
Software Design Patterns

 1

Aliaksei Syrel

Pattern types

Creational Patterns

Behavioural Patterns

Structural Patterns

 2

Creational design patterns deal with object
creation mechanisms, trying to create objects

in a manner suitable to the situation.

Creational Patterns

Behavioral design patterns identify and realise
common communication patterns among

objects. By doing so, these patterns increase
flexibility in carrying out this communication.

Behavioural Patterns

Structural design patterns ease the design
by identifying a simple way to realise

relationships among entities.

Structural Patterns

Pattern types

Creational Patterns

Behavioural Patterns

Structural Patterns

Abstract Factory

Builder

Factory Method

Prototype

Singleton

 6

Pattern types

Creational Patterns

Behavioural Patterns

Structural Patterns

Abstract Factory

Builder

Factory Method

Prototype

Singleton

 7

The abstract factory pattern
provides a way to encapsulate
a group of individual factories
with a common theme without
specifying their concrete
classes

 8

If you want to create cars of different
models from the same brand

 9

you need Mercedes Factory

 10

If you want another brand with
different models

 11

You need additional Audi Factory

 12

Mercedes Factory Audi Factory

Two factories have the same available public
API for:
Creating a new car
Delivering it to customer
Developing new models
some other…

Abstract Factory

 13

Mercedes Factory Audi Factory

API can be extracted to an Interface

CarFactory <<Interface>>

Abstract Factory

 14

Abstract Factory

 15

Crossplatform
GUI library for native widgets

Windows OSX Android

Button

Checkbox

public interface Button {

}

public class WindowsButton implements Button {

}

public class OsxButton implements Button {

}

public class AndroidButton implements Button {

}

public interface Checkbox {

}

public class WindowsCheckbox implements Checkbox {

}

public class OsxCheckbox implements Checkbox {

}

public class AndroidCheckbox implements Checkbox {

}

Button
 - WindowsButton
 - OsxButton
 - AndroidButton

Checkbox
 - WindowsCheckbox
 - OsxCheckbox
 - AndroidCheckbox

public interface WidgetFactory {
public Button createButton();
public Checkbox createCheckbox();

}

public interface WidgetFactory {
public Button createButton();
public Checkbox createCheckbox();

}

public class WindowsWidgetFactory implements WidgetFactory {
@Override
public Button createButton() {

return new WindowsButton();
}

@Override
public Checkbox createCheckbox() {

return new WindowsCheckbox();
}

}

public interface WidgetFactory {
public Button createButton();
public Checkbox createCheckbox();

}

public class OsxWidgetFactory implements WidgetFactory {
@Override
public Button createButton() {

return new OsxButton();
}

@Override
public Checkbox createCheckbox() {

return new OsxCheckbox();
}

}

public class AndroidWidgetFactory implements WidgetFactory {
@Override
public Button createButton() {

return new AndroidButton();
}

@Override
public Checkbox createCheckbox() {

return new AndroidCheckbox();
}

}

public interface WidgetFactory {
public Button createButton();
public Checkbox createCheckbox();

}

Button
 - WindowsButton
 - OsxButton
 - AndroidButton

Checkbox
 - WindowsCheckbox
 - OsxCheckbox
 - AndroidCheckbox

WidgetFactory
 - WindowsWidgetFactory
 - OsxWidgetFactory
 - AndroidWidgetFactory

WidgetFactory widgetFactory;

WidgetFactory widgetFactory;

// “pseudocode” //
switch(System.getProperty("os.name")) {

case "Windows":
widgetFactory = new WindowsWidgetFactory();
break;

}

WidgetFactory widgetFactory;

// “pseudocode” //
switch(System.getProperty("os.name")) {

case "Windows":
widgetFactory = new WindowsWidgetFactory();
break;

case "OSX":
widgetFactory = new OsxWidgetFactory();
break;

case "Android":
widgetFactory = new AndroidWidgetFactory();
break;

default:
widgetFactory = null;
throw new Exception("Unsupported OS");

}

WidgetFactory widgetFactory;

// “pseudocode” //
switch(System.getProperty("os.name")) {

// //

}

Button button = widgetFactory.createButton();
Checkbox checkbox = widgetFactory.createCheckbox();

WidgetFactory widgetFactory;

// “pseudocode” //
switch(System.getProperty("os.name")) {

case "Windows":
widgetFactory = new WindowsWidgetFactory();
break;

case "OSX":
widgetFactory = new OsxWidgetFactory();
break;

case "Android":
widgetFactory = new AndroidWidgetFactory();
break;

default:
widgetFactory = null;
throw new Exception("Unsupported OS");

}

Button button = widgetFactory.createButton();
Checkbox checkbox = widgetFactory.createCheckbox();

Pattern types

Creational Patterns

Behavioural Patterns

Structural Patterns

Abstract Factory

Builder

Factory Method

Prototype

Singleton

 30

public class Game {
private final String name;
private final Player player;
private final Level level;
private final Board board;
private final Renderer renderer;

public Game(String name, Player player, Level level, Board board, Renderer renderer) {
this.name = name;
this.player = player;
this.level = level;
this.board = board;
this.renderer = renderer;

}

public Game(String name, Player player, Level level, Board board) {
this(name, player, level, board, new Renderer());

}

public Game(String name, Player player, Level level) {
this(name, player, level, new Board());

}

public Game(String name, Player player) {
this(name, player, new Level());

}

public Game(String name) {
this(name, new Player());

}

public Game() {
this("Default game");

}
}

 31

public class Game {
private final String name;
private final Player player;
private final Level level;
private final Board board;
private final Renderer renderer;

public Game(String name, Player player, Level level, Board board, Renderer renderer) {
this.name = name;
this.player = player;
this.level = level;
this.board = board;
this.renderer = renderer;

}

public Game(String name, Player player, Level level, Board board) {
this(name, player, level, board, new Renderer());

}

public Game(String name, Player player, Level level) {
this(name, player, level, new Board());

}

public Game(String name, Player player) {
this(name, player, new Level());

}

public Game(String name) {
this(name, new Player());

}

public Game() {
this("Default game");

}
}

 32

The telescoping constructor
anti-pattern occurs when the
increase of object constructor

parameter combinations leads to an
exponential list of constructors

 33

The intent of the Builder design
pattern is to separate the

construction of a complex object
from its representation

 34

public class Game {
private final Player player;
private final Level level;

public Game(Player player, Level level) {
this.player = player;
this.level = level;

}
}

 35

public class Game {
private final Player player;
private final Level level;

public Game(Player player, Level level) {
this.player = player;
this.level = level;

}

public static Builder builder() {
 return new Builder();
 }

public static class Builder {

}
}

Static builder class

 36

public class Game {
private final Player player;
private final Level level;

public Game(Player player, Level level) {
this.player = player;
this.level = level;

}

public static class Builder {
private Player player;
private Level level;

public Game build() {
return new Game(player, level);

}
}

}

Static builder class

 37

public class Game {
private final Player player;
private final Level level;

public Game(Player player, Level level) {
this.player = player;
this.level = level;

}

public static class Builder {
private Player player;
private Level level;

public Builder setPlayer(Player player) {
this.player = player;
return this;

}
public Builder setLevel(Level level) {

this.level = level;
return this;

}
public Game build() {

return new Game(player, level);
}

}
}

Static builder class

 38

Usage:

public static void main(String[] args) {
Game game = Game.builder()

.setLevel(new Level())

.setPlayer(new Player())

.build();
}

 39

public class Game {
private final Player player;
private final Level level;

public Game(Player player, Level level) {
this.player = player;
this.level = level;

}

public static class Builder {
private Player player;
private Level level;

public Builder setPlayer(Player player) {
this.player = player;
return this;

}
public Builder setLevel(Level level) {

this.level = level;
return this;

}
public Game build() {

return new Game(player, level);
}

}
}

Duplication

Static builder class

 40

Inner builder class

public class Game {
private final Player player;
private final Level level;

private Game() {}
}

 41

Inner builder class

public class Game {
private Player player;
private Level level;

private Game() {}

public static Builder builder() {
 return new Game().new Builder();
 }

public class Builder {

}
}

 42

Inner builder class
public class Game {

private Player player;
private Level level;
private Game() {}

public static Builder builder() {
 return new Game().new Builder();
 }

public class Builder {
private Builder() {}

public Builder setPlayer(Player player) {
Game.this.player = player;
return this;

}

public Builder setLevel(Level level) {
Game.this.level = level;
return this;

}

public Game build() {
return Game.this;

}
}

} 43

Inner builder class
public class Game {

private Player player;
private Level level;
private Game() {}

public static Builder builder() {
 return new Game().new Builder();
 }

public class Builder {
private Builder() {}

public Builder setPlayer(Player player) {
Game.this.player = player;
return this;

}

public Builder setLevel(Level level) {
Game.this.level = level;
return this;

}

public Game build() {
return Game.this;

}
}

}

Does not create new object
on each build() call

 44

Inner builder class + Cloneable
public class Game implements Cloneable {

private Game() {}

public Game clone() {
Game game;
try {

game = (Game) super.clone();
// clone mutable instance fields if needed

} catch (CloneNotSupportedException e) {
e.printStackTrace();
throw new RuntimeException();

}
return game;

}
}

 45

Inner builder class + Cloneable

public Game build() {
return Game.this.clone();

}

public Game build() {
return Game.this;

}

Before

After

 46

Usage:
public static void main(String[] args) {

Game game = Game.builder()
.setLevel(new Level())
.setPlayer(new Player())
.build();

}

public static void main(String[] args) {
Game game = new Game(new Player(), new Level());

}

vs.

public static void main(String[] args) {
Game game = new Game();
game.setPlayer(new Player());
game.setLevel(new Level());

}

vs.

 47

Pattern types

Creational Patterns

Behavioural Patterns

Structural Patterns

Chain of responsibility

Memento

Interpreter
Iterator

Command

State

Template Method

Observer

Mediator

Strategy

Visitor
 48

Pattern types

Creational Patterns

Behavioural Patterns

Structural Patterns

Chain of responsibility

Memento

Interpreter
Iterator

Command

State

Template Method

Observer

Mediator

Strategy

Visitor
 49

Chain of responsibility

The chain-of-responsibility is a design
pattern consisting of a source of command
objects and a series of processing objects.
Each processing object contains logic that
defines the types of command objects that it
can handle; the rest are passed to the next
processing object in the chain. A mechanism
also exists for adding new processing objects
to the end of this chain

 50

Chain of responsibility

The idea is to process the message
by yourself or to redirect it to
someone else.

 51

You need to repair a car

Chain of responsibility

 52

Can I repair it?

Please, repair my car

Chain of responsibility

 53

Can I repair it?

No

Can I repair it?

Please, repair my car

Chain of responsibility

 54

Can I repair it?

No Not everything

Can I repair it?

Can I repair it?

Please, repair my car

Chain of responsibility

 55

Can I repair it?

No Not everything

Almost

Can I repair it?

Can I repair it?

Can I repair it?

Please, repair my car

Chain of responsibility

 56

Can I repair it?

No Not everything

Almost

Done

Can I repair it?

Can I repair it?

Can I repair it?

Please, repair my car

Chain of responsibility

 57

Chain of responsibility

 58

Pattern types

Creational Patterns

Behavioural Patterns

Structural Patterns

Chain of responsibility

Memento

Interpreter
Iterator

Command

State

Template Method

Observer

Mediator

Strategy

Visitor
 59

The visitor pattern provides
an ability to add new
operations to existing object
structures without modifying
those structures

 60

Visitor

Help Darth Vader to check the
dislocation of his forces.

help!

 61

visit

1. Death Star accepts Darth Vader.

2. Darth Vader visits Death Star.

accept

Visitor

!!!

 62

visit

accept

visitaccept

Troopers on Death Star suggest
Darth Vader what to visit next:

Star Destroyer.

Visitor

 63

visit

accept

visitaccept
visit

acceptIn the end he
visits troopers.

Visitor

 64

Visitor

 65

Pattern types

Creational Patterns

Behavioural Patterns

Structural Patterns

Adapter

Facade

Composite

Decorator

Bridge

Flyweight

Proxy

 66

Pattern types

Creational Patterns

Behavioural Patterns

Structural Patterns

Adapter

Facade

Composite

Decorator

Bridge

Flyweight

Proxy

 67

The composite pattern lets
a client to treat a group or a
single instance uniformly.
(to have the same interface)

 68

Composite

Fight! 
(don’t miss, please)

Darth Vader wants to control one trooper or
a group of troopers in the same way

 69

… or even groups of groups of troopers

Composite

 70

Darth Vader doesn’t care how many
troopers to control - one or many

Composite!

Composite

 71

public interface StormUnit {
public void fight();

}

 72

public class Stormtrooper implements StormUnit {

}

public interface StormUnit {
public void fight();

}

 73

public interface StormUnit {
public void fight();

}

public class Stormtrooper implements StormUnit {
@Override
public void fight() {

System.out.println("Yes, sir!");
}

}

 74

public class StormGroup implements StormUnit {
private ArrayList<StormUnit> stormUnits = new ArrayList<>();

} 75

public class StormGroup implements StormUnit {
private ArrayList<StormUnit> stormUnits = new ArrayList<>();

@Override
public void fight() {

System.out.println("Group is ready, sir!");
for (StormUnit stormUnit : stormUnits) {

stormUnit.fight();
}

}

} 76

public class StormGroup implements StormUnit {
private ArrayList<StormUnit> stormUnits = new ArrayList<>();

@Override
public void fight() {

System.out.println("Group is ready, sir!");
for (StormUnit stormUnit : stormUnits) {

stormUnit.fight();
}

}

public void addStormUnit(StormUnit aStormUnit) {
stormUnits.add(aStormUnit);

}

public void removeStormUnit(StormUnit aStormUnit) {
stormUnits.remove(aStormUnit);

}

public void getStormUnit(int index) {
stormUnits.get(index);

}
} 77

Composite

 78

Important!

UI Components (Checkbox)

Material Design Light for Web  
(getmdl.io)

https://getmdl.io/

UI Components (Checkbox)

<label for="chkbox1">
 <input type="checkbox" id="chkbox1">
 Checkbox
</label>

Material Design Light for Web  
(getmdl.io)

http://getmdl.io

UI Components (Toggle)

Bloc for Pharo 
(pharo.org)

http://pharo.org

UI Components (Checkbox)

Bloc for Pharo 
(pharo.org)

http://pharo.org

The End.

 83

