
2. Are interfaces defined for modules and external system

elements?"
3. Are the data structures consistent with the information

domain?"
4. Are the data structures consistent with the requirements?"
5. Has maintainability been considered?"
"
...

�33

Sample Review Checklists (IV)

Code"
1. Does the code reflect the design documentation?"
2. Has proper use of language conventions been made?"
3. Have coding standards been observed?"
4. Are there incorrect or ambiguous comments?"

"
...

�34

Sample Review Checklists (V)

Testing"
1. Have test resources and tools been identified and acquired?"
2. Have both white and black box tests been specified?"
3. Have all the independent logic paths been tested?"
4. Have test cases been identified and listed with expected

results?"
5. Are timing and performance to be tested?

�35

Review Results

Comments made during the review should be classified."
> No action."

—No change to the software or documentation is required."
> Refer for repair."

—Designer or programmer should correct an identified fault."
> Reconsider overall design."

—The problem identified in the review impacts other parts of the design.

Requirements and specification errors may
have to be referred to the client.

Sommerville p 618

�36

Sample JPL Coding Convention

Rule 16 (use of assertions) "
Assertions shall be used to perform basic sanity checks throughout the "
code. All functions of more than 10 lines should have at least one "
assertion. [Power of Ten Rule 5] "

http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf

http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf

�37

Sample Java Code Conventions

10.3 Constants"
Numerical constants (literals) should not be coded directly, except for 

 -1, 0, and 1, which can appear in a for loop as counter values."
"
"
"
"
"
Source: http://java.sun.com/docs/codeconv/CodeConventions.pdf

Software Quality

Introduction"
Hierarchical Quality Model"
Process Quality"
Code Quality"
Cohesion and Coupling*"
Testing (unit, functional, integration)*"

Software Metrics"
General Quality Evaluation"
Detection Strategies"

�38

Software Quality

Introduction"
Hierarchical Quality Model"
Process Quality"
Code Quality"
Cohesion and Coupling*"
Testing (unit, functional, integration)*"

Software Metrics"
General Quality Evaluation"
Detection Strategies"

�39

�40

Cohesion

How well the parts of a component belong together!
"

> Cohesion is weak if elements are bundled simply
because they perform similar or related functions (e.g.,
java.lang.Math)."

> Cohesion is strong if all parts are needed for the
functioning of other parts (e.g. java.lang.String)."
—Strong cohesion promotes maintainability and adaptability by

limiting the scope of changes to small numbers of components.

What do you talk about? Classes here. Modules / Components.

Eclipse plugins. If you have a set of plugins, this allows you to deploy only partially.

Inadequacy of formal definitions: it is in the eye of the beholder.

"
To think about. How would you measure cohesion?

�41

Coupling

The strength of the interconnections between components!
"

> Coupling is tight between components if they depend
heavily on one another, (e.g., there is a lot of
communication between them)."

> Coupling is loose if there are few dependencies between
components."
—Loose coupling promotes maintainability and adaptability since

changes in one component are less likely to affect others.!
—Loose coupling increases the chancesof reusability.

�42

Tight Coupling

© Ian Sommerville 2000

Subsystem A Subsystem B

Subsystem C Subsystem D

Shared data
area

Classical structured programming. And classical using global variables.

�43

Loose Coupling

© Ian Sommerville 2000

Subsystem A

A’s data

Subsystem B

B’s data

Subsystem A

D’s data

Subsystem A

C’s data

OO good idea: keep behavior close to the data.

Software Quality

Introduction"
Hierarchical Quality Model"
Process Quality"
Code Quality"
Cohesion and Coupling*"
Testing (unit, functional, integration)*"

Software Metrics"
General Quality Evaluation"
Detection Strategies"

�44

�45

The Testing Process

1. Unit testing: "
— Individual (stand-alone) components are tested to ensure

that they operate correctly."
2. Module testing:"

—A collection of related components (a module) is tested as
a group."

3. Sub-system testing:"
—The phase tests a set of modules integrated as a sub-

system. Since the most common problems in large
systems arise from sub-system interface mismatches, this
phase focuses on testing these interfaces.

�46

The Testing Process ...

4. System testing:"
—This phase concentrates on (i) detecting errors resulting

from unexpected interactions between sub-systems, and
(ii) validating that the complete systems fulfils functional
and non-functional requirements."

5. Acceptance testing (alpha/beta testing):" " "
—The system is tested with real rather than simulated data.

�47

Bottom-up Testing

> Start by testing units and modules"
> Test drivers must be written to exercise lower-level

components"
> Works well for reusable components to be shared with other

projects"
"

Bottom-up testing will not uncover architectural faults

�48

Top-down Testing

> Start with sub-systems, where modules are represented by
“stubs” / mocks"

> Similarly test modules, representing functions as stubs"
> Coding and testing are carried out as a single activity"
> Design errors can be detected early on, avoiding expensive

redesign"
> Always have a running (if limited) system!"
"

BUT: may be impractical for stubs to simulate complex
components

Software Quality

Introduction"
Hierarchical Quality Model"
Process Quality"
Code Quality"
Cohesion and Coupling*"
Testing (unit, functional, integration)*"

Software Metrics"
General Quality Evaluation"
Detection Strategies"

�49

�50

Software Metrics

Any type of measurement which relates to a software
system, process or related documentation!
—Lines of code in a program"
—the Fog index (calculates readability of a piece of documentation)"

0.4 × (# words / # sentences) + (% words ≥ 3 syllables)"
—number of person-days required to implement a use-case

�51

Direct and Indirect Measures

Direct Measures"
> Measured directly in terms of the observed attribute (usually by

counting)"
—Length of source-code, Duration of process, Number of defects

discovered"
"

Indirect Measures"
> Calculated from other direct and indirect measures"

—Module Defect Density = Number of defects discovered / Length of
source"

—Temperature (usually derived from the length of a liquid column)

Software Quality

Introduction"
Hierarchical Quality Model"
Process Quality"
Code Quality"
Cohesion and Coupling*"
Testing (unit, functional, integration)*"

Software Metrics"
General Quality Evaluation"
Detection Strategies"

�52

�53

Quantitative Quality Model

Quality according to ISO 9126 standard"
> Divide-and conquer approach via “hierarchical quality model”"
> Leaves are simple metrics, measuring basic attributes

Software
Quality

Functionality

Reliability

Efficiency

Usability

Maintainability

Portability

ISO 9126 Factor Characteristic Metric

Error tolerance

Accuracy

Simplicity

Modularity

Consistency

defect density
= #defects / size

correction impact
= #components

changed

correction time

�54

“Define your own” Quality Model

Define the quality model with the development team"
> Team chooses the characteristics, design principles,

metrics ... and the thresholds

Maintainability

Factor Characteristic Design Principle Metric

Modularity

design class as an
abstract data-type

encapsulate all
attributes

avoid complex
interfaces

number of private
attributes]2, 10[

number of public
attributes]0, 0[

number of public
methods]5, 30[

average number of
arguments [0, 4[

�55

Sample Size (and Inheritance) Metrics

Inheritance Metrics
- hierarchy nesting level (HNL)
- # immediate children (NOC)
- # inherited methods, unmodified (NMI)
- #overridden methods (NMO)

Attribute

inherits belongsTo

access

invokes

Class Size Metrics
- # methods (NOM)
- # attributes, instance/class
(NIA, NCA)
- # S of method size (WMC)

Method Size Metrics
- # invocations (NOI)
- # statements (NOS)
- # lines of code (LOC)
- # arguments (NOA)

Class

Method

�56

Sample Coupling & Cohesion Metrics

The following definitions stem from [Chid91a], later republished as
[Chid94a]"
"
Coupling Between Objects (CBO)"
CBO = number of other classes to which given class is coupled"
Interpret as “number of other classes a class requires to compile”"
"
Lack of Cohesion in Methods (LCOM)"
LCOM = number of disjoint sets (= not accessing same attribute) of
local methods

Researchers disagree whether coupling/cohesion methods are valid

"
Classes that are observed to be cohesive may have a high LCOM value

due to accessor methods

Classes that are not much coupled may have high CBO value

no distinction between data, method or inheritance coupling

�57

Sample Quality Metrics (I)

Productivity (Process Metric)"
> functionality / time"
> functionality in LOC or FP; time in hours, weeks, months"

—be careful to compare: the same unit does not always represent the
same"

> Does not take into account the quality of the functionality!

> metrics can be cheated"
> LOC is the worst way of measuring productivity

�58

�59

Sample Quality Metrics (II)

Reliability (Product Metric)"
> mean time to failure =  

mean of probability density function PDF"
—for software one must take into account the fact that repairs will

influence the rest of the function ⇒ quite complicated formulas"
> average time between failures = # failures / time"

—time in execution time or calendar time"
—necessary to calibrate the probability density function"

> mean time between failure = MTTF + mean time to repair"
—to know when your system will be available, take into account

repair

Software Quality

Introduction"
Hierarchical Quality Model"
Process Quality"
Code Quality"
Cohesion and Coupling*"
Testing (unit, functional, integration)*"

Software Metrics"
General Quality Evaluation"
Detection Strategies"

�60

�61

Detection strategy

> A detection strategy is a metrics-based predicate to
identify candidate software artifacts that conform to (or
violate) a particular design rule

�62

Filters and composition

> A data filter is a predicate used to focus attention on a
subset of interest of a larger data set"
—Statistical filters"

– I.e., top and bottom 25% are considered outliers!
—Other relative thresholds"

– I.e., other percentages to identify outliers (e.g., top 10%)!
—Absolute thresholds"

– I.e., fixed criteria, independent of the data set!

"

> A useful detection strategy can often be expressed as a
composition of data filters

�63

God Class - centralizes intelligence

A God Class centralizes intelligence in the system:

- Impacts understandibility

- Increases system fragility

"
I want that you know the concepts, not the metrics.

�64

ModelFacade (ArgoUML)

> 453 methods"
> 114 attributes"
> over 3500 LOC"
> all methods and all

attributes are static

Strictly speaking, this is a Facade rather than a God class, but it has become a “black hole” of functionality in the system.

�65

Feature Envy

Methods that are more interested in data of other classes than their own [Fowler et al. 99]

�66

ClassDiagramLayouter

The weightAndPlaceClasses and layout methods are very large, and use many accessors and attributes of ClassDiagramNode. The latter has little behavior of its own. Likely fragments of
code in the client methods can be extracted and moved to the data class.

�67

Data Class

> A Data Class provides data to other classes but little or
no functionality of its own

�68

Data Class (2)

�69

Property

Property is a classical data class with almost no behavior of its own. Sometimes data classes can be merged with their client class, and sometimes client methods or parts of client methods
can be moved to the responsibility of the data class.

Next time: Guest Lecture

Tudor Girba, Software Assessment

�70

�71

Can you answer the following questions?

> When and why does a project need a quality plan?"
> Why are coding standards important?"
> What would you include in a documentation review

checklist?"
> How often should reviews be scheduled?"
> Would you trust software developed by an ISO 9000

certified company?"
> And if it were CMM level 5?

�72

Sources

> Software Engineering, I. Sommerville, 7th Edn., 2004."
> Software Engineering — A Practitioner’s Approach, R.

Pressman, Mc-Graw Hill, 5th Edn., 2001."
> Fundamentals of Software Engineering, C. Ghezzi, M.

Jazayeri, D. Mandroli, Prentice-Hall 1991

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/

