
Oscar Nierstrasz

11. A bit of Smalltalk

Roadmap

2

> The origins of Smalltalk
> Syntax in a nutshell
> Pharo and Gt
> Demo — the basics
> Demo — live programming with Gt

Roadmap

3

> The origins of Smalltalk
> Syntax in a nutshell
> Pharo and Gt
> Demo — the basics
> Demo — live programming with Gt

4

The origins of Smalltalk

Alan Kay’s Dynabook project (1968)

Alto — Xerox PARC (1973)

Smalltalk-78 windows

In the late 60s, Alan Kay predicted that in the foreseeable future
handheld multimedia computers would become affordable. He
called this a “Dynabook”. (The photo shows a mockup, not a real
computer.)
He reasoned that such systems would need to be based on object
from the ground up, so he set up a lab at the Xerox Palo Alto
Research Center (PARC) to develop such a fully object-oriented
system, including both software and hardware. They developed
the first graphical workstations with windowing system and
mouse.

5

Smalltalk-80

Everything is an object.
Everything is there, all the time.
First windowing system with mouse.
First graphical IDE.

Smalltalk-80 was introduced to the world in 1981 in a now-
famous issue of Byte Magazine. The “Smalltalk balloon” refers to
this issue.

https://archive.org/details/byte-magazine-1981-08

6

Smalltalk — a live programming environment

Image Changes

+

Virtual machine Sources

+

Smalltalk is often bundled into a single, “one-click” application, but
there are actually four pieces that are important to understand.
Every user of Smalltalk can work with one or more Smalltalk images.
The image file contains a snapshot of all the objects of the running
system. Every time you quit Smalltalk, you can save and update this
snapshot. In addition, the changes file consists of a log of all changes
to the source code of that image, i.e., all new or changed classes and
all compiled methods. If your image crashes (which is possible since
Smalltalk allows you to do anything, even if that might be fatal), you
can restart your image and replay your changes, so nothing is lost.
In addition, the virtual machine and sources files may be shared
between users. The VM runs the bytecode of compiled methods and
manages the image and changes file. Finally the sources file
(optional) contains all the source code of objects in the base image (so
you can not only explore this but modify it if you want).

7

Object-oriented language genealogy

1960

1970

1980

1990

2000

FORTRAN

1950

ALGOL 60 COBOL LISP

Simula 67

Smalltalk 72

Smalltalk 80

Squeak

ALGOL 68

PrologPascal

Clu

Eiffel Oberon

Ada 95

2010

Perl

awk

php

Groovy

Python

Ada

Modula-2

C#

JavaScript
Java

PL/1

C

C++

Objective C Self

Ruby

Pharo

Simula was the first object-oriented language, designed by Kristen
Nygaard and Ole Johan Dahl. Simula was designed in the early 60s,
to support simulation programming, by adding classes and inheritance
to Algol 60. The language was later standardized as Simula 67.
Programmers quickly discovered that these mechanisms were useful
for general-purpose programming, not just simulations.
Smalltalk adopted the ideas of objects and message-passing as the
core mechanisms, not just add-ons to a procedural language.
Stroustrup ported the ideas of Simula to C to support simulation
programming. The resulting language was first called “C with
classes”, and later C++.
Cox added Smalltalk-style message-passing syntax to C and called it
“Objective-C”.
Java integrated implementation technology from Smalltalk and syntax
from C++.
Squeak and Pharo are modern descendants of Smalltalk-80.

8

Smalltalk vs. Java vs. C++

Smalltalk Java C++
Object model Pure Hybrid Hybrid
Garbage collection Automatic Automatic Manual
Inheritance Single Single Multiple
Types Dynamic Static Static
Reflection Fully reflective Introspection Introspection

Modules Categories,
namespaces Packages Namespaces

The most important difference between Smalltalk, Java and C++,
is that Smalltalk supports “live programming”. Whereas in Java
and C++ you must first write source code and compile it before
you run anything, in Smalltalk you are always programming in a
live environment. You incrementally add classes and compile
methods within a running system.
As a consequence, Smalltalk has to be fully reflective, allowing
you to reify (“turn in objects”) all aspects of the system, and
change them at run time. The only thing you cannot change from
within Smalltalk is the virtual machine.

Roadmap

9

> The origins of Smalltalk
> Syntax in a nutshell
> Pharo and Gt
> Demo — the basics
> Demo — live programming with Gt

10

Literals and constants

Strings & Characters 'hello' $a
Numbers 1 3.14159

Symbols #yadayada
Arrays #(1 2 3)
Pseudo-variables self super

Constants true false

Everything is an object in Smalltalk, including these literal and
constant values.
Strings are just special kinds of ordered collections holding
character values.
Smalltalk supports various kind of numbers, and also supports
radix notation for numbers in different bases.
Symbols behave much like strings, but are guaranteed to be
globally unique. They always start with a hash (#).
In addition to self, super, true and false, there are only
two further reserved names in Smalltalk: nil and
thisContext. (The latter is only needed for meta-
programming!)

11

Three kinds of messages

> Unary messages

> Binary messages

> Keyword messages

5 factorial
Transcript cr

3 + 4

3 raisedTo: 10 modulo: 5

Transcript show: 'hello world'

Smalltalk has a very simple syntax. There are just three kinds of
messages:
1.Unary messages consist of a single world sent to an object (the

result of an expression). Here we send factorial to the
object 5 and cr (carriage return) to the object Transcript.
(Aside: upper-case variables are global in Smalltalk, usually
class names. Transcript is one of the few globals that is not a
class.)

2.Binary messages are operators composed of the characters +,
-, *, /, &, =, >, |, <, ~, and @.
Here we send the message “+ 4” to the object 3.

3.Keyword messages take multiple arguments. Here we send
“raisedTo: 10 modulo: 5” to 3 and “show: 'hello
world'” to Transcript.

12

Precedence

2 raisedTo: 1 + 3 factorial

1 + 2 * 3
1 + (2 * 3)

128

9 (!)
7

First unary, then binary, then keyword:

Use parentheses to force order:

2 raisedTo: (1 + (3 factorial))Same as:

The precedence rules for Smalltalk are exceedingly simple: unary
messages are sent first, then binary, and finally keyword
messages. Use parentheses to force a different order.
Note that there is no difference in precedence between binary
operators.

Blocks

13

1 to: 5 do: [:n | Transcript show: n; cr]

Block argument

Block

CascadeKeyword message

X

A typical method in the class Point

<= aPoint
"Answer whether the receiver is neither
below nor to the right of aPoint."

^ x <= aPoint x and: [y <= aPoint y]

(2@3) <= (5@6) true

Method name Argument Comment

Return

Keyword message
Instance variable

BlockBinary message

The slide shows the <= method of the Point class as it appears
in the IDE.
The first line lists the method name and its formal parameters. In
this case we are defining the method for the <= selector. (In
Smalltalk, method names are called “selectors”, because when a
message is received, the selector is used to select the method to
respond.)
Comments are enclosed in double quotation marks (strings are
enclosed in single quotes).
The body of this method consists of a single expression. The caret
(^) is a reserved symbol in Smalltalk and denotes a return value.
A block is enclosed in square brackets and denotes an expression
that may be evaluated. In this case, the Boolean and: method
will only evaluate the block if its receiver (i.e., the subexpression
to the left of the and:) evaluates to true.

X

Statements and cascades

| p pen |
p := 100@100.
pen := Pen new.
pen up.
pen goto: p; down; goto: p+p

Temporary variables
Statement

Cascade

Assignment

This is a code snippet (not a method) that may be evaluated in the
Playground.
Here we see that statements are expressions separated by periods (.).
Even though Smalltalk does not support type declarations, local
variables must still be declared, appearing within or-bars (|).
A variable is bound to a value using the assignment operator (:=).
Smalltalk supports a special syntax, called a cascade, to send multiple
messages to the same receiver. Messages in a cascade are separated
by semi-colons (;). In this case we send the messages “goto: p”,
“down”, and finally “goto: p+p” to the receiver p. (This draws a
line from the Point 100@100 to 200@200.)
Note that 100@100 looks like special syntax for Point objects, but
it is really just a Factory method of the Number class, which creates
a new Point instance.

X

Variables

> Local variables are delimited by |var|  
Block variables by :var|

OrderedCollection>>collect: aBlock
"Evaluate aBlock with each of my elements as the argument."
| newCollection |
newCollection := self species new: self size.
firstIndex to: lastIndex do:

[:index |
newCollection addLast: (aBlock value: (array at: index))].

^ newCollection

(OrderedCollection with: 10 with: 5) collect: [:each| each factorial]

 an OrderedCollection(3628800 120)

NB: Since source code for methods in the IDE does not show the
class of the method, it is a common convention in documentation
to add the missing class name, followed by two greater-than signs
(>>), as in this example.
This example serves mainly to show that blocks can take
arguments. The arguments are after the opening left square
bracket, and each is preceded by a colon (:).
The block:
[:each| each factorial]

takes its arguments from the receiver of collect:, the
collection holding 10 and 5.

X

Control Structures

> Every control structure is realized by message sends

max: aNumber
^ self < aNumber

ifTrue: [aNumber]
ifFalse: [self]

4 timesRepeat: [Beeper beep]

There are no built-in control constructs in Smalltalk. Everything
happens by sending messages!
Even a simple if statement is achieved by sending a message to a
boolean expression, which will then evaluate the block argument
only if it boolean is true.
Here we see that the max: method is implemented by sending
ifTrue:ifFalse: to the Boolean expression
self<aNumber. The ifTrue:ifFalse: method is itself
defined in the Boolean classes True and False.
(Try to imagine how it would be implemented, and then check in
the image to see how it is done.)

X

Creating objects

> Class methods

> Factory methods

OrderedCollection new
Array with: 1 with: 2

1@2
1/2

a Point
a Fraction

Ultimately all objects (aside from literals) are created by sending
the message new to a class. (The message new: is used to create
arrays of a given length.) Further constructors may be defined as
convenience methods on classes, for example,
Array with: 1 with: 2

will create an Array of length 2 using new:, and then initialize
it with the two arguments.
Other instance creation methods may be defined on the classes of
arguments used to create the objects. For example, to create a
Fraction, we send the message / to an Integer, with the
numerator as its argument. This method will then actually create a
new Fraction for us.

X

Creating classes

> Send a message to a class (!)

Number subclass: #Complex
instanceVariableNames: 'real imaginary'
classVariableNames: ''
poolDictionaries: ''
category: 'ComplexNumbers'

Everything is an object, ergo classes are objects too!
To create a new class, you must send a message to an existing
class, asking it to create (or redefine) a subclass.
Since the class to be created probably does not yet exist, its name
is not defined globally, so we must pass in the name as a symbol
(here #Complex).
We can also provide the names of its instance variables (or we
can update this later). Please ignore classVariableNames and
PoolDictionaries — they are almost never needed. The
“category” is the name of a related group of classes (something
like a poor man's package).

Roadmap

14

> The origins of Smalltalk
> Syntax in a nutshell
> Pharo and Gt
> Demo — the basics
> Demo — live programming with Gt

Pharo — a modern Smalltalk

15

Pharo is an open-source evolution of Smalltalk-80.
Download it from:

http://pharo.org

To learn how to use Pharo, start with the open-source book,
Pharo by Example:

http://books.pharo.org

To learn about more advanced features, continue with Deep into
Pharo

Glamorous Toolkit — a moldable Smalltalk

16

Gt is a “moldable” development environment
built on Pharo with native windows, software
analysis support, and a visualization engine

GT offers a new graphical framework and a new set of tools for
software development on top of Pharo.

https://gtoolkit.com/download/

NB: Although GT is quite mature, it does not yet offer
replacements for all Pharo tools and features, so it is always
possible to escape the the “Morphic World” to access the
traditional tool set.

Two rules to remember

Everything is an object

(Nearly) everything in Smalltalk is an object, which means that
you can “grab it” and talk to it. Everything that you see on the
screen is an object, so you can interact with it programmatically.
The implementation of Smalltalk itself is build up of objects, so
you can grab these objects and explore them. In particular, all the
tools are objects, but also classes and methods are objects. This
feature is extremely powerful and leads to a style of programming
that is different from the usual edit/compile/run development
cycle.

Everything happens by
sending messages

The only way to make anything happen is by sending messages.
To ask “what can I do with this object?” is the same as asking
“what messages does it understand?”
The terminology of “message sending” is perhaps unfortunate, as
those new to Smalltalk often assume it has something to do with
network communication, but one should understand it as a
metaphor: you do not “call an operation” of an object, but you
politely ask it to do something by sending it a request (a
“message”). The object then decides how to respond by checking
to see if its class has a “method” for handling this request. If it
does, it performs the method. If not, it asks its superclass if it has
such a method, and so on. If this search fails, the object does not
understand the message (but let’s not get into that now!).

X

Don’t panic!

New Smalltalkers often think they need to understand
all the details of a thing before they can use it.

Try to answer the question

with

Alan Knight. Smalltalk Guru

“How does this work?”

“I don’t care”.

This slide is a paraphrase of:
Try not to care — Beginning Smalltalk programmers often have trouble
because they think they need to understand all the details of how a thing
works before they can use it. This means it takes quite a while before they can
master Transcript show: ’Hello World’.
One of the great leaps in OO is to be able to answer the question “How does
this work?” with “I don’t care”.

alanknightsblog.blogspot.ch

Roadmap

20

> The origins of Smalltalk
> Syntax in a nutshell
> Pharo and Gt
> Demo — the basics
> Demo — live programming with Gt

Glamorous Toolkit

21

The Glamorous Toolkit is both a live programming environment
and a “moldable” IDE providing support for data exploration and
visualization. The core tools include a Playground for live
exploration of code, a Coder for editing and managing code
packages, a Git tool for managing repositories, and others.
Various tutorials and blogs are also available from the home
window.

The Playground

X

The Playground is
a place to evaluate
arbitrary Smalltalk
expressions

Evaluating an
expression opens
an “inspector” on
the result

You can select an expression in the Workspace and “do it”, “print
it”, “inspect it”, or simply “do it and go”.
NB: use the keyboard shortcuts instead of the menu or buttons!
The inspector tabs provide various views of the object, such as
the “raw” view showing the raw representation. The buttons open
various tools, such as a new inspector, or a Coder view of the
class.

Exploring objects and code

X

Expand methods in place

Send messages to objects

You can expand methods in place by clicking on the grey triangle.
You can also pull up a new playground from the bottom of any
inspector to evaluate arbitrary code.
NB: self is bound to the inspected object.

Finding seNders and iMplementors

X

Use keyboard shortcuts
or code snippets to find
method usages

To find all the implementations of a method, just position the mouse
within the method’s name, and evaluate Command+M (for iMplementors).
You can also find all methods that send it as a message by evaluating
Command+N (for seNders).
Gt also has extensive support for programmatically querying code. For
example, you can find the senders and implementors of the factorial
method by evaluating these snippets:

#factorial gtSenders

#factorial gtImplementors

Navigating to the class

X

View class here

View class in Coder

Search class

There are numerous ways to navigation to the class of an object.
You can view the class directly in the “Meta” tab, or open a
dedicated Coder pane with the “Browse” button.
Alternatively you can search for a class (or anything else) with
the Spotter, or open a new Coder pane and search there.

The Coder

X

The Coder is a dedicated tool for editing and managing classes
and methods. You can view classes either within their package
hierarchy or class hierarchy.
You can also view the methods of a class, or the class comment,
or you can browse references to the class. Other panes will appear
if they are relevant such as examples.
Methods in Smalltalk are tagged by their category, such as
“comparing” or “instance creation”. Note that “class methods”
are analogous to static methods in Java — you invoke them by
sending the message to the class, not the object.
Point x: 1 y: 2

will create a new Point object 1@2.

Roadmap

22

> The origins of Smalltalk
> Syntax in a nutshell
> Pharo and Gt
> Demo — the basics
> Demo — live programming with Gt

Demo: Defining classes and methods

23

This demo script can also be found in the same github repo listed
earlier.
Here we apply test-driven development to simulate a Post Office
serving customers.

Creating a class

X

Use the Coder to create a new class, specifying its name
(PostOfficeTestExamples), superclass (Object), and
package (PostOffice). You can also specify a tag (sub-
package), instance variables (slots), and other properties.
Click the checkmark (√) to commit.
Note that you can also create class programmatically by sending a
message to its superclass (“everything happens by sending
messages”):

Object subclass: #PostOfficeTestExamples

instanceVariableNames: ''

classVariableNames: ''

package: 'PostOffice'

Creating test examples

X

In Gt, tests are written
as example methods
that return an example
object.
This allows tests to be
composed, and also
allows the results to be
inspected and explored.
Just add the annotation
<gtExample> to turn a
method into a (test)
example.

Quick fixes

X

Like most modern
IDEs, Gt provides quick
fixes.
They appear as a
“wrench” icon, not only
within the Coder, but
anywhere you might
type a code snippet
(such as the
Playground).

Initialization

X

The initialize method
is run by default in Pharo
Smalltalk for all newly
created objects.
Here we initialize a queue
slot (instance variable) for
new PostOffice
instances.

Add a method

Unless your class is a direct subclass of Object, it is best
practice to perform super initialize as the first statement
in your initialize method (just as in all OO languages).
We initialize queue to OrderedCollection, as it provides
everything we need to model a queue, and there is no dedicated
Queue class.

Printing objects

X

We can compose test examples, and implement
#printOn: to make objects printable

The postOfficeWithJack test example is composed from
the emptyPostOffice example.
The default print method of classes just show the class name, so
we override it in both PostOffice and Customer to show the
list of names of customers in the queue.
Note the use of a Gt query to find all the printOn: method
implementations in our package.

Running all the tests

X

The package view provides a way to run all the tests

You can also run a query to extract all the test examples from a
package:

(#PostOffice gtPackageMatches

& #gtExample gtPragmas) gtExamples

(Everything happens by sending messages.)

Enabling a “live” view

X

By wrapping the queue as a “value holder” obeying
MVC, we obtain a live view of the PostOffice for free

If we change the initailization method of the PostOffice as
follows:

initialize

queue := OrderedCollection new asValueHolder

the queue will be wrapped as a “value holder” that produces
ValueChanged events when the collection is updated. The
Boxes view then updates itself automatically.

What we didn’t see

> Smalltalk is fully reflective
—Classes are objects too; the entire system is implemented in itself

> The debugger is your friend
—Sophisticated live debugging
—You can change the system while debugging

> You can’t lose code
—All changes are stored and can be replayed

> “Moldable” views in Gt
—You can create dedicated live visualizations for objects

24

25

What you should know!

✎ What are the key differences between Smalltalk, C++
and Java?

✎ What is at the root of the Smalltalk class hierarchy?
✎ What kinds of messages can one send to objects?
✎ What is a cascade?
✎ Why does 1+2/3 = 1 in Smalltalk?
✎ How are control structures realized?
✎ How is a new class created?
✎ What are categories for?
✎ What are Factory methods? When are they useful?

26

Can you answer these questions?

✎ Which is faster, a program written in Smalltalk, C++ or
Java?

✎ Which is faster to develop & debug, a program written in
Smalltalk, C++ or Java?

✎ How are Booleans implemented?
✎ Is a comment an Object? How would you check this?
✎ What is the equivalent of a static method in Smalltalk?
✎ How do you make methods private in Smalltalk?
✎ What is the difference between = and ==?
✎ If classes are objects too, what classes are they

instances of?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

