
Exam	 Prepara*on
Andrea	 Caracciolo	
ESE	 -‐	 HS	 2013

Exam
• 9th January, 2014 — ExWi A6 @ 10h00

• KSL: today -> 8th January

• Exam: 60% of final grade

• Language

• Q: English

• A: English (preferred); German (possible)

Material
• It covers the material of the lectures (inc. guest lectures).

• Suggested complementary material:

• Sommerville, Software Engineering (7th-9th edition)

(Google: Software Engineering Sommerville filetype:pdf)!

• It combines simple knowledge questions with questions
requiring thinking.

• You can NOT bring: books, slides, personal notes,
electronic devices

Topics
• Terminology

• Software design/quality (principles & diagrams)

• Software Engineering Processes

• Software architecture (styles & properties)

• Testing (methods & techniques)

Recommendation

• Answer questions at the end of each lecture slides

• Use the book to complement material presented
during the lecture

Topics
• Terminology!

• Software design/quality (principles & diagrams)

• Software Engineering Processes

• Software architecture (styles & properties)

• Testing (methods & techniques)

Terminology
1. define: architectural style

2. define: principle of encapsulation

3. agile process vs. waterfall process

4. Fault tolerance vs. Fault avoidance

5. define: Req.Consistency; Completeness;
correctness

Exercise

Topics
• Terminology

• Software design/quality (principles & diagrams)

• Software Engineering Processes

• Software architecture (styles & properties)

• Testing (methods & techniques)

Software design/quality
8VHU (YHQW &DOHQGDU (PDLO

sendReminder(User:user)

name

startDateTime

endDateTime

Event

events *

sendEmail(title,body)

name

emailAddress

User

1 owner sendReminders()

name

Calendar
calendar 1

calendar *

sendReminder(User:user)

name

startDateTime

endDateTime

Event

events *

getEmailAddress()

name

emailAddress

User

1 owner sendReminders()

name

Calendar
calendar 1

calendar *

send()

from

to

title

body

Email

«use»

send()

from

to

title

body

Email

«use»

:Calendar

Scheduler

sendReminders()

:Calendar

Scheduler

sendReminders()

8VHU (YHQW &DOHQGDU (PDLO

sendReminder(User:user)

name

startDateTime

endDateTime

Event

events *

sendEmail(title,body)

name

emailAddress

User

1 owner sendReminders()

name

Calendar
calendar 1

calendar *

sendReminder(User:user)

name

startDateTime

endDateTime

Event

events *

getEmailAddress()

name

emailAddress

User

1 owner sendReminders()

name

Calendar
calendar 1

calendar *

send()

from

to

title

body

Email

«use»

send()

from

to

title

body

Email

«use»

:Calendar

Scheduler

sendReminders()

:Calendar

Scheduler

sendReminders()

Software design/quality

8VHU (YHQW &DOHQGDU (PDLO

sendReminder(User:user)

name

startDateTime

endDateTime

Event

events *

sendEmail(title,body)

name

emailAddress

User

1 owner sendReminders()

name

Calendar
calendar 1

calendar *

sendReminder(User:user)

name

startDateTime

endDateTime

Event

events *

getEmailAddress()

name

emailAddress

User

1 owner sendReminders()

name

Calendar
calendar 1

calendar *

send()

from

to

title

body

Email

«use»

send()

from

to

title

body

Email

«use»

:Calendar

Scheduler

sendReminders()

:Calendar

Scheduler

sendReminders()

Exercise

SD fragments!
!
!
!
!
!

• alt: Alternative multiple fragments; only the one whose condition is true will execute (Figure
4.4).
!

• opt: Optional; the fragment executes only if the supplied condition is true. Equivalent to an alt
with only one trace
!

• par: Parallel; each fragment is run in parallel.
!

• loop: Loop; the fragment may execute multiple times, and the guard indicates the basis of
iteration
!

• region: Critical region; the fragment can have only one thread executing it at once.
!

• neg: Negative; the fragment shows an invalid interaction.
!

• ref: Reference; refers to an interaction defined on another diagram. The frame is drawn to cover
the lifelines involved in the interaction. You can define parameters and a return value.

!

sendReminder()

name

startDateTime

endDateTime

private

Event

startDateTime =
endDateTime

sendReminder()

name

dateTime

private

Deadline

sendReminder()

endDateTime

EventsendReminder()

Deadline

sendReminder()

name

dateTime

Deadline

sendReminder()

name

startDateTime

endDateTime

Event

sendReminder()

private

Remindable

Software design/quality
sendReminder()

name

startDateTime

endDateTime

private

Event

startDateTime =
endDateTime

sendReminder()

name

dateTime

private

Deadline

sendReminder()

endDateTime

EventsendReminder()

Deadline

sendReminder()

name

dateTime

Deadline

sendReminder()

name

startDateTime

endDateTime

Event

sendReminder()

private

Remindable

Exercise

Hierarchies

48

Building Good Hierarchies

Model a “kind-of” hierarchy:
> Subclasses should support all inherited responsibilities,

and possibly more

Factor common responsibilities as high as possible:
> Classes that share common responsibilities should inherit

from a common abstract superclass; introduce any that
are missing

Hierarchies

49

Building Good Hierarchies …

Abstract classes do not inherit from concrete classes:
> Eliminate by introducing common abstract superclass:

abstract classes should support responsibilities in an
implementation-independent way

Eliminate classes that do not add functionality:
> Classes should either add new responsibilities, or a

particular way of implementing inherited ones

Topics
• Terminology

• Software design/quality (principles & diagrams)

• Software Engineering Processes !

• Software architecture (styles & properties)

• Testing (methods & techniques)

Software Engineering
Processes

6FUXP�LQ�DFWLRQ

Exercise

Software Engineering
Processes

Product backlog (PBL)!
A prioritized list of high-level requirements.
!
Sprint backlog (SBL)!
A prioritized list of tasks to be completed during the sprint.
!
Sprint!
A time period (typically 1–4 weeks) in which development occurs on a
set of backlog items that the team has committed to. Also commonly
referred to as a Time-box or iteration.
!
Increment
The sum of all the Product Backlog items completed during a sprint
and all previous sprints.

Software Engineering
Processes

6FUXP�5ROHV
Ɣ 3URGXFW�RZQHU
Ɣ 6FUXP�PDVWHU
Ɣ 7HDP

Exercise

Software Engineering
Processes

Product Owner!
The person responsible for maintaining the Product Backlog by
representing the interests of the stakeholders, and ensuring the
value of the work the Development Team does.
!
Scrum Master!
The person responsible for the Scrum process, making sure it is
used correctly and maximizing its benefits.
!
Development Team!
A cross-functional group of people responsible for delivering
potentially shippable increments of Product at the end of every
Sprint.

Topics
• Terminology

• Software design/quality (principles & diagrams)

• Software Engineering Processes

• Software architecture (styles & properties)

• Testing (methods & techniques)

Software architecture
The Design Structure Matrix (DSM) is a simple, compact
and visual representation of a system or project in the form
of a matrix.
!
The off-diagonal cells are used to indicate relationships
between the elements.
Reading across a row reveals what other elements the
element in that row provides outputs to, and scanning a
column reveals what other elements the element in that
column receives inputs from.

Exercise

Software architecture

- draw as package diagram
- which architectural style ?

- is MVC correctly implemented ?

Exercise

Topics
• Terminology

• Software design/quality (principles & diagrams)

• Software Engineering Processes

• Software architecture (styles & properties)

• Testing (methods & techniques)

Testing

$XFWLRQ 8VHU

hasEnoughCredit(price:Int)
withdraw(price:int)

credit
User

0..1 currentWinner

bid(user:User, price:Int)

startDate
currentPrice

Auction

owner 1

logNewWinner()
logNewPrice()

Audit
«use»

FODVV $XFWLRQ
GHI LQLWLDOL]H�8VHU RZQHU�

#FXUUHQWBSULFH �
#VWDUWBGDWH 7LPH�QRZ
#RZQHU RZQHU

HQG

GHI ELG� XVHU� SULFH �

UDLVH ·%LGGHU FDQ QRW EH WKH RZQHU· LI XVHU RZQHU
UDLVH ·8VHU KDG QRW HQRXJK FUHGLW· XQOHVV XVHU�KDVBHQRXJKBFUHGLW�SULFH�

LI� SULFH ! #FXUUHQWBSULFH �
#FXUUHQWBZLQQHU XVHU
$XGLW�ORJBQHZBZLQQHU� XVHU �

#FXUUHQWBSULFH SULFH
$XGLW�ORJBQHZBSULFH� SULFH �

HQG
HQG

GHI FORVH��
#FXUUHQWBZLQQHU�ZLWKGUDZ� #FXUUHQWBSULFH ��

HQG
HQG

Testing

$XFWLRQ 8VHU

hasEnoughCredit(price:Int)
withdraw(price:int)

credit
User

0..1 currentWinner

bid(user:User, price:Int)

startDate
currentPrice

Auction

owner 1

logNewWinner()
logNewPrice()

Audit
«use»

FODVV $XFWLRQ
GHI LQLWLDOL]H�8VHU RZQHU�

#FXUUHQWBSULFH �
#VWDUWBGDWH 7LPH�QRZ
#RZQHU RZQHU

HQG

GHI ELG� XVHU� SULFH �

UDLVH ·%LGGHU FDQ QRW EH WKH RZQHU· LI XVHU RZQHU
UDLVH ·8VHU KDG QRW HQRXJK FUHGLW· XQOHVV XVHU�KDVBHQRXJKBFUHGLW�SULFH�

LI� SULFH ! #FXUUHQWBSULFH �
#FXUUHQWBZLQQHU XVHU
$XGLW�ORJBQHZBZLQQHU� XVHU �

#FXUUHQWBSULFH SULFH
$XGLW�ORJBQHZBSULFH� SULFH �

HQG
HQG

GHI FORVH��
#FXUUHQWBZLQQHU�ZLWKGUDZ� #FXUUHQWBSULFH ��

HQG
HQG

Testing

$XGLW�ORJ^1HZ:LQQHU�_�1HZ3ULFH�`
'LVN2XW2I6SDFH

'LVN2XW2I6SDFH

ELG�XVHU�SULFH�

$XGLW�ORJ^1HZ:LQQHU�_�1HZ3ULFH�`
'LVN2XW2I6SDFH

'LVN2XW2I6SDFH

ELG�XVHU�SULFH�

Exercise

Branches

$XFWLRQ 8VHU

hasEnoughCredit(price:Int)
withdraw(price:int)

credit
User

0..1 currentWinner

bid(user:User, price:Int)

startDate
currentPrice

Auction

owner 1

logNewWinner()
logNewPrice()

Audit
«use»

FODVV $XFWLRQ
GHI LQLWLDOL]H�8VHU RZQHU�

#FXUUHQWBSULFH �
#VWDUWBGDWH 7LPH�QRZ
#RZQHU RZQHU

HQG

GHI ELG� XVHU� SULFH �

UDLVH ·%LGGHU FDQ QRW EH WKH RZQHU· LI XVHU RZQHU
UDLVH ·8VHU KDG QRW HQRXJK FUHGLW· XQOHVV XVHU�KDVBHQRXJKBFUHGLW�SULFH�

LI� SULFH ! #FXUUHQWBSULFH �
#FXUUHQWBZLQQHU XVHU
$XGLW�ORJBQHZBZLQQHU� XVHU �

#FXUUHQWBSULFH SULFH
$XGLW�ORJBQHZBSULFH� SULFH �

HQG
HQG

GHI FORVH��
#FXUUHQWBZLQQHU�ZLWKGUDZ� #FXUUHQWBSULFH ��

HQG
HQG

1

2

3

Good Luck !

