© capacity
O size
¥ © store
A [0]
> a1
> O item

ArrayStack<T> (id=46)
2

1

Object[2] (id=53)

null

"a" (id=48)

"a" (id=48)

u

b
UNIVERSITAT
BERN

Roadmap

> Testing — definitions and strategies

> Understanding the run-time stack and heap
> Debuggers

> Timing benchmarks

> Profilers

Testing and Debugging

Sources

> |. Sommerville, Software Engineering, Addison-Wesley,
Sixth Edn., 2000.

> svnbook.red-bean.com IAN SOMMERVILLE
. Software.
> www.eclipse.org Engineering

U

Roadmap

—

> Testing — definitions and strategies

> Test-Driven Development

> Understanding the run-time stack and heap
> Debuggers

> Timing benchmarks

> Profilers

Testing

Unit testing: test individual (stand-alone) components

Module testing: |test a collection of related components (a module)

Sub-system testing: |test sub-system interface mismatches

(i) test interactions between sub-systems, and
System testing: |(ii) test that the complete systems fulfils functional
and non-functional requirements

Acceptance testing

(alpha/beta testing): test system with real rather than simulated data.

Testing is always iterative!

We focus 1n this course mainly on unit testing. A “unit” for us 1s a
class. Even though JUnit 1s design mainly for unit testing, it can
also be used to write arbitrary kinds of automated tests, for

example, we also use 1t to test complete scenarios (1.€., module
testing or even system testing).

Regression testing

Regression testing means testing that everything that used to

work still works after changes are made to the system!
> tests must be deterministic and repeatable

It costs extra work to define tests up front, but they more than
pay off in debugging & maintenance!

Consider the fact that you have to test all the functionality that
you implement anyway. Rather than testing your code manually,
you should write automated tests. This way you spend roughly
the same effort as you would have anyway, but at the end you
have an automated test that you can re-run any time later.

It 1s a mistake to think that once something works, you never
need to test 1t again.

Testing strategies

> Tests should cover “all” functionality
—every public method (black-box testing)
—every feature
— all boundary situations
— common scenarios
— exceptional scenarios
—every line of code (white-box testing)
—every path through the code

Caveat: Testing and Correctness

“Program testing can be used to
show the presence of bugs, but

never to show their absence!”
—Edsger Dijkstra, 1970

Just because all your tests are green does not mean that your code
1s correct and free of bugs. This also does not mean that testing 1s
futile!

A good strategy 1s to add a new test whenever a new bug 1s
discovered. The test should demonstrate the presence of the bug.
When the test 1s green, you know that this particular instance of
the bug 1s gone. Often bugs that arise despite testing are the
trickiest to find, and they may easily be reintroduced. Writing a
new test for the bug (1) documents the bug, (11) helps you debug
it, and (111) ensures that the bug will be flagged 1f 1t ever appears
again.

Roadmap

—

> Testing — definitions and strategies

> Test-Driven Development

> Understanding the run-time stack and heap
> Debuggers

> Timing benchmarks

> Profilers

Multiple Stack implementations

implementation

top= @+ 7

size =2 nil

Recall our LinkStack

An alternative way to implement
a stack is using an array. When

the array runs out of space, we

simply allocate a large one and

copy all the elements

capacity = 4

size =2

store

10

Note that 1t 1s not obvious which approach 1s better. The
LinkStack grows and shrinks with every push or pop. An
ArrayStack only grows when 1t runs out of space. A push or

pop 1s very cheap with an ArrayStack, unless i1t runs out of
space, when an expensive copy operation must be performed.

It 1s also not clear what size the 1nitial capacity of an

ArrayStack should be, nor how much 1t should “grow” when a
larger store 1s needed.

Testing a stack interface

Recall that we implemented tests for the interface of our
LinkStack class.

public class LinkStackTest {

protected StackInterface<String> stack;
private int size;

@Before public void setUp() {
stack = new LinkStack<String>();

}

@Test public void empty() {
assertTrue(stack.isEmpty());
assertEquals (0, stack.size());

Since there was no complex code 1n the LinkStack
implementation, we only write tests that focused on the interface.

Since ArrayStack implements the same interface, we can
actually reuse our older tests.

Adapting the test case

We can easily adapt our test case by overriding
the setUp () method in a subclass.

public class ArrayStackTest extends LinkStackTest {
@Before public void setUp() {
stack = new ArrayStack<String>();

}

Test-driven development

Instead of writing a class first and then writing the tests,
TDD promotes a development approach in which you
alternate in writing a test first, and then writing code that
lets this test pass.

Since we already have our tests in
place, we can use them to develop
our ArrayStack In a test-driven way

13

TDD forces you to think about how to test your code from the
beginning. It can also influence your design 1n two ways: first, it
help you to specify the interface of your class up front, since that
1s what will be tested, and second, 1t will help you design your
class 1n a way that allows 1t to be easily tested.

Exploiting “quick fixes”

12 public class ArrayStackTest extends LinkStackTest {

13
al4e @Before public void setUp() {
515 stack = new ArrayStacklkString>Q);
16 } G Create class 'ArrayStack<T>' Opens the new class wizard to create the type.
& Change to 'Stackinterface’ (p2.genstack) e
17 @ Change to 'Array’ (java.lang.reflect) public Eh ArrayStack<T> implements
18 } @ Change to 'Arrays’ (java.util) Stackinterface<String> {
@ Change to 'ArrayStackTest' (p2.genstack) }
19 1= Rename in file (3£2 R)

@ Fix project setup...

Press 'Tab' from proposal table or click for focus

IDESs like Eclipse recognize that the class you
want to test does not exist yet, and can propose
to generate it for you as a “quick fix”.

14

To view the quick fixes in Eclipse, just click on the red warning
symbol 1n the left margin. Several possible ways to fix the
problem will be proposed, including generating the missing class
as the top solution.

A generated class

package p2.genstack;
public class ArrayStack<T> implements StackInterface<String> {

@Override

public boolean isEmpty() {
// TODO Auto-generated method stub
return false;

}

@Override

public int size() {
// TODO Auto-generated method stub
return 0O;

}

15

The generated class contains empty method stubs for the declared
interface. Of course the generated code will not be correct, but 1t
will compile and can be tested.

Failing tests as “to do” items

D Java - p2-GenStack/src/p2/genstack/LinkStackTest.j java Eclipse - /Users/oscar/Documents/eclipse

i RIAA B O QG OO A .

[#l B3 | 4 Dsbug §X-Jave Browsing Scala [Resource (G

B 4l

42

43
44
45
46
47
48

49¢

50
51

& |J] LinkStackTest.java &3

@Test public void pushPopOneElement() {
stack.push("a");
stack.pop();
assertTrue(stack.isEmpty());
assertEquals(@, stack.size());

}

@Test public void pushNull(Q) {
stack.push(null);
assertFalse(stack.isEmpty());

Each failing test can be seen
as a “to do” item. When all the
tests are green, you are done.

59
60
61
62
63
64

~r~-

stack. push(“b"),
assertEquals("b", stack.top());
stack.pop();

assertEquals("a", stack.top());
stack.pop();
assertTrue(stack.isEmpty());

v v {‘J @ v v
= 0 glount 2 55 outline ¥ Ant [E] Task List = 0
4 v aelB QR EHY <
Finished after 0.021 seconds

Runs: 9/9 8 Errors: 0O B Failures: 9

v ;‘l;pZ.genstock.ArrayStackTest [Runner: JUnit 4] (0.002 s)

(R | LR

g pushPopOneEiement (0.001 s)
g/ twoElement (0.000 s)
ﬁ]bfokenScouence (0.000 s)

g/ pushOneElement (0.000 s)

g empty (0.001 5)

g emptyTopFails (0.000)

g | emptyRemoveFalls (0.000 s)
o/ tirstinLastOut (0.000 s)

g pushNull (0.000 5)

Failure Trace =

java.lang AssertionError

at org.junit.Assert.fail(Assert.java:86)

at org.junit.Assert.assertTrue(Assert.java:41)

at org.junit.Assert.assertTrue(Assert.java:52)

at p2.genstack.LinkStackTest. pushPopOneElement(LinkStac
at sun.reflect.NativeMethodAccessorimpl.invokeO(Native Met
at sun.reflect.NativeMethodAccessorimpl.invoke(NativeMethe
at sun.reflect.DelegatingMethodAccessorimpl.invoke(Delegat
at org.junit.runners.model . FrameworkMethod$ 1.runReflective
at org.junit.internal.runners.model.ReflectiveCallable.run{Refl
at org.junit.runners.model.FrameworkMethod.invokeExplosive
at org ;un-t internal.runners.statements.InvokeMethod.evalua

- [a :

Deefd®

16

ArrayStack

We implement the Stack using a (fixed-length) array to
store its elements:

public class ArrayStack<T> implements StackInterface<T> {
protected T store [];

protected int capacity;
protected int size;

public ArrayStack() {

store = null; // default value
capacity = 0; // available slots
size = 0; // used slots

~ What would be a suitable class invariant for ArrayStack?

Here we decide on an 1nitial capacity of zero, and we do not
allocate any 1nitial store. This means that the store will be
initialized /azily the first time 1t 1s needed. (Lazy mitialization 1s a
common programming 1diom to save time and space when an
application starts, by delaying the cost to a later point in the
execution.)

Recall that the class invariant formalizes the valid states of an
object (see the lecture on Design by Contract.)

What are the valid states of an ArrayStack, and how would
you express this is a Boolean predicate?

Passing tests

Some of the more trivial tests pass quite quickly

public boolean isEmpty() {

1 ==] v E‘;; p2.genstack.ArrayStackTest [Runner: JUnit 4] (0.001 s)
12 ;
E}E:]pushPOpOneElement (0.000 s)
} = twoElement (0.001 s)

@ brokenSequence (0.000 s)
@pushOneElement (0.000 s)
Eempty (0.000 s)

pU.b lic int size () { £ emptyTopFails (0.000 s)
. gE]emptyRemoveFails (0.000 s)
return size ’ g/ firstinLastOut (0.000 s)

g1 pushNull (0.000 s)

Handling overflow

public void push(T item) {
if (size == capacity) {
grow() ;
}
store[++size] = item;
assert this.top() == item;
assert invariant();

}

public T top() {
assert !this.isEmpty();
return store[size-1];

}

public void pop() {
assert !this.isEmpty();
size--;
assert invariant();

— P

Whenever the array runs out
of space, the Stack
“grows” by allocating a
larger array, and copying
elements to the new array.

~ How would you implement
the grow() method?

19

The grow () method must allocate a (strictly) larger array, copy
all the elements, and ensure that the old array can be garbage-
collected (i.e., make sure no variables refer to 1t any more).

What would be a suitable larger size?

Should we also shrink() if the Stack gets too small?

Roadmap

> Testing — definitions and strategies

> Test-Driven Development

> Understanding the run-time stack and heap
> Debuggers

> Timing benchmarks

> Profilers

Testing ArrayStack

When we test our ArrayStack, we get a surprise:

java.lang.AssertionError
at p2.genstack.ArrayStack.push(ArrayStack.java:39)
at p2.genstack.LinkStackTest.pushPopOneElement (LinkStackTest.java:43)
at..

The stack trace tells us exactly where the exception occurred ...

The Run-time Stack

The run-time stack is a fundamental data structure used to record the
context of a procedure that will be returned to at a later point in time.
This context (AKA “stack frame”) stores the arguments to the
procedure and its local variables.

Practically all programming languages use a run-time stack:

public static void main(String args[]) {
System.out.println("fact(3) = " + fact(3));
}
public static int fact(int n) {
1if (n<=0) { return 1l; }

else { return n*fact(n-1) ; }

Each JVM thread has a private Java virtual machine stack,
created at the same time as the thread. A JVM stack stores frames,
that hold local variables and partial results, and play a part in
method 1invocation and return.

Because the Java VM stack 1s never manipulated directly except
to push and pop frames, frames may actually be heap-allocated.

The memory for a Java virtual machine stack does not need to be
contiguous. OutOfMemoryError - CANNOT ALLOCATE
STACK.

The run-time stack in action ...

main ... A stack frame is

fact(3)=? |n=3; ... pushed with each
procedure call ...

fact(3)=" n=3;fact(2)="? n=2;fact(2) ...

fact(3)=" n=3;fact(2)=" n=2;fact(1)=" n=1;fact(1) ...

fact(3)="? n=3;fact(2)=" n=2;fact(1)="7 n=1;fact(0)=" n=0;fact(0) ...

fact(3)="? n=3;fact(2)=" n=2;fact(1)=" n=1;fact(0)=" return 1

fact(3)=" n=3;fact(2)="? n=2;fact(1)="? return 1

fact(3)=" n=3;fact(2)=" return 2

fact(3)=" return 6 ... and popped with
each return.

fact(3)=6

The caller pushes the return address onto the stack, and the called
subroutine, when it finishes, pops the return address off the call
stack (and transfers control to that address). If a called subroutine
calls on to yet another subroutine, it will push 1ts return address
onto the call stack, and so on, with the information stacking up
and unstacking as the program dictates. If the pushing consumes
all of the space allocated for the call stack, an error called a stack
overflow occurs.

The Stack and the Heap

The Heap grows with each new
Object created,

RunTimeHeap

RunTimeStack

ArrayStack.push —> :Integer
item_ : Object

and shrinks
when Objects

N are garbage-
N

TestStack.testStack
stack : StacklInterface N
| integer

TestStack.main
args : String [|

:ArrayStack
capacity_ : integer collected.

size_ : integer
TestCase.runTest store_ : Object []

NB: allocating
TestCase.runBare objects is cheap
. :String[]

on modern VMs

///

The JVM has a heap that 1s shared among all Java virtual machine
threads. The heap 1s the runtime data area from which memory
for all class instances and arrays 1s allocated.The heap 1s created
on VM start-up. Heap storage for objects 1s reclaimed by an
automatic storage management system (known as a garbage
collector); objects are never explicitly deallocated. The JVM
assumes no particular type of automatic storage management
system, and the storage management technique may be chosen
according to the implementor's system requirements. The heap
may be of a fixed size or may be expanded as required by the
computation and may be contracted if a larger heap becomes
unnecessary. The memory for the heap does not need to be
contiguous.

Roadmap

=

> Testing — definitions and strategies

> Test-Driven Development

> Understanding the run-time stack and heap
> Debuggers

> Timing benchmarks

> Profilers

Debuggers

A debugger is a tool that allows you to examine the state of a
running program:

step through the program instruction by instruction

view the source code of the executing program

inspect (and modify) values of variables in various formats
set and unset breakpoints anywhere in your program
execute up to a specified breakpoint

examine the state of an aborted program (in a “core file”)

vV V. V V V V

A debugger offers the ability to perform step through execution,
to set breakpoints and values, to inspect variables and values, and
to suspend and resume threads. Additionally, you can debug
applications that are running on a remote machine.

Whenever you have the temptation to add a “print” statement to

your code to find out what is happening, instead you should set a
breakpoint and directly inspect the program state.

Aside: A core dump 1s the recorded state of the working memory
of a computer program at a specific time, generally when the

program has terminated abnormally (crashed). (This quaint term
refers to the time when computer storage consisted of “magnetic

core memory’’, up to about 1975.) It 1s possible to force a JVM to
“dump core.”

Using Debuggers

Interactive debuggers are available for most mature
programming languages and integrated in IDEs.

Classical debuggers are line-oriented (e.g., jdb); most
modern ones are graphical.

~ When should you use a debugger?

v When you are unsure why (or where) your program is not
working.

NB: debuggers are object code specific — pick the right
one for your platform!

Setting a breakpoint in Eclipse

[NN) @ Java - p2-GenStack/src/p2/genstack/LinkStackTest.java - Eclipse - /Users/oscar/Documents/eclipse
- & winia Aits O Qrid GO '+ PLe (8])i+ GIr G v
l =1 »%"Java %5 Debug §J Java Browsing Scala [Resource [oGit
- [J) LinkStackTest.j 83 [J] ArrayStack.java [J] ArrayStackTest. ? = O | guJdunit 82 5= outline ¥ Ant E] Task List = B8 5
. | 20 EEREN - PUSTIL U)y O ¢e®dEE QR He v I8
37 aSSGI"tFalse(StaCk.ISEmpt)’()); Finished after 0.018 seco\r:ds y ’) @
38 assef'tfquals(l, stack. Size()); Runs: 9/9 @ Errors: O @ Failures: 4 [
39 assertfquals("a”, EEEER-tor()); I -
40 } Q

@Test public void pushPopOneElement() {

assertTrue(stack.isEmpty());
assertEquals(@, stack.size());

¥ @.1p2.genstack.ArrayStackTest [Runner: JUnit 4] (0.001 s)
@ /pushPopOneElement (0.001 s)
g1 twoElement (0.000 s)

"ony, ﬁﬂbrokenSequence (0.000 s)
stack. pUSh(a) ’| g/ pushOneElement (0.000 s)
stack.pop(); &) empty (0.000 ¢)

#5:] emptyTopFails (0.000 s)

#5:] emptyRemoveFails (0.000 s)
g firstinLastOut (0.000 s)

#1 pushNull (0.000 s)

= Failure Trace e
49¢= @Test pUb].IC void pUShNU].l() { 31 java.lang.AssertionError
. = at p2.genstack.ArrayStack.push(ArrayStack.java:39)

50 stack. pu sh (null) ’ . = at p2.genstack.LinkStackTest.pushPopOneElement(LinkStackTest.
51 assertFalse(stack.isEmpty()); = at sun.reflect.NativeMethodAccessorimpl.invokeO(Native Method)

. . = at sun.reflect.NativeMethodAccessorimpl.invoke(NativeMethod Acc
52 asser tE qua l 5(1 ’ stack .S1 ze()) ’ = at sun.reflect.DelegatingMethodAccessorimpl.invoke(DelegatingM
53 assertEqua 1 S(nUI 1 ’ stack. tOp()) s = at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(
5 4 } = at org.junit.internal.runners.model.ReflectiveCallable.run(Reflectiv

Writable

Smart Insert

43:25

28

Set a breakpoint within the failing test method (double-click 1n
the margin of the code browser to the left of the line number so a
dot representing the breakpoint appears). Then execute “Debug
As” JUnit test (1.e., rather than “Run As”).

Debugging in Eclipse

When
unexpected
exceptions
arise, you can
use the
debugger to
inspect the
program state

| o o 'J] Debug - p2—GenStackJsrclp2IgonstackJArrayStack.java Eclipse - /Users/oscar/Documents/eclipse
ﬁ'-v _9 \ l’ '...O %v AA ¢'° q; @E.}v » v v(‘..JCDv .
l—: l B | ‘“‘°°°"° 5’”“ st e I et
35 Debug &3 ¥ = B 0 variables 52 % Breakpoints i8 Y° 0O
¥ Ju ArrayStackTest (2) [JUnit) Name Value
Va?org.eclipse.jd!.imema!.iunit.mnner.RemoteTestRunmr at localhost:50008 ¥ @ this ArrayStack<T> ((@=50)
¥ /® Thread [main) (Suspended) O capacity 2
= ArrayStack<T>.push(T) line: 39 O size 1
= ArrayStackTest{LinkStackTest).pushPopOneElement() line: 43 ¥ O store Object[2] (id=57)
= NativeMethodAccessorimpl.invokeO{Method, Object, Object[)) line: not avai A (0] null
= NativeMethodAccessorimpl.invoke(Object, Object[]) line: 62 Ly I *a" (id=52)
= DelegatingMethodAccessorimpl.invoke(Object, Object(]) 'ne: 43 > O item *a" (id=52)
= Method invoke{Object, Object...) line: 497
= FrameworkMethod$ 1.runReflectiveCall() line: 50
= FrameworkMethod$1(ReflectiveCallable).run() line: 12
= FrameworkMethod. invokeExplosively(Object, Object...) line: 47
I} LinkStackTest,) [ﬂ ArrayStackjava &8 |/ ArrayStac«Test J| BrokenArrayStac ™ =0 gf Outline 23 =0
. . . — 8 L A=
a3? public void push(T item) { o WME. AW W e W
33 if (size == capacity) { v @, ArrayStackeT>
34 grm(); capacity : int
o size:imt
35 } . store : T[)
. o . c
36 // NB: top index is the *old* value of size © * ArrayStack()
. . | grow(): vod
37 // store[size++] = item; B inverlent() : boolesn
38 store[++size] = item; © . isEmpty() : boolean
. . = @ . popl) : void
39 assert this.top() == item; ® .- pushT) : void
40 assert invariant(); © . size() - int
A1 1 ®. tODU T
=) Console Tasks Ju JUnit 3 en @ 5—7 o-;- . vE A
p2.genstack. ArrayStackTest - pushPopOneElement
Runs: 1/9 B Errors: O B Fallures: 0
'F;p2.genstack.~my$ucﬂesl [Runner: JUnit 4) = Failure Trace _:h
P pushPopOneEiement
ir:twoeromont
|E: brokenSequence
It pushOneElement
Writable Smart Insert 43:1

The code will run up to the breakpoint and then start the
debugger. You may then step into, step over and step return out of
code, inspecting the state of the objects and methods as you
navigate.

To remove the breakpoint, just double-click again on the dot.

Debugging Strategy

Develop tests as you program

> Apply Design by Contract to decorate classes with invariants and pre- and
post-conditions

> Develop unit tests to exercise all paths through your program
— use assertions (not print statements) to probe the program state
— print the state only when an assertion fails

> After every modification, do regression testing!

If errors arise during testing or usage
> |dentify and add any missing tests!
> Use the test results to track down and fix the bug

> |If you can't tell where the bug is, then use a debugger to identify the faulty
code

All software bugs are a matter of false assumptions. If you make
your assumptions explicit, you will find and stamp out your bugs!

Fixing our mistake

We erroneously used the incremented size as an index into the store,
instead of the new size of the stack - 1:

public void push(E item) ... {

if (size == capacity) { grow(); } 1
store[size++] = item; item| O
assert(this.top() == item);

assert(invariant());

NB: perhaps it would be clearer to write:

store[this.topIndex()] = item;

This 1s a classic example of an “off by one” error. This 1s one of
the most common (and notorious) bugs in software systems.
Typically code with such bugs works fine until a certain limit
case 1s encountered. For this reason 1t 1s important to write tests
for boundary conditions, 1.e., where arguments to methods are on
or next to boundary values, such as minimum or maximum values
of ranges, or values next to them.

Wrapping Objects

Wrapping is a fundamental programming technique for
systems integration.

“~ What do you do with an object whose interface doesn't fit
your expectations?

v You wrap it.

wrapper

client

YVY

—>

~ What are possible disadvantages of wrapping?

java.util.Stack

Java also provides a Stack implementation, but it is not compatible with
our interface:

public class Stack extends Vector {
public Stack();
public Object push(Object item);
public synchronized Object pop();
public synchronized Object peek();
public boolean empty();
public synchronized int search(Object o0);

If we change our programs to work with the Java Stack, we won'’t be
able to work with our own Stack implementations ...

A Wrapped Stack

A wrapper class implements a required interface, by delegating
requests to an instance of the wrapped class:

public class SimpleWrappedStack<E> implements StackInterface<E> {
private java.util.Stack<E> stack;
public SimpleWrappedStack() { this(new Stack<E>()); }
public SimpleWrappedStack(Stack<E> stack) { this.stack = stack; }
public void push(E item) { stack.push(item); }
public E top() { return stack.peek(); }
public void pop() { stack.pop(); }
public boolean isEmpty() { return stack.isEmpty(); }
public int size() { return stack.size(); }

~ Do you see any flaws with our wrapper class?

A contract mismatch

But running the test case yields:

java.lang.Exception: Unexpected exception,
expected<java.lang.AssertionError> but
was<java.util.EmptyStackException>

Caused by: java.util.EmptyStackException

at java.util.Stack.peek(Stack.java:79)
at p2.stack.SimpleWrappedStack.top(SimpleWrappedStack.java:32)

at p2.stack.LinkStackTest.emptyTopFails(LinkStackTest.java:28)

~ What went wrong?

Fixing the problem ...

Our tester expects an empty Stack to throw an exception when it is
popped, but java.util.Stack doesn’t do this — so our wrapper should
check its preconditions!

public class WrappedStack<E> implements StackInterface<E> {
public E top() {
assert !this.isEmpty();
return super.top();
}
public void pop() {
assert !this.isEmpty();

super .pop();
assert invariant();

Roadmap

—

> Testing — definitions and strategies

> Test-Driven Development

> Understanding the run-time stack and heap
> Debuggers

> Timing benchmarks

> Profilers

Timing benchmarks

Which of the Stack implementations performs better?

timer.reset();
for (int 1=0; i<iterations; 1i++) {
stack.push(item);

}

elapsed = timer.timeElapsed();
System.out.println(elapsed + " milliseconds for "

+ iterations + pushes");

“~ Complexity aside, how can you tell which implementation strategy will
perform best?

v Run a benchmark.

Timer

import java.util.Date;
public class Timer { // Abstract from the
protected Date startTime; // details of timing
public Timer() {
this.reset();
}
public void reset() {
startTime new Date();

}
public long timeElapsed() {

return new Date().getTime() - startTime.getTime();

Sample benchmarks (milliseconds)

Stack Implementation 100K pushes 100K pops
p2.stack.LinkStack 126 6
p2.stack.ArrayStack 138 3
p2.stack.WrappedStack 104 154

~Can you explain these results? Are they what you expected?

Roadmap

=

> Testing — definitions and strategies

> Test-Driven Development

> Understanding the run-time stack and heap
> Debuggers

> Timing benchmarks

> Profilers

Profilers

A profiler tells you where a terminated program has spent
its time.

1. your program must first be instrumented by

|. setting a compiler (or interpreter) option, or
ll. adding instrumentation code to your source program

2. the program is run, generating a profile data file
3. the profiler is executed with the profile data as input

The profiler can then display the call graph in various
formats

Caveat: the technical details vary from compiler to compiler

Profilers are used to find out what parts of the code have been
executed and how much time was spent in each part. Running a
profiler should be the first step whenever you discover that
performance 1s not good enough and you want to optimize parts
of your code. The profiler where tell you where the program 1s
spending most of its time.

Using java -Xprof

Flat profile of 0.61 secs (29 total ticks): main

Interpreted + native

20.7%
3.4%

w
°
o\°

o®° 00 o9 o9

= W W w W W
e o

o &= b b b b

o0 o©°

=

0

R O O B O O O O

|

+ + + + + + + +

6

e N = T

12

Method

java.lio0.FileOutputStream.writeBytes
sun.misc.URLClassPathSFilel.oader.<init>
p2.stack.LinkStack.push
p2.stack.WrappedStack.push
java.io.FileInputStream.open
sun.misc.URLClassPath$SJarLoader.getResource
java.util.zip.Inflater.init
p2.stack.ArrayStack.grow

Total interpreted

To use this, simply set the runtime (vm) flag -Xprof

Example of Profiler Features

&9 JProfiler [BEA Weblogic 8.1 on localhost]

Session Edit Profiler

Yiews

Window Help

WOSXHSOR AP WM @ =€

&

Memory views

“

Heap waker

&

CPU views

&

Thread views

w

VM telemetry views

Thread selection:

Agagregation level:

||| Thread status:

=

3 Runnable E]

All thread groups

¢

@ r.:D I 100,0% - 2. 895 ms - 3 inv, weblogn: kemel ExecuteThread runi)
- () . 41,4% - 1,198 ms - 90 inv. com.bea.medrec.filkers, RequestEncodingFilter .doFiker(javax.serviet. ServietRequest, javax.serviet.Servie

[+

() w41, 2% - 1,194 ms - 90 inv. javax.servlet.FilterChain.doFilter(javax.serviet. ServietRequest, javax.serviet, ServietResponse)
Q- 40,6% - 1.176 ms - 90 inv. URL: jpatientfrecord.do
@ Q W 31,0% - 898 ms - 90 inv. com.bea.medrec. actions.Basefction.execute(org.apache. struts. action. ActionMapping, org.apac
@) ™. 31,0% - 898 ms - 90 inv, com.bea.medrec. actions, ViewRecordAction, executedction(org. apache.struts, action, ActionM
@ (), = 23,7% - 831 ms - 90 inv. com.bea.medrec. controller.RecordSession. getRecord(java.lang. Integer) [com.bea.medr
@- 24,8% - 717 ms - 90 inv. com.bea.medrec.controller.RecordSessionEJB.getRecord(java.lang.Integer)
@ [W 13,2% - 382 ms - 90 inv., com.bea.medrec.entities.RecordLocal.getRecord() [com.bea.medrec. entities,Reco
¢ £ W 10,0% - 289 ms - 90 inv. com.bea.medrec.entities. RecordLocalHome. findByPrimaryKey(java.lang.Integer) [c
| | ®&- @ ¥ 10,0% - 289 ms - 90 inv, weblogic.ejb20.nternal. EntityEJBLocaHome . findByPrimaryKey(weblogic.ejb20.i
‘ @ (W 19,1% - 263 ms - 90 inv. com.bea.medrec.entities.RecordEJB_xwepbo__WeblLogic_CMP_RDEMS. ejbFi
i O [0)12,4% - 68 ms - 90 inv. Java.sq.PreparedStatement . executeQuery()
| @ * J0BC cals
; © 65 ms - 90 inv, SELECT WL0.id, WL0.record_date, WLO.diagnosis, WL0.notes, WLO.pat_i
| 1,6% - 47 ms - 90 inv,
| 1,6% -45ms - 90 inv.
|
|
|
|
x
|
\
\
\
\
\
|

weblogic.e)p20.cmp.rdoms. RDBMSPersistenceManager .getConnection()
weblogic.e)p20.cmp.rdbms.RDBMSPersistenceManacer .getBeanFromRS(j
1,1% - 31 ms - 90 inv. weblogic.ep20.cmp.rdbms. RDBMSPersistenceManacer . releaseResources(
1,0% - 29 ms - 90 inv, java.sq.Connection.prepareStatement(java.lang. String)

0,7% - 19 ms - 180 inv. java,.sql.ResukSet.next()

0,2% -6 ms - 90 inv,
0,1% -3 ms-90inv,
0,0% - 0ms - 90 inv.,
0,0% - 0ms - 90 inv.
0,0% -0 ms - 20 inv,
0,0% -0ms - 20 inv,
0,0% - 0 ms - 90 inv.
0,0% - 0ms - 90 inv,
0,0% -0 ms - 90 inv,

[—t—

com.bea.medrec.entities.RecordE X8 _wcpéo__WeblLogic_CMP_RDEMS, W
java.sql.PreparedStatement. setInt{int, int)
weblogic.ejb20.cmp.rdbms . RDBMSPersistenceManager , get SelectForUpdatey
weblogic.ejb20.cmp.rdbms RDBMSPersistenceManager finderGetEoFromBear
java.util. HashMap. <init>()

java.util.Map.put(java.lang.Object, java.lang.Object)
java.lang.Integer.intVahle()

java.lang.Integer, <init>(int)

weblogic.ejb20.persistence.RSInfolmpl. <init >{java.sql.ResukSet, ink, ink, ja

, 0,0% - 0 ms - 180 inv. java.utd.Map.sze()
Q 0,0% - 0 ms - 90 inv. com.bea.medrec.entities. RecordE B _awcpéo__WeblLogic_CMP_RDBEMS. W
@) 0,1% - 1 ms - 90 inv. com.bea.medrec.entities.RecordLocal. <init>() [com.bea.medrec.entkies.Record
@ W) 0,1% - 1 ms - 1inv. com,bea, medrec.entities.RecordEJB_xwepbo__WebLogic_CMP_RDBMS, <init >() E]

|
|
|

4

o : : [

| Call tree

View Fiters:

| Reset view fikers J| Show Qo_bd fjlters J

=

| Hotspots | Call Graph |

This 1s an example of a nice tool that visually displays the call
graph as a browsable tree. you can navigate through the tree to
inspect further details.

Using Profilers

~ When should you use a profiler?

v Always run a profiler before attempting to tune
performance.

“~ How early should you start worrying about performance?

v Only after you have a clean, running program with poor
performance.

NB: The call graph also tells you which parts of the program
have (not) been tested!

http://www.javaperformancetuning.com/resources.shtml#ProfilingToolsFree

Coverage tools

> A coverage tool can tell you what part of your code has
been exercised by a test run or an interactive session.
This helps you to:
—identify dead code
—missing tests

EclEmma is a free Java coverage tool for Eclipse

800 ney/src/money
Fiv e & Q3O Qr | B HGCG | ™S 4 £ &Java [@aSVN Reposit...
P 48 1
| §leFe o Py
18 pactage piorer 5\ O (i, -
S private void appendBag(MoneyBag aBag) { :
¥ |- P2Money [Lectures/P2/Examples, for (Money m: monies.values()) {
v @ src appendMoney(m) ;
» £ money.vl }
>) money.v2 }
> {5 money.v3
¥ £ money.v4 . . o
> (3} Money.java 16436 2/2|[* © public boolean .equals(ObJect anObject) {
» (1) Money.java 25342 379/ if (!(anObject instanceof MoneyBag)) {
» [1) MoneyBag.java 29970 1 return false;
> [} MoneyTestjava 17012 }
> BAJRE System Library JVM 1.6.0 Set<Money> myMoneySet = new HashSet<Money>(monies.values());
» B JUnit 4 MoneyBag other = (MoneyBag) anObject;
g:::"“"‘:"““’“" Set<Money> otherMoneySet = new HashSet<Money>(other.monies.values());
tac .
& P2 TicTacToe2 return myMoneySet.equals(otherMoneySet);
LI P2TicTacToe-v6 }
LIP2TicTacToe-v7 .
G P2TicTacToe-v7swing a c public int hashCode() {
LI P2TicTacToe-v8 return llonies.hashCode();
LI P2TicTacToe-vaRMI } a
L pinocchio } -
2. Problems @ Codemap View | [E) Console [Coverage §2 - gfu JUnit| &) Tasks| 4 Search. =0
P2Money (Dec 16, 2009 4:33:59 PM) m XD 2B
Element A Coverage Covered Instructions Total Instructions
¥ = P2Money - 739% 961 1301
v (M src = 739% 961 1301
» & money.vl mm 87.1% 121 139
» &3 money.v2 =2 78.0% 234 300
» 3 money.v3 B 66.1% 275 416
v { money.vd . 742% 331 446
» [J) Money.java 8367 % 78 90
» [J] MoneyBag java - 519% 111 214
F - o » [J] MoneyTest java = 100.0% 142 142
T Smart Insert 31:1

Writable

=

Here we see 1n green which code has been exercised and in red
which code has not. By running your tests with the coverage tool
you can quickly discover which code has not been covered by
your test suite.

What you should know!

~ What is a regression test? Why is it important?

~ What strategies should you apply to design a test?
~ How does test-driven development work?

~ What are the run-time stack and heap?

~ How can you adapt client/supplier interfaces that don't
match?

~ When are benchmarks useful?

Can you answer these questions?

S~ Why can't you use tests to demonstrate absence of
defects?

~ How would you implement ArrayStack.grow()?

S~ Why doesn’t Java allocate objects on the run-time stack?

~ What are the advantages and disadvantages of
wrapping?

~ What is a suitable class invariant for WrappedStack?

~ How can we learn where each Stack implementation is
spending its time?

S~ How much can the same benchmarks differ if you run
them several times?

@creative
commons

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

@ ShareAlike — If you remix, transform, or build upon the material, you must distribute your

contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.orqg/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

