Exam Preparation

Exam

9th January, 2014 — ExWi A6 @ 10h00
KSL: today -> 8th January

Exam: 60% of final grade

Language

* Q: English

* A: English (preferred); German (possible)

Vlaterial

* |t covers the material of the lectures (inc. guest lectures).

e Suggested complementary material:

« Sommerville, Software Engineering (7th-9th edition)

(Google: Software Engineering Sommerville filetype:pdf)

e |t combines simple knowledge questions with questions
requiring thinking.

* You can NOT bring: books, slides, personal notes,
electronic devices

lopics

Terminology

Software design/quality (principles & diagrams)
Software Engineering Processes

Software architecture (styles & properties)

Testing (methods & techniques)

Recommendation

 Answer guestions at the end of each lecture slides

* Use the book to complement material presented
during the lecture

lopics

- Terminology

Software design/quality (principles & diagrams)
Software Engineering Processes
Software architecture (styles & properties)

Testing (methods & techniques)

lerminology

. define: architectural style
. define: principle of encapsulation

. agile process vs. waterfall process

. Fault tolerance vs. Fault avoidance

. define: Req.Consistency; Completeness;
correctness

lopics

Terminology

Software design/quality (principles & diagrams)
Software Engineering Processes

Software architecture (styles & properties)

Testing (methods & techniques)

Software design/quality

Your are writing a calendar application with a web framework. The system
has model classes User, Event, Calendar, and Email. Users can receive a re-
minder a few minutes before an event starts. Below are two possible design

with UML:

User

name
emailAddress

calendar 1

Calendar

User

«use»

sendEmail(title,body)
™

Email

from
to
title
body

send()

1 owner

name

name

emailAddress

calendar 1

Calendar

sendReminders()

*‘

events *

calendar *

Event

nhame
startDateTime
endDateTime

sendReminder(User:user)

getEmailAddress()

1 owner

name

sendReminders()

*‘

events *

calendar *

Event

nhame
startDateTime
endDateTime

sendReminder(User:user)
e —

«use» !

4
Email
from
to
title
body
send()

Software design/quality

1. Complete the UML sequence diagrams below to show how a reminder
is sent with each design. 2 points

‘ :Calendar | ‘ :Calendar |
E |

|

: :

| |

| |

| |

: |

] |
‘ sendReminders() i ‘ sendReminders() |
|

l l

:

Scheduler ! Scheduler
|

SD fragments

alt: Alternative multiple fragments; only the one whose condition is true will execute (Figure
4.4),

opt: Optional; the fragment executes only if the supplied condition is true. Equivalent to an alt
with only one trace

par: Parallel; each fragment is run in parallel.

loop: Loop; the fragment may execute multiple times, and the guard indicates the basis of
iteration

region: Critical region; the fragment can have only one thread executing it at once.
neg: Negative; the fragment shows an invalid interaction.

ref: Reference; refers to an interaction defined on another diagram. The frame is drawn to cover
the lifelines involved in the interaction. You can define parameters and a return value.

bank : Bank theCheck : Check

account : Checkingaccount

|

|

gethmount () |

amount
q

|

|

getBalance ()l

I
... ..., [,

alt

[balance >= amount]

— — — — -

addDebitTransactjon (check
Nurmber , amount)

storePhotoOfChecH (theCheck)

addmsuf’ﬁemFmt*’ee ()
|

noteReturnedCheck (theCheck)

_{

returnCheck (theCIleck)

I_I_I

i

———

Drawing

.getBounds()

new()

oo/

[visible
figures]

r:=qgetBounds()

addTo(r)

The tteration only applies to the
visible figures of the drawing

|

Software design/quality

A new requirement is to support “deadlines”. A deadline is a point in
time. Just as with events, a reminder can be sent a few minutes in advance
a deadline is due. After the design meeting with your colleagues, you end up

with three possible ways to model deadlines:

Event

name
startDateTime
endDateTime
private

Deadline

sendReminder()

name
dateTime
private

Deadline

sendReminder()

1
startDateTime =
endDateTime

sendReminder()

.

Event

endDateTime

sendReminder()

Remindable
private
sendReminder()
Event Deadline
name .
startDateTime)
) dateTime
endDateTime sendReminder()
sendReminder()

3. Which one would you pick? Why?

Hlerarchies

Model a “kind-of” hierarchy:

> Subclasses should support all inherited responsibilities,
and possibly more

Factor common responsibilities as high as possible:

> Classes that share common responsibilities should inherit
from a common abstract superclass; introduce any that
are missing

Hlerarchies

Abstract classes do not inherit from concrete classes:

> Eliminate by introducing common abstract superclass:
abstract classes should support responsibilities in an
implementation-independent way

Eliminate classes that do not add functionality:

> Classes should either add new responsibilities, or a
particular way of implementing inherited ones

lopics

Terminology

Software design/quality (principles & diagrams)

- Software Engineering Processes

Software architecture (styles & properties)

Testing (methods & techniques)

Software Engineeri@

Processes

24 h

30 days

> L - .
t rin

Working increment
of the software

&
ANNY
A\
A\

Product Backlog Sprint Backlo

Software Engineering
Processes

Product backlog (PBL)
A prioritized list of high-level requirements.

Sprint backlog (SBL)
A prioritized list of tasks to be completed during the sprint.

Sprint

A time period (typically 1-4 weeks) in which development occurs on a
set of backlog items that the team has committed to. Also commonly
referred to as a Time-box or iteration.

Increment
The sum of all the Product Backlog items completed during a sprint

and all previous sprints.

Software Engineeri@

Processes

e Product owner
® Scrum master
e [eam

Software Engineering
Processes

Product Owner

The person responsible for maintaining the Product Backlog by
representing the interests of the stakeholders, and ensuring the
value of the work the Development Team does.

Scrum Master
The person responsible for the Scrum process, making sure it is
used correctly and maximizing its benetits.

Development Team
A cross-tunctional group of people responsible for delivering
potentially shippable increments of Product at the end of every

Sprint.

lopics

Terminology

Software design/quality (principles & diagrams)
Software Engineering Processes

Software architecture (styles & properties)

Testing (methods & techniques)

Software architecture

The Design Structure Matrix (DSM) is a simple, compact
and visual representation of a system or project in the form
of a matrix.

The off-diagonal cells are used to indicate relationships
between the elements.

Reading across a row reveals what other elements the
element in that row provides outputs to, and scanning a
column reveals what other elements the element in that
column receives inputs from.

Software architecture

A B C D .
AT 15 0 0 - draw as package diagram
Blo - 18 0 - which architectural style 7
c/,o 0 - 13
D0 0 0 -
M V C

My — 9 0 - 1s MVC correctly implemented 7

v 7 — 8

CcC| 6 5 -

lopics

Terminology

Software design/quality (principles & diagrams)
Software Engineering Processes

Software architecture (styles & properties)

Testing (methods & techniques)

lesting

You are working as developer in a start-up and your main product is an
online auction system. The auction mechanism is very simple:

1. An item for sale at the auction has an owner, a current price (the
highest bid), a current winner (the highest bidder), and a start date.
Auctions are automatically closed after one day.

2. The winner of an auction is the user who placed the highest bid before
the auction was closed; a bid is valid only if the user has enough credit.

Your software is modeled with two entities Auction and User:

User

credit
hasEnoughCredit(price:Int)
withdraw(price:int)

owner 1 0..1 currentWinner

Auction «use»
startDate _ Audit
currentPrice [~ TTTTTTT > |OgNewW|_nner()
bid(user:User, price:Int) logNewPrice()

_ lesting

def initialize(User owner)
@current_price = 0
@start_date = Time.now
@owner = owner

end

def bid(user, price)

raise ’Bidder can not be the owner’ if user == owner
raise ’User had not enough credit’ unless user.has_enough_credit(price)

1f(price > @current_price)
@current_winner = user
Audit.log_new_winner(user)

@current_price = price
Audit.log_new_price(price)
end
end

def close()
@current_winner.withdraw(@current_price).
end
end

lesting

4. List the tests you need to achieve tull branch coverage in bid(user,price)
2 points

No need to write code, just textual explanation for each test

5. Which kind of testing approach is it? 1 points

_ Brancnes

def initialize(User owner)
@current_price = 0
@start_date = Time.now
@owner = owner

end

def bid(user, price)

raise ’Bidder can not be the owner’ if user == owner
raise ’User had ﬁ%? enough credit’ unless user.has_enough_credit(price)
1f(price > @current_price)
3 @current_winner = user
Audit.log_new_winner(user)

@current_price = price
Audit.log_new_price(price)
end
end

def close()
@current_winner.withdraw(@current_price).
end
end

Good Luck |

