
Oscar Nierstrasz

5. Testing and Debugging

Roadmap

2

> Testing — definitions and strategies
> Understanding the run-time stack and heap
> Debuggers
> Timing benchmarks
> Profilers

3

Testing and Debugging

Sources
> I. Sommerville, Software Engineering, Addison-Wesley,

Sixth Edn., 2000.
> svnbook.red-bean.com
> www.eclipse.org

Roadmap

4

> Testing — definitions and strategies
> Test-Driven Development
> Understanding the run-time stack and heap
> Debuggers
> Timing benchmarks
> Profilers

5

Testing

Unit testing: test individual (stand-alone) components

Module testing: test a collection of related components (a module)

Sub-system testing: test sub-system interface mismatches

System testing:
(i) test interactions between sub-systems, and
(ii) test that the complete systems fulfils functional
and non-functional requirements

Acceptance testing
(alpha/beta testing): test system with real rather than simulated data.

Testing is always iterative!

We focus in this course mainly on unit testing. A “unit” for us is a
class. Even though JUnit is design mainly for unit testing, it can
also be used to write arbitrary kinds of automated tests, for
example, we also use it to test complete scenarios (i.e., module
testing or even system testing).

6

Regression testing

Regression testing means testing that everything that used to
work still works after changes are made to the system!

> tests must be deterministic and repeatable

It costs extra work to define tests up front, but they more than
pay off in debugging & maintenance!

Consider the fact that you have to test all the functionality that
you implement anyway. Rather than testing your code manually,
you should write automated tests. This way you spend roughly
the same effort as you would have anyway, but at the end you
have an automated test that you can re-run any time later.
It is a mistake to think that once something works, you never
need to test it again.

Testing strategies

> Tests should cover “all” functionality
—every public method (black-box testing)
—every feature
—all boundary situations
—common scenarios
—exceptional scenarios
—every line of code (white-box testing)
—every path through the code

7

8

Caveat: Testing and Correctness

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”

—Edsger Dijkstra, 1970

Just because all your tests are green does not mean that your code
is correct and free of bugs. This also does not mean that testing is
futile!
A good strategy is to add a new test whenever a new bug is
discovered. The test should demonstrate the presence of the bug.
When the test is green, you know that this particular instance of
the bug is gone. Often bugs that arise despite testing are the
trickiest to find, and they may easily be reintroduced. Writing a
new test for the bug (i) documents the bug, (ii) helps you debug
it, and (iii) ensures that the bug will be flagged if it ever appears
again.

Roadmap

> Testing — definitions and strategies
> Test-Driven Development
> Understanding the run-time stack and heap
> Debuggers
> Timing benchmarks
> Profilers

9

Multiple Stack implementations

10

size = 2

top =

6

nil

7

Recall our LinkStack
implementation

An alternative way to implement
a stack is using an array. When
the array runs out of space, we
simply allocate a large one and
copy all the elements

Note that it is not obvious which approach is better. The
LinkStack grows and shrinks with every push or pop. An
ArrayStack only grows when it runs out of space. A push or
pop is very cheap with an ArrayStack, unless it runs out of
space, when an expensive copy operation must be performed.
It is also not clear what size the initial capacity of an
ArrayStack should be, nor how much it should “grow” when a
larger store is needed.

11

Testing a stack interface

Recall that we implemented tests for the interface of our
LinkStack class.

public class LinkStackTest {
protected StackInterface<String> stack;
private int size;

@Before public void setUp() {
stack = new LinkStack<String>();

}

@Test public void empty() {
assertTrue(stack.isEmpty());
assertEquals(0, stack.size());

}
…

Since there was no complex code in the LinkStack
implementation, we only write tests that focused on the interface.
Since ArrayStack implements the same interface, we can
actually reuse our older tests.

12

Adapting the test case

public class ArrayStackTest extends LinkStackTest {
@Before public void setUp() {

stack = new ArrayStack<String>();
}

}

We can easily adapt our test case by overriding
the setUp() method in a subclass.

Test-driven development

13

Instead of writing a class first and then writing the tests,
TDD promotes a development approach in which you
alternate in writing a test first, and then writing code that
lets this test pass.

Since we already have our tests in
place, we can use them to develop
our ArrayStack in a test-driven way

TDD forces you to think about how to test your code from the
beginning. It can also influence your design in two ways: first, it
help you to specify the interface of your class up front, since that
is what will be tested, and second, it will help you design your
class in a way that allows it to be easily tested.

Exploiting “quick fixes”

14

IDEs like Eclipse recognize that the class you
want to test does not exist yet, and can propose
to generate it for you as a “quick fix”.

To view the quick fixes in Eclipse, just click on the red warning
symbol in the left margin. Several possible ways to fix the
problem will be proposed, including generating the missing class
as the top solution.

A generated class

15

package p2.genstack;

public class ArrayStack<T> implements StackInterface<String> {

@Override
public boolean isEmpty() {

// TODO Auto-generated method stub
return false;

}

@Override
public int size() {

// TODO Auto-generated method stub
return 0;

}
…

}

The generated class contains empty method stubs for the declared
interface. Of course the generated code will not be correct, but it
will compile and can be tested.

Failing tests as “to do” items

16

Each failing test can be seen
as a “to do” item. When all the
tests are green, you are done.

17

ArrayStack

We implement the Stack using a (fixed-length) array to
store its elements:

✎ What would be a suitable class invariant for ArrayStack?

public class ArrayStack<T> implements StackInterface<T> {
protected T store [];
protected int capacity;
protected int size;

public ArrayStack() {
store = null; // default value
capacity = 0; // available slots
size = 0; // used slots

}

Here we decide on an initial capacity of zero, and we do not
allocate any initial store. This means that the store will be
initialized lazily the first time it is needed. (Lazy initialization is a
common programming idiom to save time and space when an
application starts, by delaying the cost to a later point in the
execution.)
Recall that the class invariant formalizes the valid states of an
object (see the lecture on Design by Contract.)
What are the valid states of an ArrayStack, and how would
you express this is a Boolean predicate?

Passing tests

18

public boolean isEmpty() {
return size == 0;

}

public int size() {
return size;

}

Some of the more trivial tests pass quite quickly

Handling overflow

19

public void push(T item) {
if (size == capacity) {

grow();
}
store[++size] = item;
assert this.top() == item;
assert invariant();

}

public T top() {
assert !this.isEmpty();
return store[size-1];

}

public void pop() {
assert !this.isEmpty();
size--;
assert invariant();

}

Whenever the array runs out
of space, the Stack
“grows” by allocating a
larger array, and copying
elements to the new array.

✎ How would you implement
the grow() method?

The grow() method must allocate a (strictly) larger array, copy
all the elements, and ensure that the old array can be garbage-
collected (i.e., make sure no variables refer to it any more).
What would be a suitable larger size?

Should we also shrink() if the Stack gets too small?

Roadmap

20

> Testing — definitions and strategies
> Test-Driven Development
> Understanding the run-time stack and heap
> Debuggers
> Timing benchmarks
> Profilers

21

Testing ArrayStack

When we test our ArrayStack, we get a surprise:

The stack trace tells us exactly where the exception occurred ...

java.lang.AssertionError
at p2.genstack.ArrayStack.push(ArrayStack.java:39)
at p2.genstack.LinkStackTest.pushPopOneElement(LinkStackTest.java:43)
at…

22

The Run-time Stack

The run-time stack is a fundamental data structure used to record the
context of a procedure that will be returned to at a later point in time.
This context (AKA “stack frame”) stores the arguments to the
procedure and its local variables.

Practically all programming languages use a run-time stack:

public static void main(String args[]) {
System.out.println("fact(3) = " + fact(3));

}
public static int fact(int n) {

if (n<=0) { return 1; }
else { return n*fact(n-1) ; }

}

Each JVM thread has a private Java virtual machine stack,
created at the same time as the thread. A JVM stack stores frames,
that hold local variables and partial results, and play a part in
method invocation and return.
Because the Java VM stack is never manipulated directly except
to push and pop frames, frames may actually be heap-allocated.
The memory for a Java virtual machine stack does not need to be
contiguous. OutOfMemoryError - CANNOT ALLOCATE
STACK.

23

The run-time stack in action ...

main …

fact(3)=? n=3; ...

fact(3)=? n=3;fact(2)=? n=2;fact(2) ...

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fact(1) ...

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fact(0)=? n=0;fact(0) ...

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fact(0)=? return 1

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? return 1

fact(3)=? n=3;fact(2)=? return 2

fact(3)=? return 6

fact(3)=6

A stack frame is
pushed with each
procedure call ...

... and popped with
each return.

The caller pushes the return address onto the stack, and the called
subroutine, when it finishes, pops the return address off the call
stack (and transfers control to that address). If a called subroutine
calls on to yet another subroutine, it will push its return address
onto the call stack, and so on, with the information stacking up
and unstacking as the program dictates. If the pushing consumes
all of the space allocated for the call stack, an error called a stack
overflow occurs.

RunTimeStack

stack : StackInterface
i : integer

TestStack.testStack

item_ : Object
ArrayStack.push

args : String []
TestStack.main

...
TestCase.runTest

...
TestCase.runBare

RunTimeHeap

:Integer

:Object[]

capacity_ : integer
size_ : integer
store_ : Object []

:ArrayStack

:String[]

24

The Stack and the Heap

The Heap grows with each new
Object created,

and shrinks
when Objects
are garbage-
collected.

NB: allocating
objects is cheap
on modern VMs

The JVM has a heap that is shared among all Java virtual machine
threads. The heap is the runtime data area from which memory
for all class instances and arrays is allocated.The heap is created
on VM start-up. Heap storage for objects is reclaimed by an
automatic storage management system (known as a garbage
collector); objects are never explicitly deallocated. The JVM
assumes no particular type of automatic storage management
system, and the storage management technique may be chosen
according to the implementor's system requirements. The heap
may be of a fixed size or may be expanded as required by the
computation and may be contracted if a larger heap becomes
unnecessary. The memory for the heap does not need to be
contiguous.

Roadmap

25

> Testing — definitions and strategies
> Test-Driven Development
> Understanding the run-time stack and heap
> Debuggers
> Timing benchmarks
> Profilers

26

Debuggers

A debugger is a tool that allows you to examine the state of a
running program:

> step through the program instruction by instruction
> view the source code of the executing program
> inspect (and modify) values of variables in various formats
> set and unset breakpoints anywhere in your program
> execute up to a specified breakpoint
> examine the state of an aborted program (in a “core file”)

A debugger offers the ability to perform step through execution,
to set breakpoints and values, to inspect variables and values, and
to suspend and resume threads. Additionally, you can debug
applications that are running on a remote machine.
Whenever you have the temptation to add a “print” statement to
your code to find out what is happening, instead you should set a
breakpoint and directly inspect the program state.

Aside: A core dump is the recorded state of the working memory
of a computer program at a specific time, generally when the
program has terminated abnormally (crashed). (This quaint term
refers to the time when computer storage consisted of “magnetic
core memory”, up to about 1975.) It is possible to force a JVM to
“dump core.”

27

Using Debuggers

Interactive debuggers are available for most mature
programming languages and integrated in IDEs.

Classical debuggers are line-oriented (e.g., jdb); most
modern ones are graphical.

✎ When should you use a debugger?
✔ When you are unsure why (or where) your program is not

working.

NB: debuggers are object code specific — pick the right
one for your platform!

Setting a breakpoint in Eclipse

28

Set a breakpoint within the failing test method (double-click in
the margin of the code browser to the left of the line number so a
dot representing the breakpoint appears). Then execute “Debug
As” JUnit test (i.e., rather than “Run As”).

29

Debugging in Eclipse

When
unexpected
exceptions
arise, you can
use the
debugger to
inspect the
program state
…

The code will run up to the breakpoint and then start the
debugger. You may then step into, step over and step return out of
code, inspecting the state of the objects and methods as you
navigate.
To remove the breakpoint, just double-click again on the dot.

30

Debugging Strategy

Develop tests as you program
> Apply Design by Contract to decorate classes with invariants and pre- and

post-conditions
> Develop unit tests to exercise all paths through your program

— use assertions (not print statements) to probe the program state
— print the state only when an assertion fails

> After every modification, do regression testing!

If errors arise during testing or usage
> Identify and add any missing tests!
> Use the test results to track down and fix the bug
> If you can’t tell where the bug is, then use a debugger to identify the faulty

code

All software bugs are a matter of false assumptions. If you make
your assumptions explicit, you will find and stamp out your bugs!

31

Fixing our mistake

We erroneously used the incremented size as an index into the store,
instead of the new size of the stack - 1:

NB: perhaps it would be clearer to write:

public void push(E item) ... {
if (size == capacity) { grow(); }
store[size++] = item;
assert(this.top() == item);
assert(invariant());

}

store[this.topIndex()] = item;

item
1
0

This is a classic example of an “off by one” error. This is one of
the most common (and notorious) bugs in software systems.
Typically code with such bugs works fine until a certain limit
case is encountered. For this reason it is important to write tests
for boundary conditions, i.e., where arguments to methods are on
or next to boundary values, such as minimum or maximum values
of ranges, or values next to them.

Wrapping is a fundamental programming technique for
systems integration.

✎ What do you do with an object whose interface doesn’t fit
your expectations?

✔ You wrap it.

✎ What are possible disadvantages of wrapping?

32

Wrapping Objects

client
wrapper

33

java.util.Stack

Java also provides a Stack implementation, but it is not compatible with
our interface:

If we change our programs to work with the Java Stack, we won’t be
able to work with our own Stack implementations ...

public class Stack extends Vector {
public Stack();
public Object push(Object item);
public synchronized Object pop();
public synchronized Object peek();
public boolean empty();
public synchronized int search(Object o);

}

34

A Wrapped Stack

A wrapper class implements a required interface, by delegating
requests to an instance of the wrapped class:

✎ Do you see any flaws with our wrapper class?

public class SimpleWrappedStack<E> implements StackInterface<E> {
private java.util.Stack<E> stack;
public SimpleWrappedStack() { this(new Stack<E>()); }
public SimpleWrappedStack(Stack<E> stack) { this.stack = stack; }
public void push(E item) { stack.push(item); }
public E top() { return stack.peek(); }
public void pop() { stack.pop(); }
public boolean isEmpty() { return stack.isEmpty(); }
public int size() { return stack.size(); }

}

35

A contract mismatch

But running the test case yields:

✎ What went wrong?

java.lang.Exception: Unexpected exception,
expected<java.lang.AssertionError> but
was<java.util.EmptyStackException>

...
Caused by: java.util.EmptyStackException

at java.util.Stack.peek(Stack.java:79)
at p2.stack.SimpleWrappedStack.top(SimpleWrappedStack.java:32)
at p2.stack.LinkStackTest.emptyTopFails(LinkStackTest.java:28)
...

36

Fixing the problem ...

Our tester expects an empty Stack to throw an exception when it is
popped, but java.util.Stack doesn’t do this — so our wrapper should
check its preconditions!

public class WrappedStack<E> implements StackInterface<E> {
public E top() {

assert !this.isEmpty();
return super.top();

}
public void pop() {

assert !this.isEmpty();
super.pop();
assert invariant();

}
…

}

Roadmap

37

> Testing — definitions and strategies
> Test-Driven Development
> Understanding the run-time stack and heap
> Debuggers
> Timing benchmarks
> Profilers

38

Timing benchmarks

Which of the Stack implementations performs better?

✎ Complexity aside, how can you tell which implementation strategy will
perform best?

✔ Run a benchmark.

timer.reset();
for (int i=0; i<iterations; i++) {

stack.push(item);
}
elapsed = timer.timeElapsed();
System.out.println(elapsed + " milliseconds for "

+ iterations + " pushes");
...

39

Timer

import java.util.Date;
public class Timer { // Abstract from the

protected Date startTime; // details of timing
public Timer() {

this.reset();
}
public void reset() {

startTime = new Date();
}
public long timeElapsed() {

return new Date().getTime() - startTime.getTime();
}

}

40

Sample benchmarks (milliseconds)

Stack Implementation 100K pushes 100K pops

p2.stack.LinkStack 126 6

p2.stack.ArrayStack 138 3

p2.stack.WrappedStack 104 154

✎Can you explain these results? Are they what you expected?

Roadmap

41

> Testing — definitions and strategies
> Test-Driven Development
> Understanding the run-time stack and heap
> Debuggers
> Timing benchmarks
> Profilers

42

Profilers

A profiler tells you where a terminated program has spent
its time.

1. your program must first be instrumented by
I. setting a compiler (or interpreter) option, or
II.adding instrumentation code to your source program

2. the program is run, generating a profile data file
3. the profiler is executed with the profile data as input

The profiler can then display the call graph in various
formats

Caveat: the technical details vary from compiler to compiler

Profilers are used to find out what parts of the code have been
executed and how much time was spent in each part. Running a
profiler should be the first step whenever you discover that
performance is not good enough and you want to optimize parts
of your code. The profiler where tell you where the program is
spending most of its time.

43

Using java -Xprof

Flat profile of 0.61 secs (29 total ticks): main

 Interpreted + native Method
 20.7% 0 + 6 java.io.FileOutputStream.writeBytes
 3.4% 0 + 1 sun.misc.URLClassPath$FileLoader.<init>
 3.4% 0 + 1 p2.stack.LinkStack.push
 3.4% 0 + 1 p2.stack.WrappedStack.push
 3.4% 0 + 1 java.io.FileInputStream.open
 3.4% 1 + 0 sun.misc.URLClassPath$JarLoader.getResource
 3.4% 0 + 1 java.util.zip.Inflater.init
 3.4% 0 + 1 p2.stack.ArrayStack.grow
 44.8% 1 + 12 Total interpreted

…

To use this, simply set the runtime (vm) flag -Xprof

44

Example of Profiler Features

This is an example of a nice tool that visually displays the call
graph as a browsable tree. you can navigate through the tree to
inspect further details.

45

Using Profilers

✎ When should you use a profiler?
✔ Always run a profiler before attempting to tune

performance.

✎ How early should you start worrying about performance?
✔ Only after you have a clean, running program with poor

performance.

NB: The call graph also tells you which parts of the program
have (not) been tested!

http://www.javaperformancetuning.com/resources.shtml#ProfilingToolsFree

Coverage tools

> A coverage tool can tell you what part of your code has
been exercised by a test run or an interactive session.
This helps you to:
—identify dead code
—missing tests

46

EclEmma is a free Java coverage tool for Eclipse

47

Here we see in green which code has been exercised and in red
which code has not. By running your tests with the coverage tool
you can quickly discover which code has not been covered by
your test suite.

48

What you should know!

✎ What is a regression test? Why is it important?
✎ What strategies should you apply to design a test?
✎ How does test-driven development work?
✎ What are the run-time stack and heap?
✎ How can you adapt client/supplier interfaces that don’t

match?
✎ When are benchmarks useful?

49

Can you answer these questions?

✎ Why can’t you use tests to demonstrate absence of
defects?

✎ How would you implement ArrayStack.grow()?
✎ Why doesn’t Java allocate objects on the run-time stack?
✎ What are the advantages and disadvantages of

wrapping?
✎ What is a suitable class invariant for WrappedStack?
✎ How can we learn where each Stack implementation is

spending its time?
✎ How much can the same benchmarks differ if you run

them several times?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

